PAT 498/598 (Winter 2025)

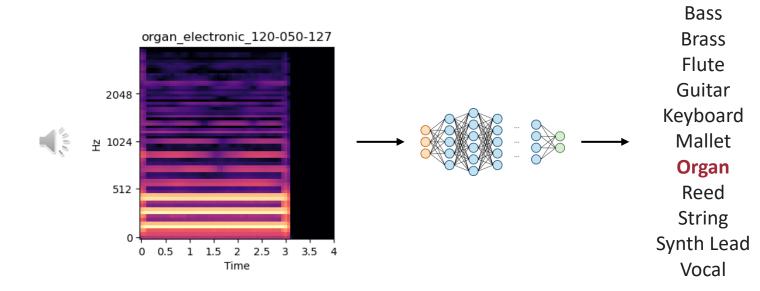
Music & Al

Lecture 9: Deep Learning Fundamentals III

Instructor: Hao-Wen Dong

Homework 3: Musical Note Classification using CNNs

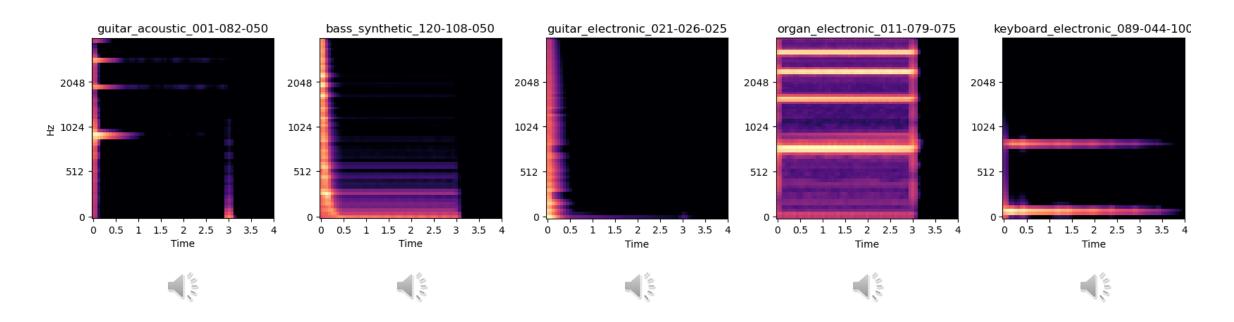
- Train a CNN that can classify audio files into their **instrument families**
 - Input: 64x64 mel spectrogram
 - Output: 11 instrument classes
 - Using the **NSynth** dataset (Engel et al., 2017)



Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Douglas Eck, Karen Simonyan, and Mohammad Norouzi, "<u>Neural Audio Synthesis of Musical Notes with WaveNet</u> <u>Autoencoders</u>," *ICML*, 2017.

NSynth Dataset

- A collection of 305,979 single-shot musical notes (Engel et al., 2017)
 - Produced from 1,006 commercial sample libraries
 - With different **MIDI pitches** (21–108) and **velocities** (25, 50, 75, 100, 127)

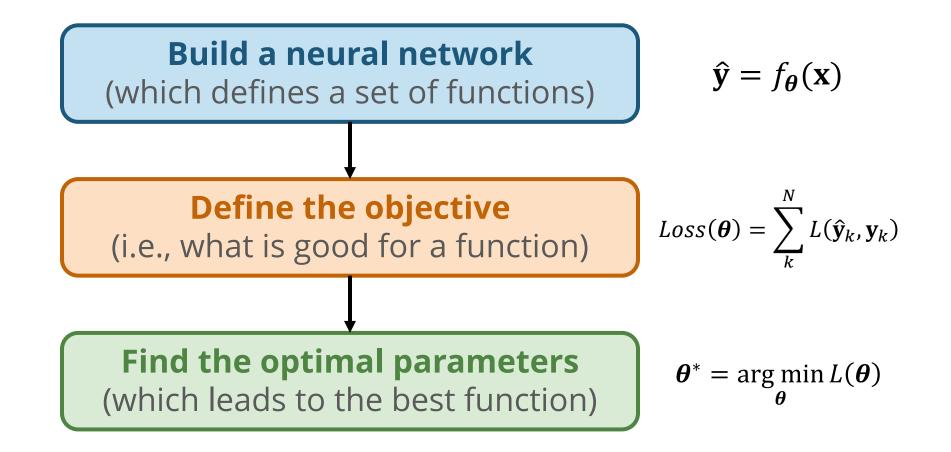


Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Douglas Eck, Karen Simonyan, and Mohammad Norouzi, "Neural Audio Synthesis of Musical Notes with WaveNet Autoencoders," ICML, 2017.

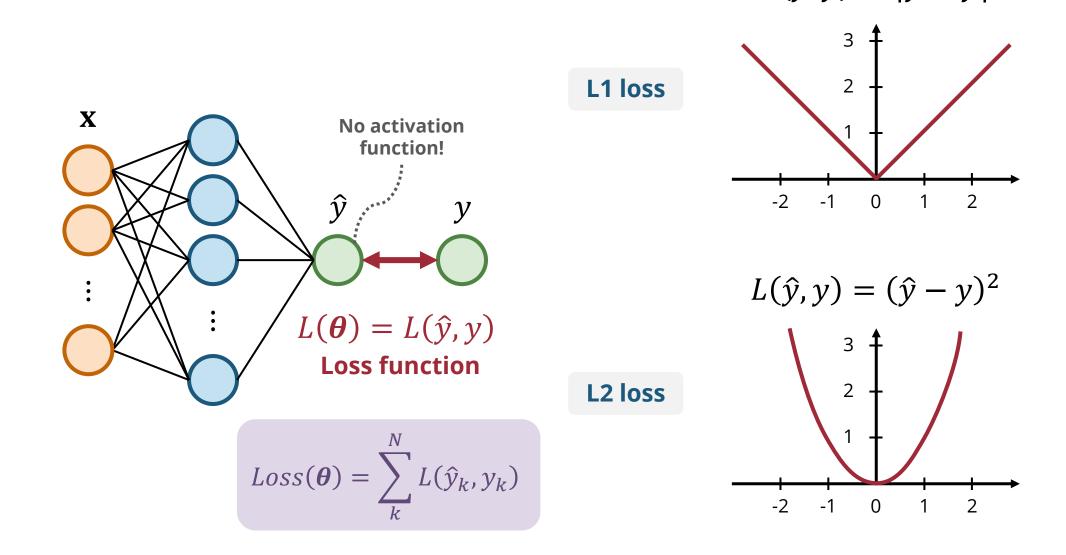
Homework 3: Musical Note Classification using CNNs

- Instructions will be released on Gradescope
- Due at **11:59pm ET** on **February 17**
- Late submissions: 1 point deducted per day

(Recap) Training a Neural Network



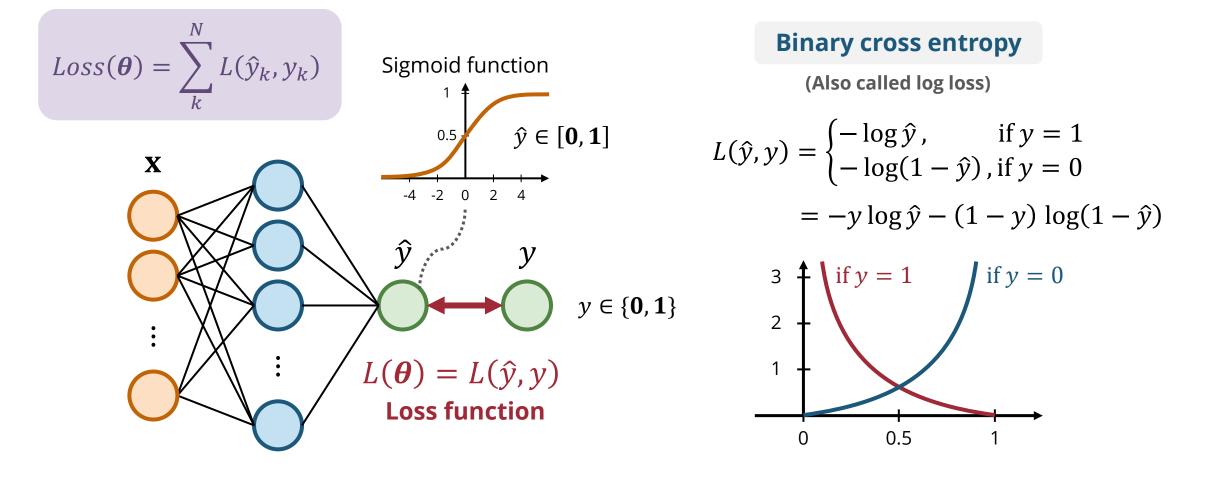
(Recap) Common Loss Functions for Regression



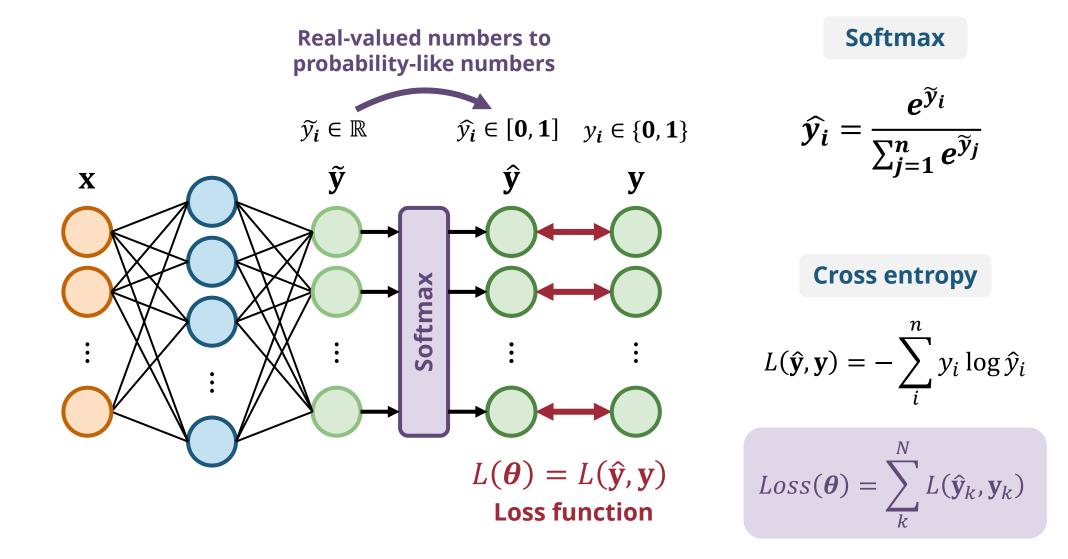
 $L(\hat{y}, y) = |\hat{y} - y|$

(Recap) Binary Cross Entropy for Binary Classification

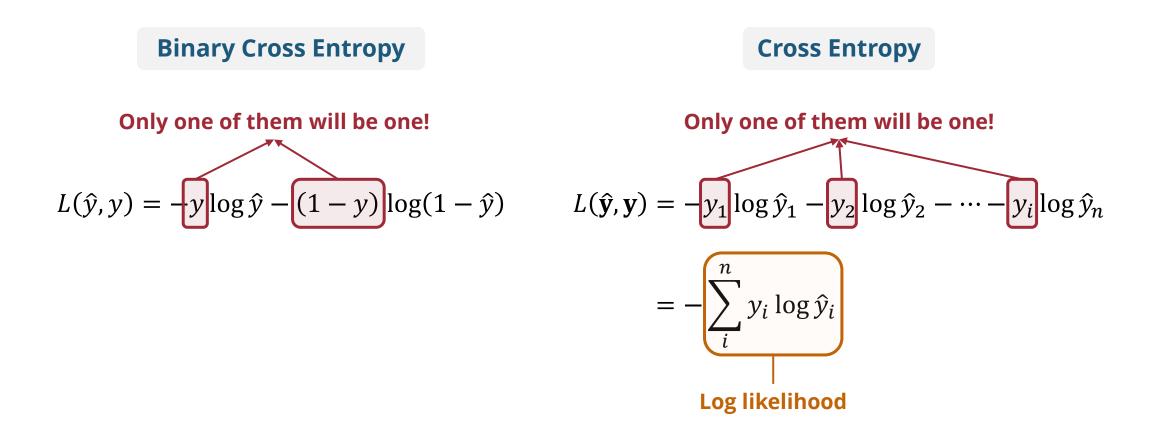
• Logistic regression approaches classification like regression



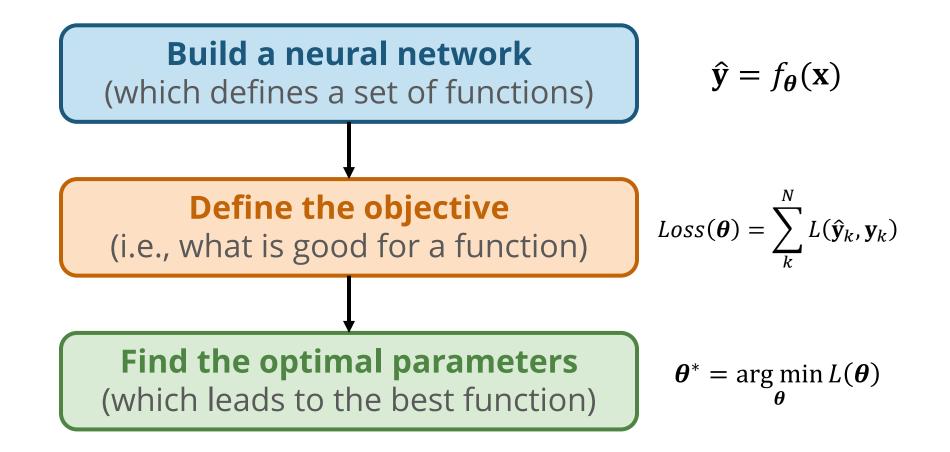
(Recap) Cross Entropy for Multiclass Classification



(Recap) Cross Entropy for Multiclass Classification

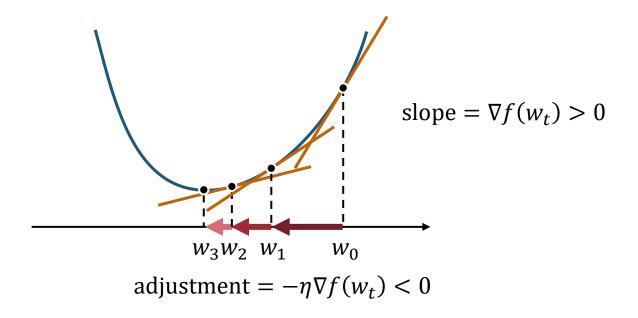


(Recap) Training a Neural Network



(Recap) Gradient Descent – Pseudocode

- Pick an initial weight vector w_0 and learning rate η
- Repeat until convergence: $w_{t+1} = w_t \eta \nabla f(w_t)$



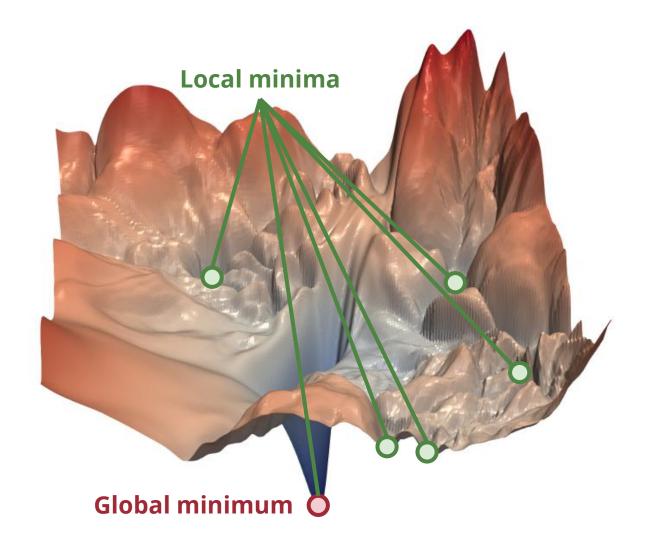
(Recap) Forward Pass & Backward Pass



Backward pass

loss.backward()

Local Minima in Complex Loss Landscape



Solution 1 Use an optimizer with adaptive learning rate

> Solution 2 Use a stochastic optimizer

Solution 3 Make the loss landscape smoother

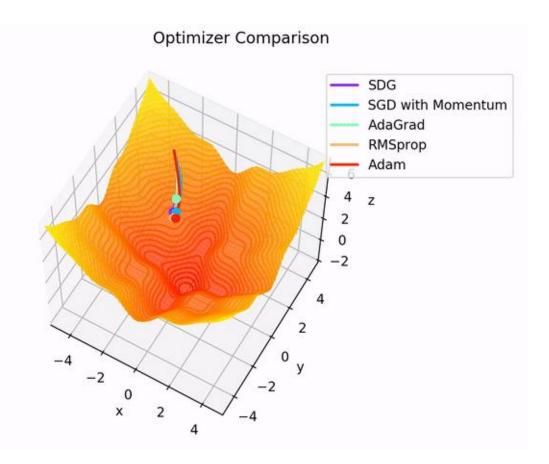
(Recap) Comparison of Optimizers

Momentum

- Gets you out of spurious local minima
- Allows the model to explore around

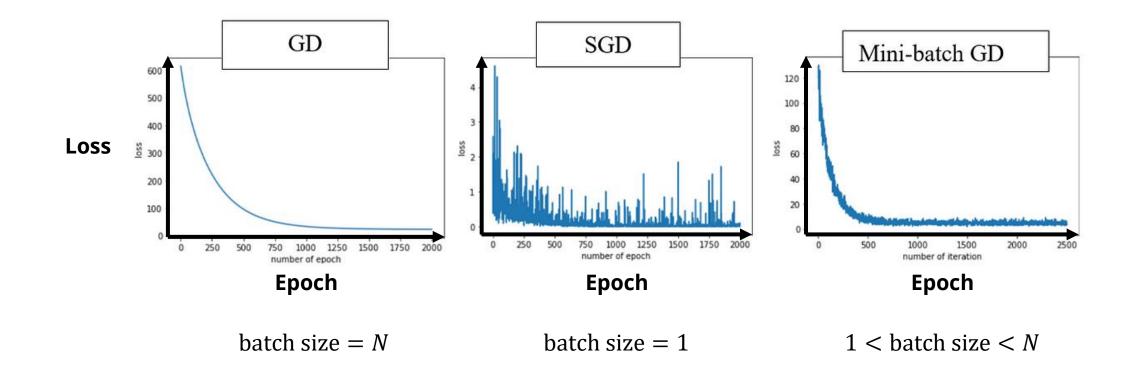
Gradient-based adaption

- Maintains steady improvement
- Allows faster convergence



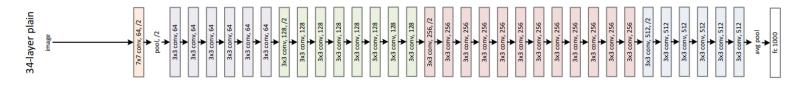
(Recap) Mini-batch Gradient Descent

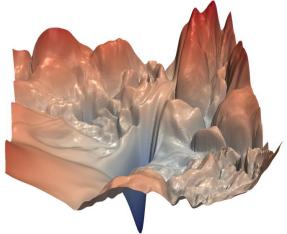
Intuition: Estimate the gradient using several random training samples

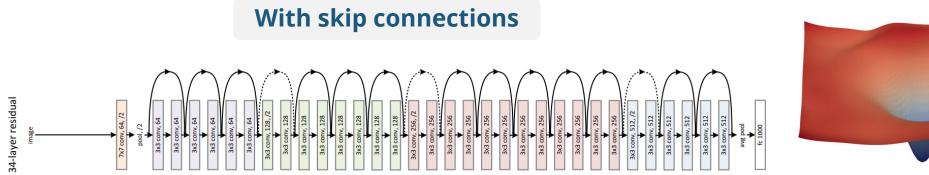


(Recap) Skip Connections

Without skip connections

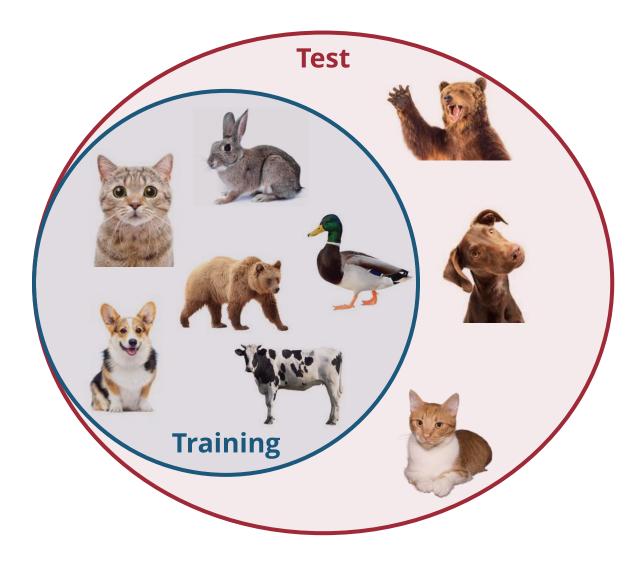


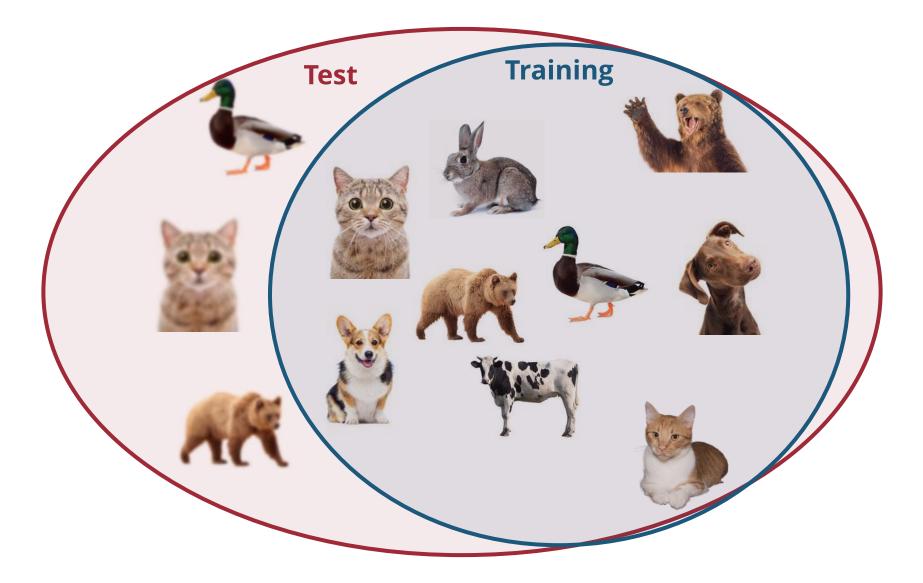


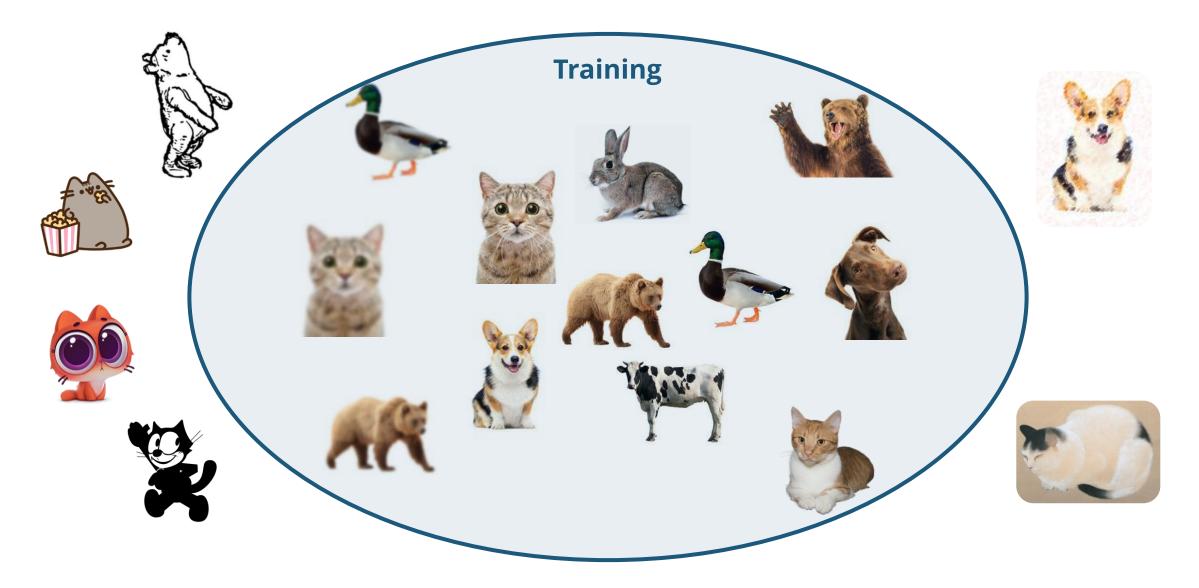


With skip connections

Training-Validation-Test





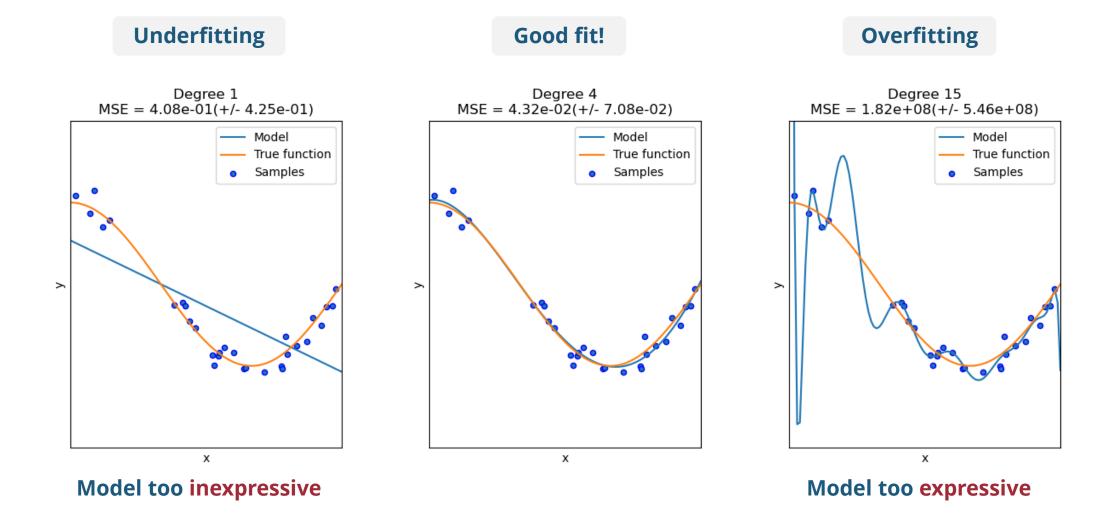


- **Key**: Make the training distribution closer to the target distribution
- First, we need to **define our target distribution**
- Then, we can try to
 - Collect a diverse dataset covering that covers different parts of the target distribution
 - Apply data augmentation to fill the gaps in the distribution

- What do we really want?
 - Good performance on the **training samples** We already have their answers
 - Good performance on unseen samples in the target distribution Yep, we can do this!
 - Good performance on out-of-distribution samples Hopefully, but not guaranteed

How to achieve good performance on unseen samples in the target distribution

Overfitting & Underfitting

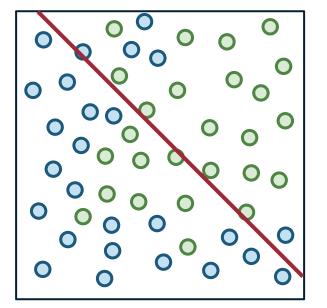


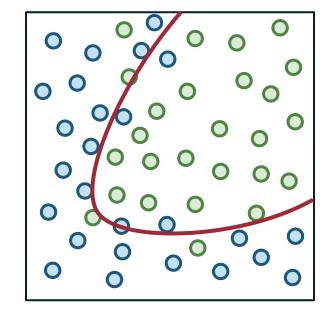
Overfitting & Underfitting

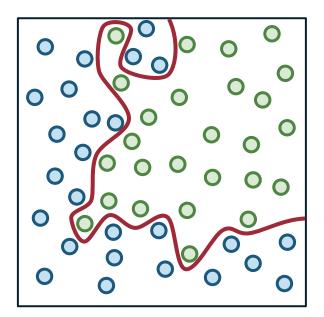
Underfitting

Good fit!

Overfitting







Model too inexpressive

Model too expressive

Train–Test Split

• Goal: Good performance on unseen samples in the target distribution

Train–Test Split

• Goal: Good performance on unseen samples in the target distribution

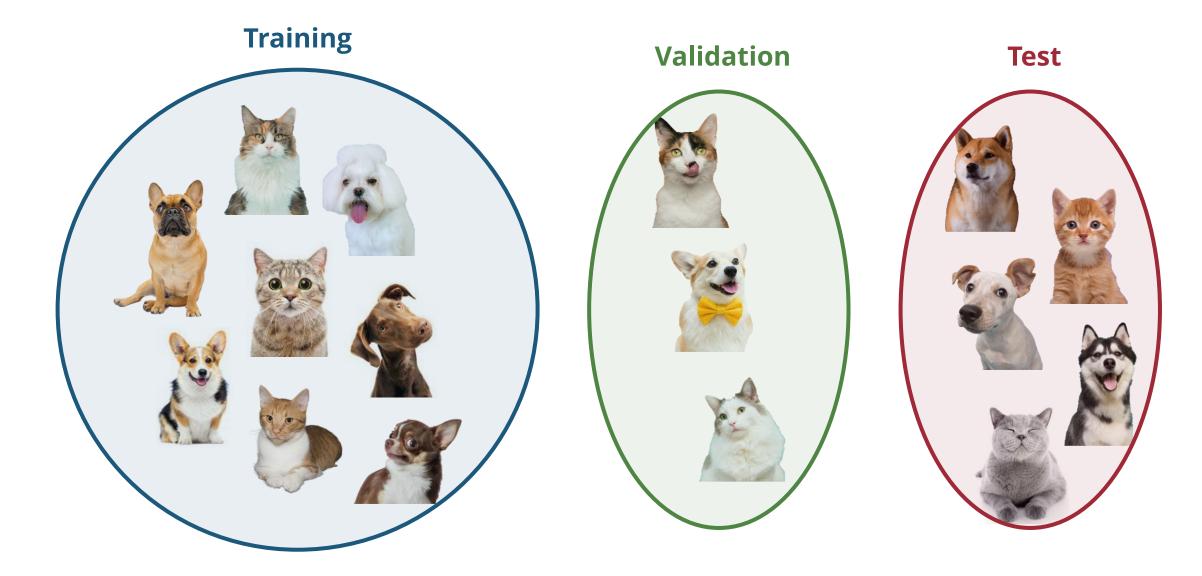
Test

Test Set is an Estimation of the Test Distribution

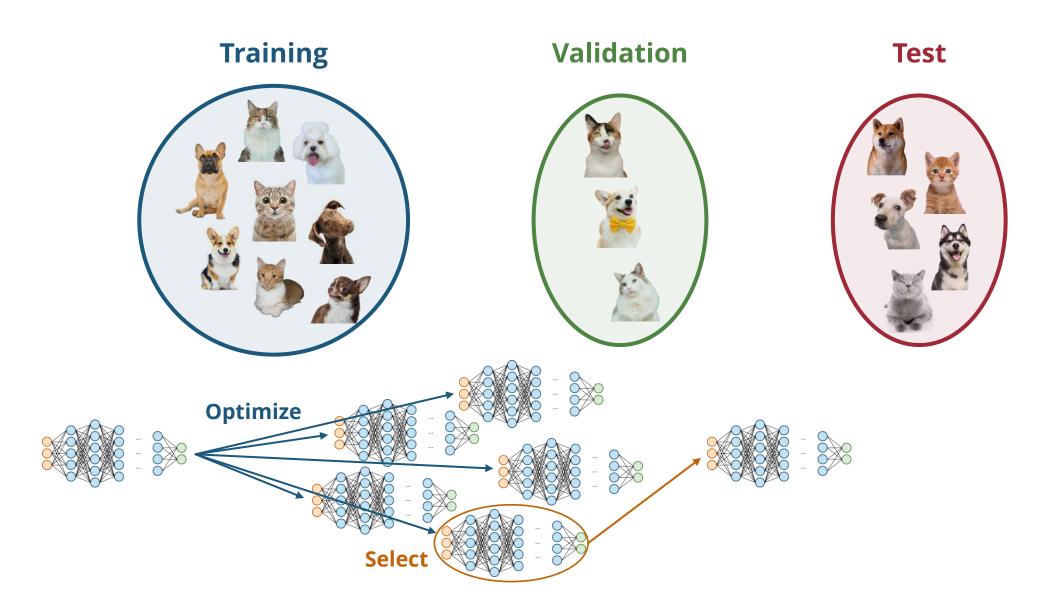
 We create a test set because we want to estimate the performance when the model is applied to an interested distribution

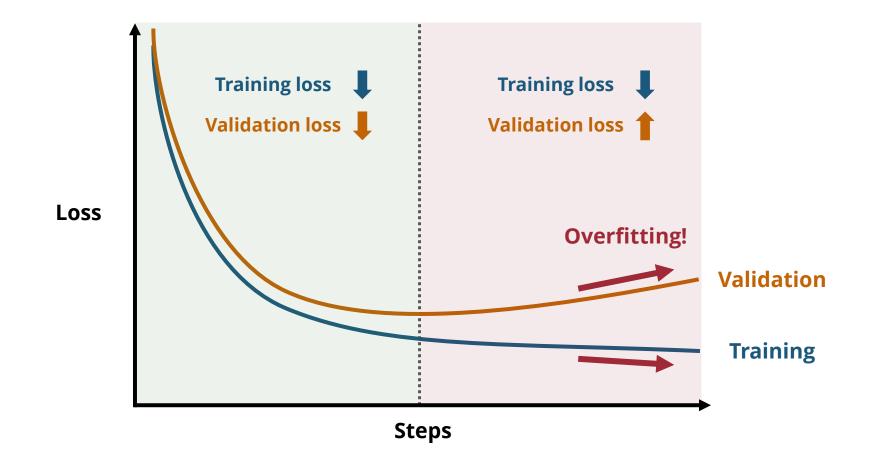
Train–Validation–Test Split

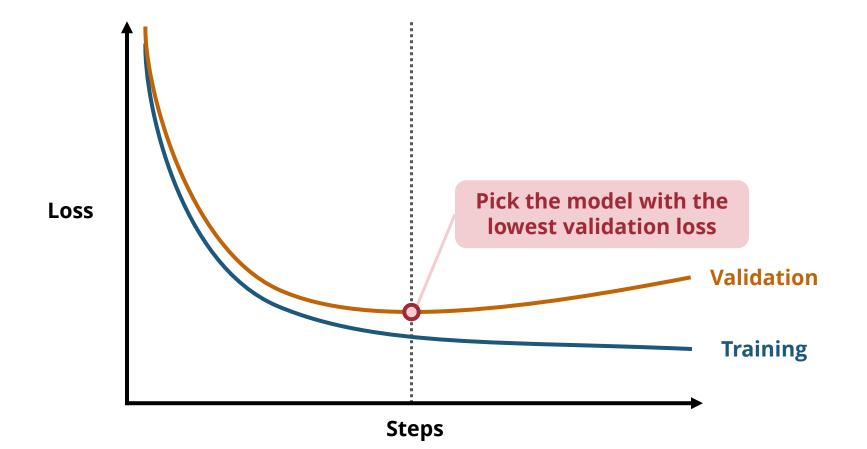
Train–Validation–Test Split

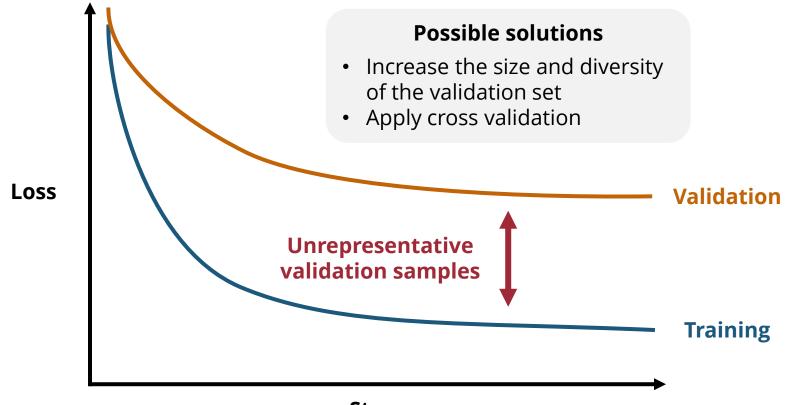


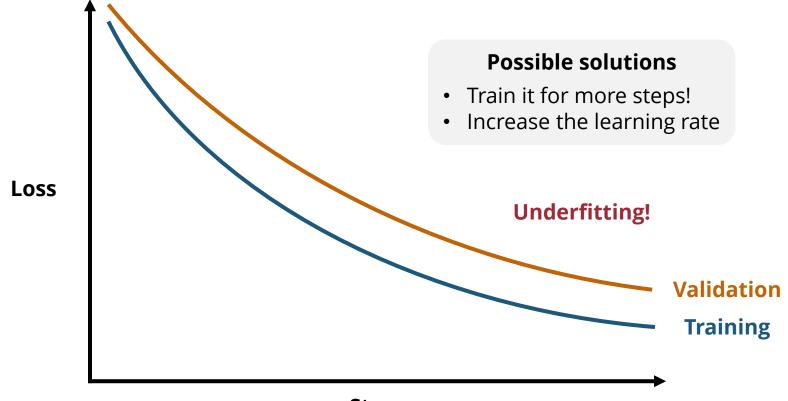
Training-Validation-Test Pipeline

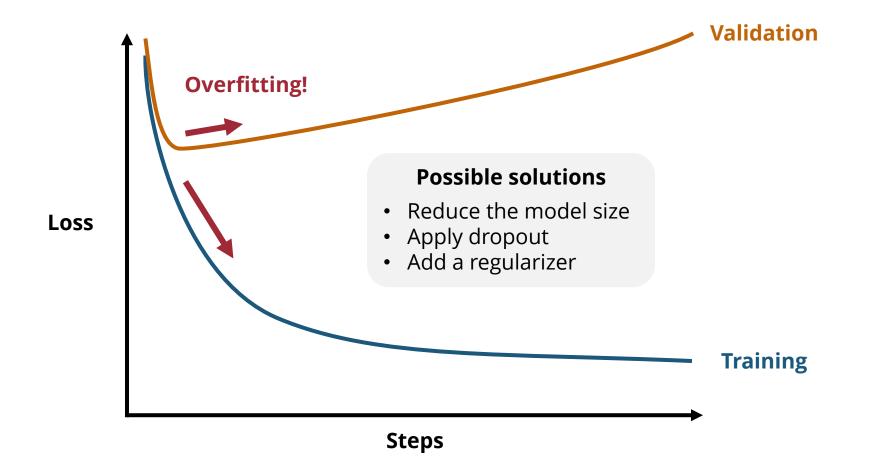












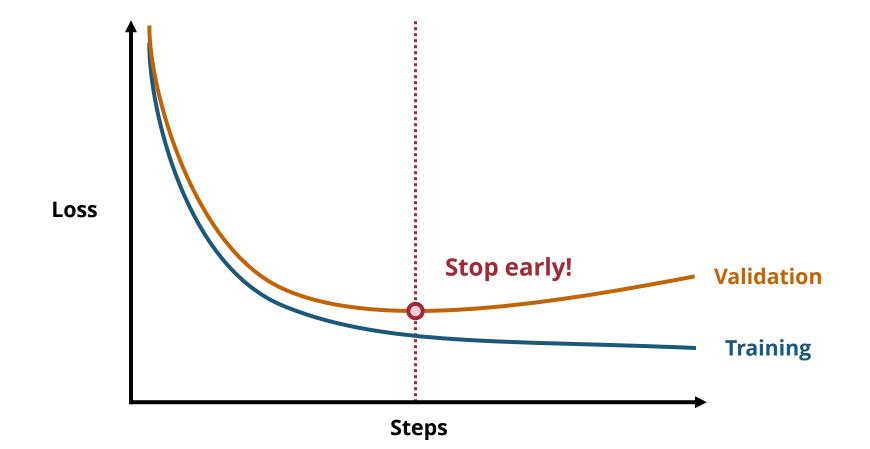
Train–Validation–Test Split

• Keys

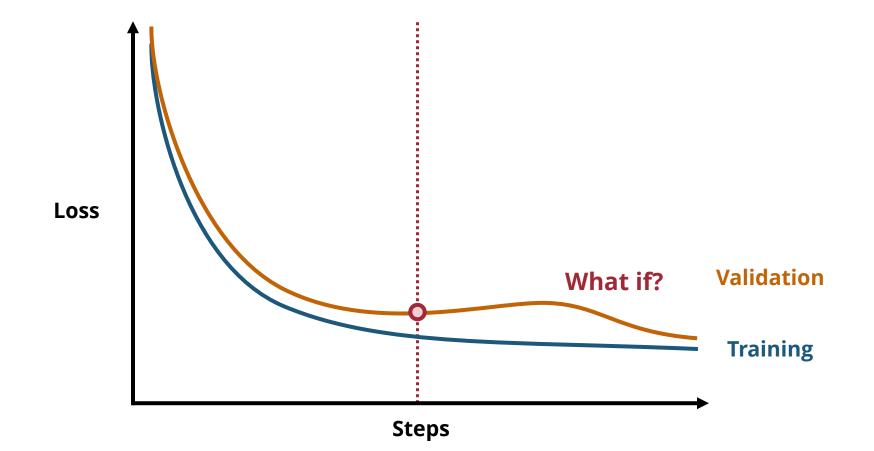
- Never train or select your model on test samples!
- Don't over-select your model on the validation set
- What's the **best ratio**?
 - Most common: 8:1:1 or 9:0.5:0.5
 - For smaller dataset, you might even want 6:2:2

Overcoming Overfitting

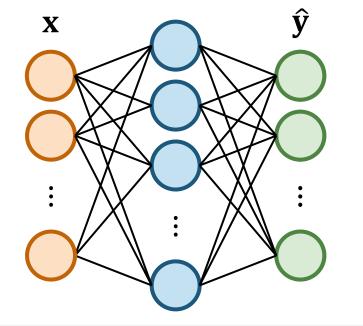
Early Stopping



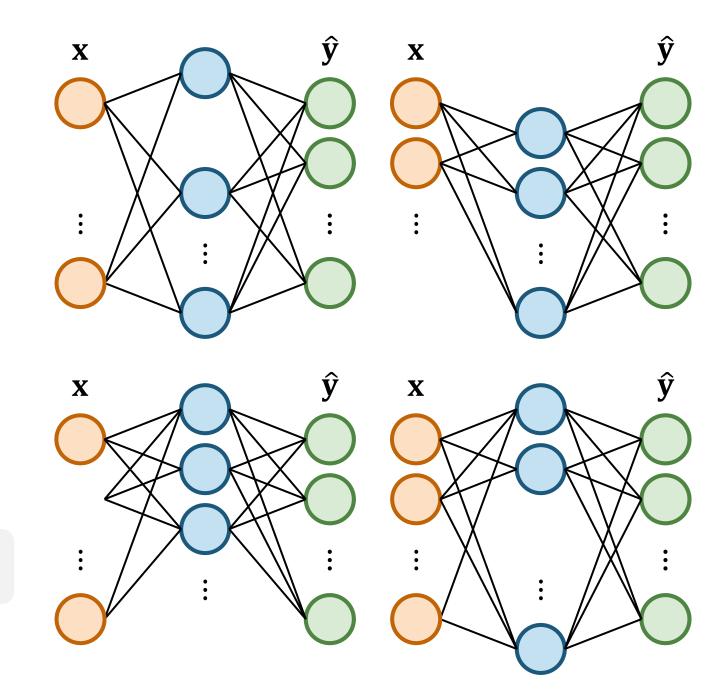
Early Stopping



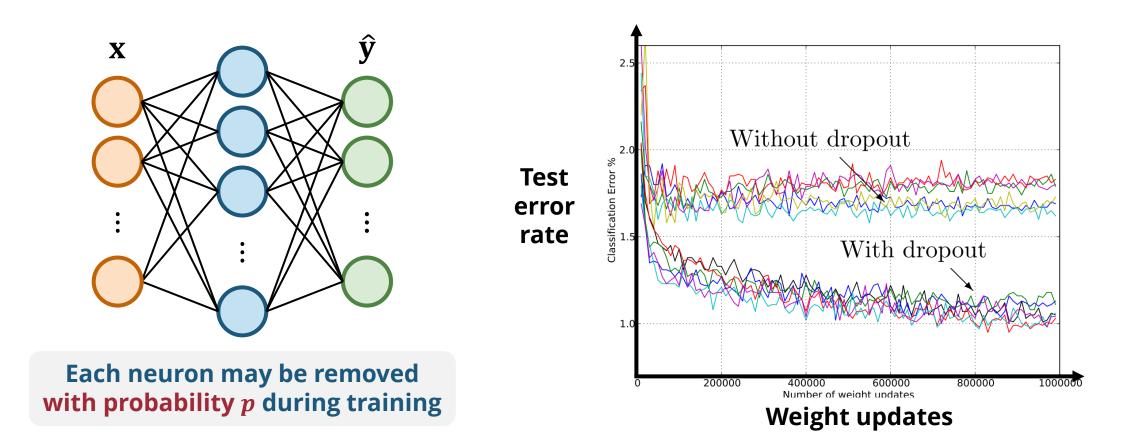
Dropout



Each neuron may be removed with probability *p* during training



Dropout



Regularization Term

- A regularization term can help alleviate overfitting
 - L1 regularization (LASSO)

$$L' = L + \lambda(|w_1| + |w_2| + \dots + |w_K|)$$

• L2 regularization (ridge regression)

$$L' = L + \lambda (w_1^2 + w_2^2 + \dots + w_K^2)$$

Both L1 and L2 regularization encourage smaller weights