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Homework 3: Musical Note Classification using CNNs

 Train a CNN that can classify audio files into their instrument families
- Input: 64x64 mel spectrogram
- OQutput: 11 instrument classes
- Using the NSynth dataset (Engel et al., 2017)
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Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Douglas Eck, Karen Simonyan, and Mohammad Norouzi, “Neural Audio Synthesis of Musical Notes with WaveNet
Autoencoders,” ICML, 2017.
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NSynth Dataset

* A collection of 305,979 single-shot musical notes (Engel et al., 2017)
- Produced from 1,006 commercial sample libraries
- With different MIDI pitches (21-108) and velocities (25, 50, 75, 100, 127)
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Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Douglas Eck, Karen Simonyan, and Mohammad Norouzi, “Neural Audio Synthesis of Musical Notes with WaveNet
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Homework 3: Musical Note Classification using CNNs

* Instructions will be released on Gradescope
e Due at 11:59pm ET on February 17

* Late submissions: 1 point deducted per day



‘ (Recap) Training a Neural Network

Build a neural network
(which defines a set of functions)

l

Define the objective Loss(8) = iw )
(i.e., what is good for a function) s L e Y

1

Find the optimal parameters 0" = arg min L(6)
(which leads to the best function) 0

J y = fo(x)




(Recap) Common Loss Functions for Regression
L@.y) =19 -l

L1 loss

X No activation
function!

L2 loss
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k



(Recap) Binary Cross Entropy for Binary Classification

- Logistic regression approaches classification like regression

Binary cross entropy

(Also called log loss)
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(Recap) Cross Entropy for Multiclass Classification

Real-valued numbers to
probability-like numbers
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\ (Recap) Cross Entropy for Multiclass Classification

Binary Cross Entropy

Only one of them will be one!
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‘ (Recap) Training a Neural Network

Build a neural network
(which defines a set of functions)

J y = fo(x)

l

Define the objective
(i.e., what is good for a function)

N
} Loss(0) = Z L(¥1,¥i)
K

1

Find the optimal parameters
(which leads to the best function)

J 0" = arg min L(0)
0
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(Recap) Gradient Descent - Pseudocode

* Pick an initial weight vector w, and learning rate n

- Repeat until convergence: w;,; = w; —nVf(w;)

slope = Vf(w;) > 0

adjustment = —nVf(w;) <0
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(Recap) Forward Pass & Backward Pass
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Local Minima in Complex Loss Lands

Local minima

Global minimum

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein, “Visualizing the Loss Landscape of Neural Nets,”

cape

Solution 1
Use an optimizer with
adaptive learning rate

Solution 2
Use a stochastic
optimizer

Solution 3
Make the loss
landscape smoother

NeurlPS, 2018.
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https://arxiv.org/pdf/1712.09913

(Recap) Comparison of Optimizers

* Momentum
- Gets you out of spurious local minima PIRSHIET e B2

- Allows the model to explore around

— SDG

= SGD with Momentum
AdaGrad
RMSprop

b m— Adam

- Gradient-based adaption
- Maintains steady improvement

- Allows faster convergence

medium.com/@LayanSA/complete-guide-to-adam-optimization-1e5f29532c3d
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https://medium.com/@LayanSA/complete-guide-to-adam-optimization-1e5f29532c3d

(Recap) Mini-batch Gradient Descent

* Intuition: Estimate the gradient using several random training samples
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analyticsvidhya.com/blog/2022/07/gradient-descent-and-its-types/ 15
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(Recap) Skip Connections
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https://arxiv.org/pdf/1712.09913

Training-Validation-Test
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\ In-distribution vs Out-of-distribution
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\ In-distribution vs Out-of-distribution
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\ In-distribution vs Out-of-distribution

Training
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In-distribution vs Out-of-distribution

- Key: Make the training distribution closer to the target distribution
* First, we need to define our target distribution

* Then, we can try to
- Collect a diverse dataset covering that covers different parts of the target distribution
- Apply data augmentation to fill the gaps in the distribution
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In-distribution vs Out-of-distribution

« What do we really want?
- Good performance on the training samples We already have their answers
- Good performance on unseen samples in the target distribution Yep, we can do this!

- Good performance on out-of-distribution samples Hopefully, but not guaranteed

How to achieve good performance on
unseen samples in the target distribution
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Underfitting

Degree 1
MSE = 4.08e-01(+/- 4.25e-01)

— Model
True function

@ Samples

Overfitting & Underfitting

Good fit!

Degree 4
MSE = 4.32e-02(+/- 7.08e-02)

Model too inexpressive

— Model
True function
e Samples

Overfitting

Degree 15
MSE = 1.82e+08(+/- 5.46e+08)

— Model
True function
@ Samples

scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html

Model too expressive

23


https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html

Overfitting & Underfitting

Underfitting

Good fit!

Overfitting

Model too inexpressive

Model too expressive
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Train-Test Split

« Goal: Good performance on unseen samples in the target distribution

25



Train-Test Split

« Goal: Good performance on unseen samples in the target distribution

Training Test
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Test Set is an Estimation of the Test Distribution

- We create a test set because we want to estimate the performance
when the model is applied to an interested distribution
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Train-Validation-Test Split

Training

Test

28



Train-Validation-Test Split

Training

Validation

Test

29
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Training vs Validation Losses

Loss

Training loss l

Validation loss l

Training loss l

Validation loss t

Overfitting!

¥ __ Validation

— Training

Steps
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Training vs Validation Losses

Loss

Pick the model with the
lowest validation loss

~__—Validation

Training

Steps
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Training vs Validation Losses

Possible solutions

« Increase the size and diversity
of the validation set
« Apply cross validation

Loss

Validation

Unrepresentative
validation samples

Training

Steps
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Training vs Validation Losses

Loss

Possible solutions

« Train it for more steps!
 Increase the learning rate

Underfitting!

Validation

Training

Steps
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Training vs Validation Losses

Loss

Validation
Overfitting!
—
Possible solutions
» Reduce the model size
» Apply dropout
» Add a regularizer
Training

Steps
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Train-Validation-Test Split

- Keys
* Never train or select your model on test samples!

- Don't over-select your model on the validation set

« What's the best ratio?
 Most common: 8:1:1 or 9:0.5:0.5

- For smaller dataset, you might even want 6:2:2
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Overcoming Overfitting
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Early Stopping

Loss

Stop early!

~_—Validation

P
-

Training

Steps
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Early Stopping

Loss

What if?

~—__

Steps

>

Validation

Training
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Each neuron may be removed
with probability p during training

| Dropout rate l

40
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Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, llya Sutskever, and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” JMLR, 2014.


https://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

Regularization Term

A regularization term can help alleviate overfitting
L1 regularization (LASSO)

L' =L+ A(wq| + lwy| + - + Jwg])
- L2 regularization (ridge regression)

L'=L+A(w?+wi+-+w?)

Both L1 and L2 regularization encourage smaller weights

42
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