
Music & AI

Lecture 9: Deep Learning Fundamentals III

PAT 498/598 (Winter 2025)

Instructor: Hao-Wen Dong



• Train a CNN that can classify audio files into their instrument families

 Input:  64x64 mel spectrogram

 Output:  11 instrument classes

 Using the NSynth dataset (Engel et al., 2017)

Homework 3: Musical Note Classification using CNNs
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Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Douglas Eck, Karen Simonyan, and Mohammad Norouzi, “Neural Audio Synthesis of Musical Notes with WaveNet 
Autoencoders,” ICML, 2017.
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NSynth Dataset
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Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Douglas Eck, Karen Simonyan, and Mohammad Norouzi, “Neural Audio Synthesis of Musical Notes with WaveNet 
Autoencoders,” ICML, 2017.

• A collection of 305,979 single-shot musical notes (Engel et al., 2017)

 Produced from 1,006 commercial sample libraries

 With different MIDI pitches (21–108) and velocities (25, 50, 75, 100, 127)

https://arxiv.org/pdf/1704.01279
https://arxiv.org/pdf/1704.01279


• Instructions will be released on Gradescope

• Due at 11:59pm ET on February 17

• Late submissions: 1 point deducted per day

Homework 3: Musical Note Classification using CNNs
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(Recap) Training a Neural Network
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Build a neural network
(which defines a set of functions)

Define the objective 
(i.e., what is good for a function)

Find the optimal parameters
(which leads to the best function)

ො𝐲 = 𝑓𝜽(𝐱)

𝐿𝑜𝑠𝑠 𝜽 = ෍

𝑘

𝑁

𝐿 ො𝐲𝑘 , 𝐲𝑘

𝜽∗ = arg min
𝜽

𝐿 𝜽



(Recap) Common Loss Functions for Regression
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• Logistic regression approaches classification like regression

(Recap) Binary Cross Entropy for Binary Classification
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(Recap) Cross Entropy for Multiclass Classification
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(Recap) Cross Entropy for Multiclass Classification
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𝐿 ො𝑦, 𝑦 = −𝑦 log ො𝑦 − 1 − 𝑦  log 1 − ො𝑦

Binary Cross Entropy Cross Entropy

𝐿 ො𝐲, 𝐲 = −𝑦1 log ො𝑦1 − 𝑦2 log ො𝑦2 − ⋯ − 𝑦𝑖 log ො𝑦𝑛

= − ෍

𝑖
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𝑦𝑖 log ො𝑦𝑖

Only one of them will be one! Only one of them will be one!

Log likelihood



(Recap) Training a Neural Network
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Build a neural network
(which defines a set of functions)

Define the objective 
(i.e., what is good for a function)

Find the optimal parameters
(which leads to the best function)
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(Recap) Gradient Descent – Pseudocode

• Pick an initial weight vector 𝑤0 and learning rate 𝜂

• Repeat until convergence:  𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡
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𝑤0

slope = ∇𝑓 𝑤𝑡 > 0

𝑤1

adjustment = −𝜂∇𝑓 𝑤𝑡 < 0

𝑤2𝑤3



(Recap) Forward Pass & Backward Pass
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Local Minima in Complex Loss Landscape
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Global minimum

Local minima
Solution 1

Use an optimizer with 
adaptive learning rate

Solution 2
Use a stochastic 

optimizer

Solution 3
Make the loss 

landscape smoother

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein, “Visualizing the Loss Landscape of Neural Nets,” NeurIPS, 2018.

https://arxiv.org/pdf/1712.09913
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• Momentum

 Gets you out of spurious local minima

 Allows the model to explore around

• Gradient-based adaption

 Maintains steady improvement

 Allows faster convergence

(Recap) Comparison of Optimizers

medium.com/@LayanSA/complete-guide-to-adam-optimization-1e5f29532c3d

https://medium.com/@LayanSA/complete-guide-to-adam-optimization-1e5f29532c3d


• Intuition:  Estimate the gradient using several random training samples

(Recap) Mini-batch Gradient Descent

15analyticsvidhya.com/blog/2022/07/gradient-descent-and-its-types/

Loss

Epoch Epoch Epoch

batch size = 𝑁 batch size = 1 1 < batch size < 𝑁

https://www.analyticsvidhya.com/blog/2022/07/gradient-descent-and-its-types/


(Recap) Skip Connections

16Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein, “Visualizing the Loss Landscape of Neural Nets,” NeurIPS, 2018.

Without skip connections

With skip connections

https://arxiv.org/pdf/1712.09913


Training–Validation–Test 
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In-distribution vs Out-of-distribution
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Training



In-distribution vs Out-of-distribution
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Test Training



In-distribution vs Out-of-distribution
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Training



• Key: Make the training distribution closer to the target distribution

• First, we need to define our target distribution

• Then, we can try to

 Collect a diverse dataset covering that covers different parts of the target distribution

 Apply data augmentation to fill the gaps in the distribution

In-distribution vs Out-of-distribution

21



• What do we really want?

 Good performance on the training samples

 Good performance on unseen samples in the target distribution

 Good performance on out-of-distribution samples

In-distribution vs Out-of-distribution

22

We already have their answers

Yep, we can do this!

Hopefully, but not guaranteed

How to achieve good performance on 
unseen samples in the target distribution



Overfitting & Underfitting

23scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html

Underfitting Good fit! Overfitting

Model too inexpressive Model too expressive

https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html


Overfitting & Underfitting
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Underfitting Good fit! Overfitting

Model too inexpressive Model too expressive



• Goal: Good performance on unseen samples in the target distribution

Train–Test Split
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• Goal: Good performance on unseen samples in the target distribution

Train–Test Split
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Training Test



• We create a test set because we want to estimate the performance 
when the model is applied to an interested distribution

Test Set is an Estimation of the Test Distribution

27



Train–Validation–Test Split
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Training
Test



Train–Validation–Test Split
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Training
TestValidation



Training–Validation–Test Pipeline
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Training TestValidation

Optimize

Select



Training vs Validation Losses
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Training

Validation

Steps

Loss

Validation loss 

Training loss 

Validation loss 

Training loss 

Overfitting!



Training vs Validation Losses
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Training

Validation

Steps

Loss Pick the model with the 
lowest validation loss



Training vs Validation Losses

33

Training

Validation

Steps

Loss

Unrepresentative 
validation samples

Possible solutions

• Increase the size and diversity 
of the validation set

• Apply cross validation



Training vs Validation Losses
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Training

Validation

Steps

Loss
Underfitting!

Possible solutions

• Train it for more steps!
• Increase the learning rate



Training vs Validation Losses
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Training

Validation

Steps

Loss

Possible solutions

• Reduce the model size
• Apply dropout
• Add a regularizer

Overfitting!



• Keys

 Never train or select your model on test samples!

 Don’t over-select your model on the validation set

• What’s the best ratio?

 Most common: 8:1:1 or 9:0.5:0.5

 For smaller dataset, you might even want 6:2:2

Train–Validation–Test Split

36



Overcoming Overfitting
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Early Stopping
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Training

Validation

Steps

Loss

Stop early!



Early Stopping
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Validation

Steps

Loss

What if?



Dropout
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Dropout
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Test 
error 
rate

Weight updates

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” JMLR, 2014.

𝐱

⋮
⋮

ො𝐲

⋮⋮

Each neuron may be removed 
with probability 𝒑 during training

https://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf


• A regularization term can help alleviate overfitting

 L1 regularization (LASSO)

𝐿′ = 𝐿 + 𝜆 𝑤1 + 𝑤2 + ⋯ + |𝑤𝐾|

 L2 regularization (ridge regression)

𝐿′ = 𝐿 + 𝜆 𝑤1
2 + 𝑤2

2 + ⋯ + 𝑤𝐾
2

Regularization Term

42

Both L1 and L2 regularization encourage smaller weights
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