PAT 498/598 (Winter 2025)

Music & Al

Lecture 8: Deep Learning Fundamentals II

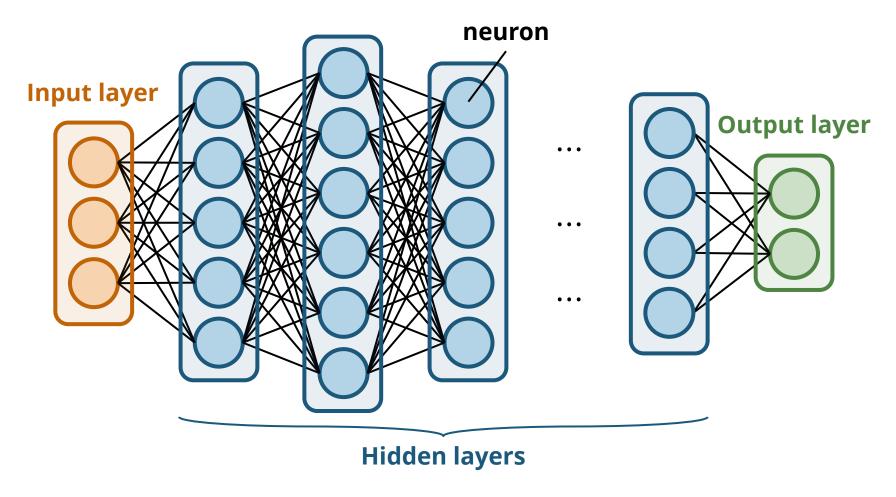
Instructor: Hao-Wen Dong

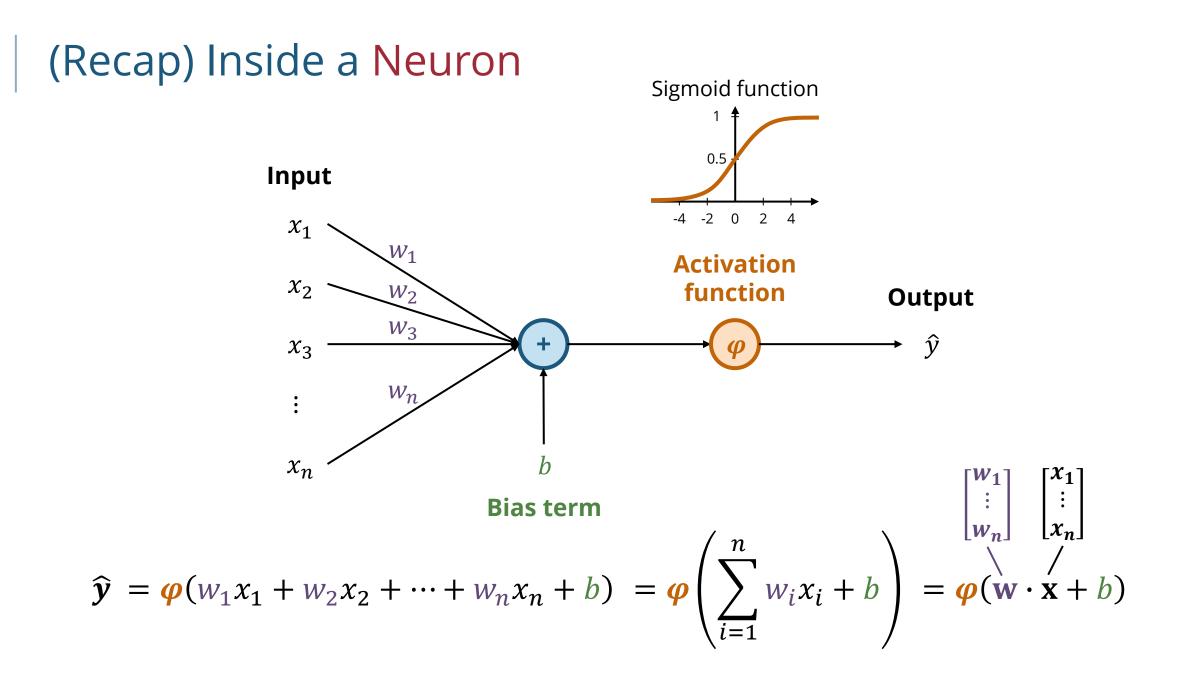
Homework 2: Music & Audio Processing

- Instructions will be sent by **emails** and released on the **course website**
- Please submit you work to **Gradescope**
- Due at 11:59pm ET on February 7
- Late submissions: 1 point deducted per day

(Recap) What is Deep Learning?

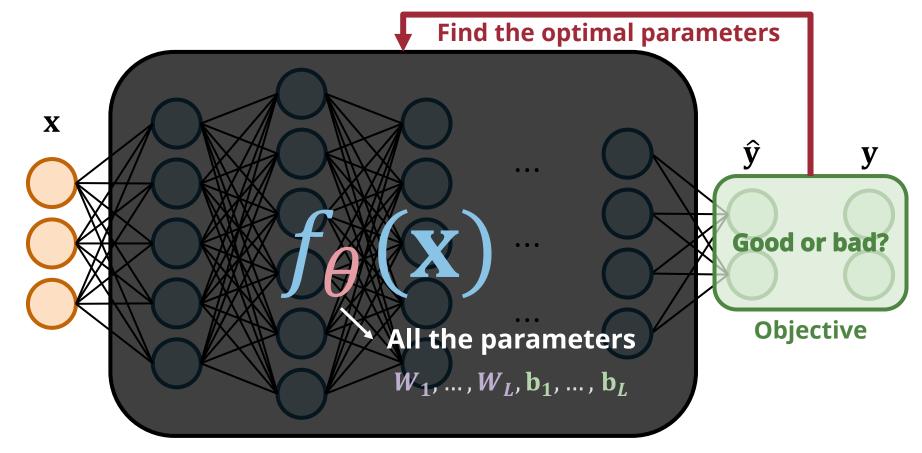
• A type of machine learning that uses **deep neural networks**





(Recap) Neural Networks are Parameterized Functions

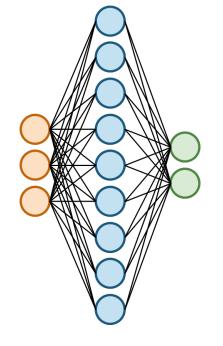
• A neural network represents **a set of functions**

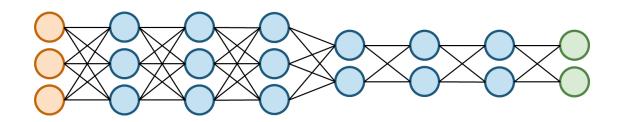


(Recap) Shallow vs Deep Neural Networks – In Practice

Shallow neural nets

Deep neural nets

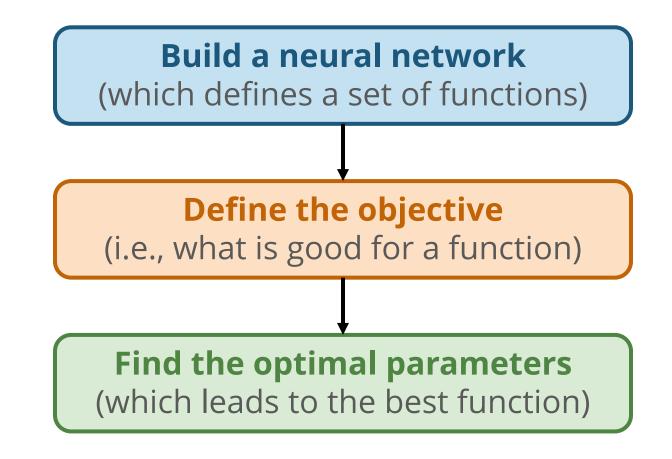




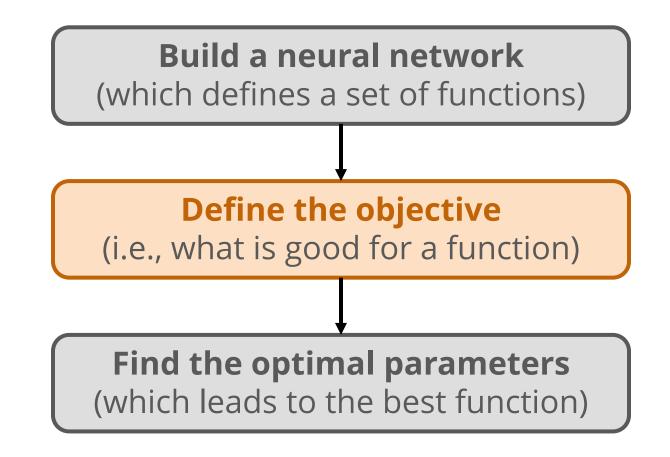
Less expressive (less parameter efficient) More expressive (more parameter efficient)

How to Train a Neural Network?

Training a Neural Network

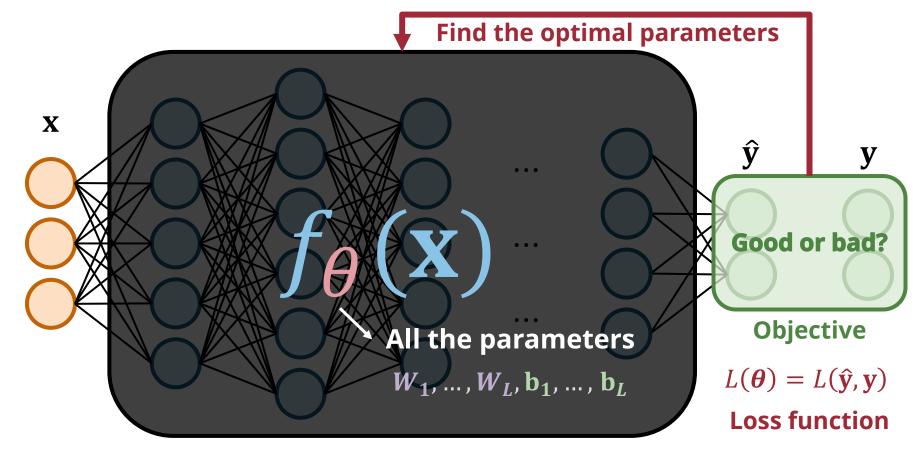


Training a Neural Network



(Recap) Neural Networks are Parameterized Functions

• A neural network represents **a set of functions**



Loss Function

- Measure how well the model perform (in the opposite way)
- The choice of loss function depends on the task and the goals

 $L(\boldsymbol{\theta}) = L(\hat{\mathbf{y}}, \mathbf{y})$

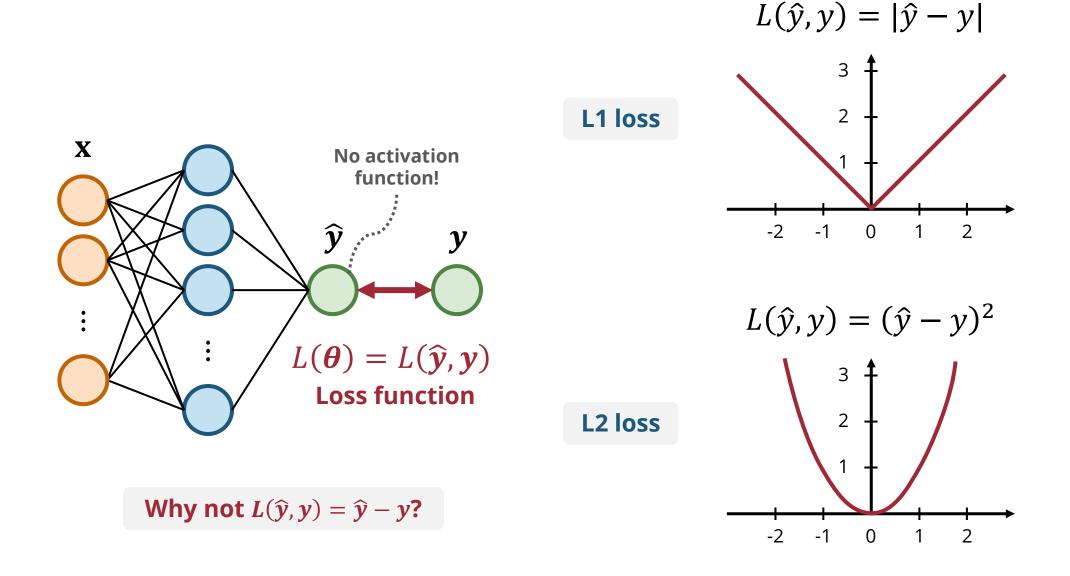
Loss Function – The Many Names

- Sometimes called
 - Cost function
 - Error function
- The opposite is known as
 - Objective function
 - Reward function (reinforcement learning)
 - Fitness function (evolutionary algorithms & genetic algorithms)
 - Utility function (economics)
 - Profit function (economics)

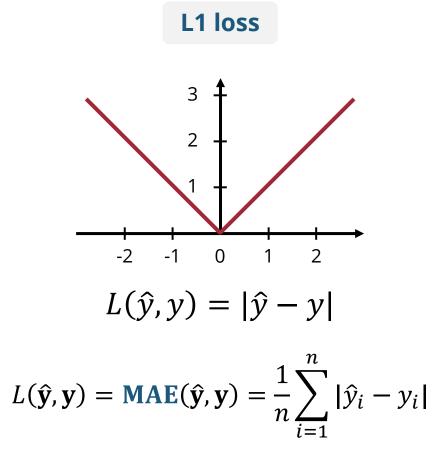
Example: Audio Codec

- What would be a good objective to train a neural audio codec?
- What do we care about for a codec?
 - Reconstruction quality
 Trainable
 - Bit rate (compression rate) Likely not trainable but searchable
 - Encoding/decoding speed Likely not trainable but searchable
- How do we measure reconstruction quality?
 - Difference in raw waveforms?
 - Difference in spectrograms?
 - Perceptual quality (psychoacoustics)?

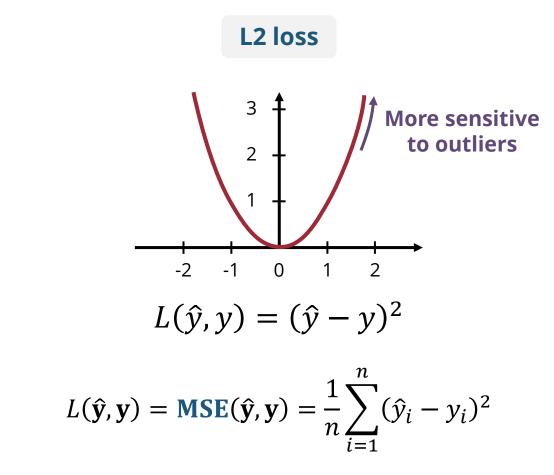
Common Loss Functions for Regression



L1 vs L2 Losses



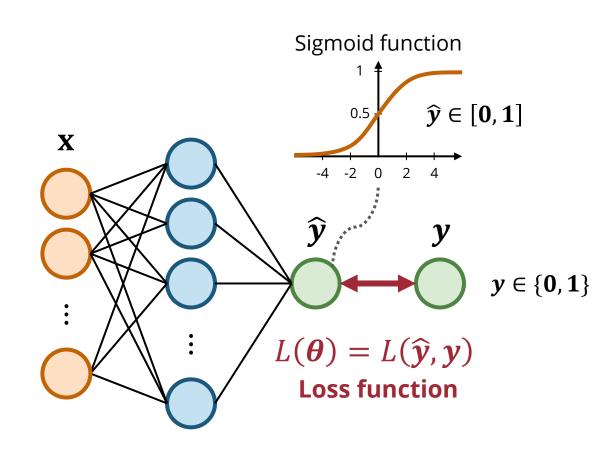
Mean Absolute Error (MAE)



Mean Squared Error (MSE)

Binary Cross Entropy for Binary Classification

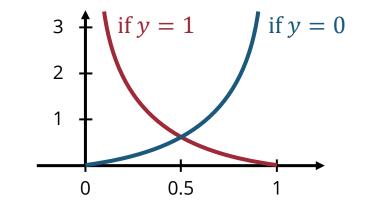
• Logistic regression approaches classification like regression



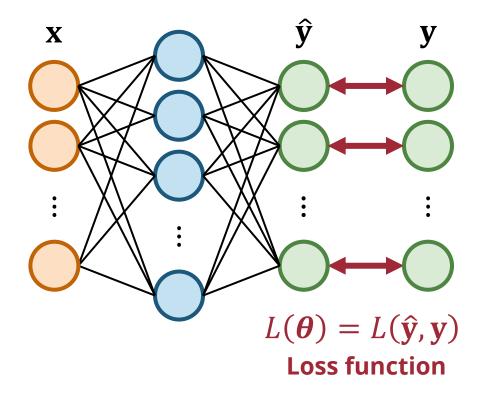
Binary cross entropy

(Also called log loss)

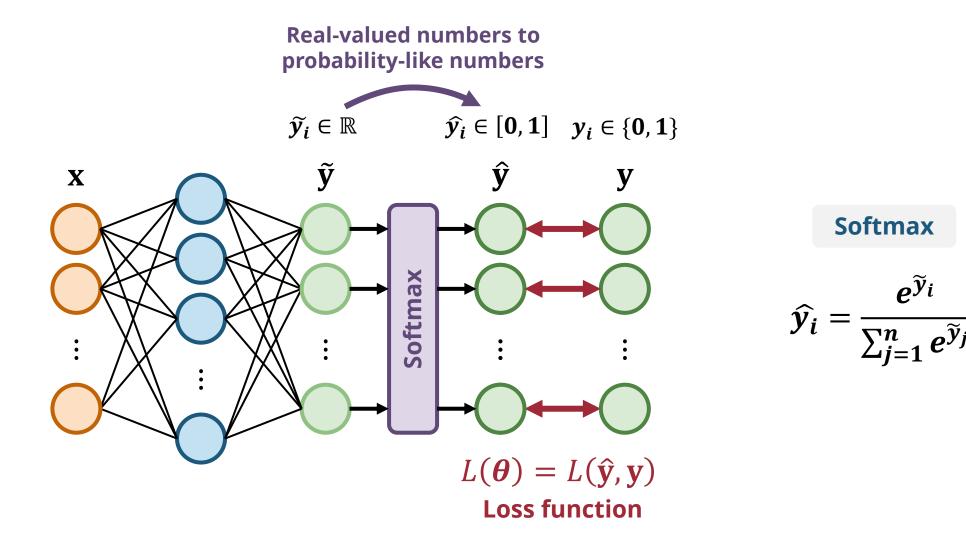
$$L(\hat{y}, y) = \begin{cases} -\log \hat{y}, & \text{if } y = 1\\ -\log(1 - \hat{y}), & \text{if } y = 0 \end{cases}$$
$$= -y \log \hat{y} - (1 - y) \log(1 - \hat{y})$$



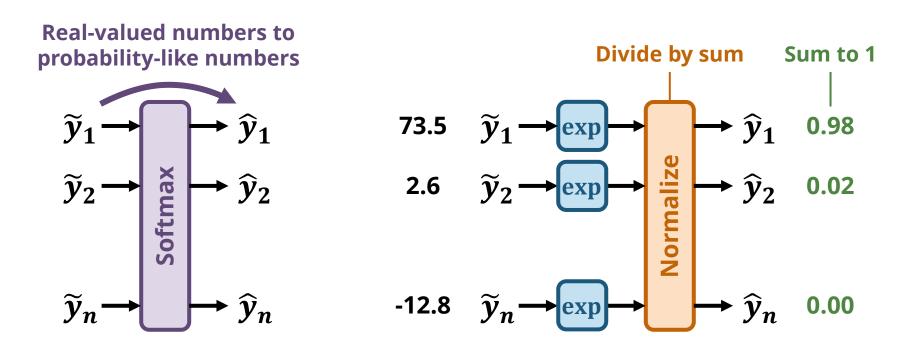
Cross Entropy for Multiclass Classification



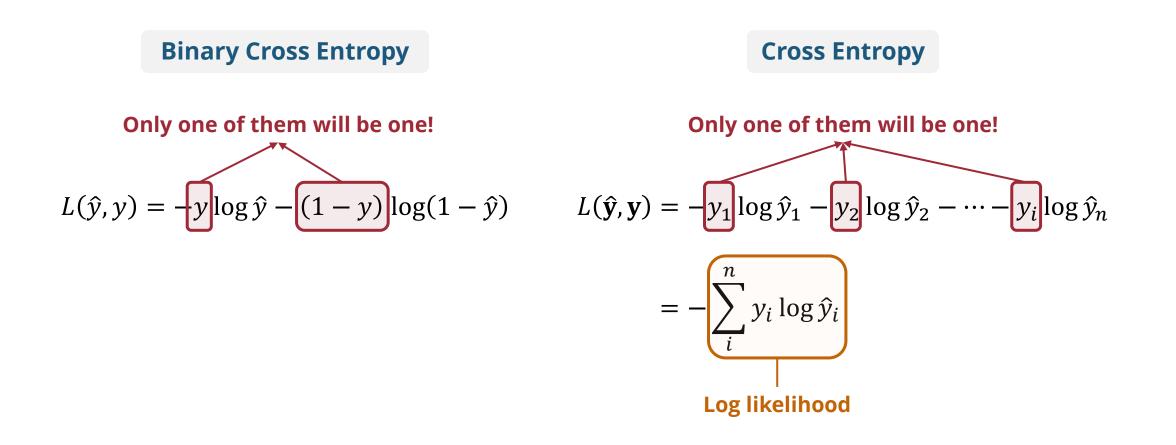
Cross Entropy for Multiclass Classification



- Intuition: Map several numbers to [0, 1] while keeping their relative magnitude
 - Softmax is like the multivariate version of sigmoid

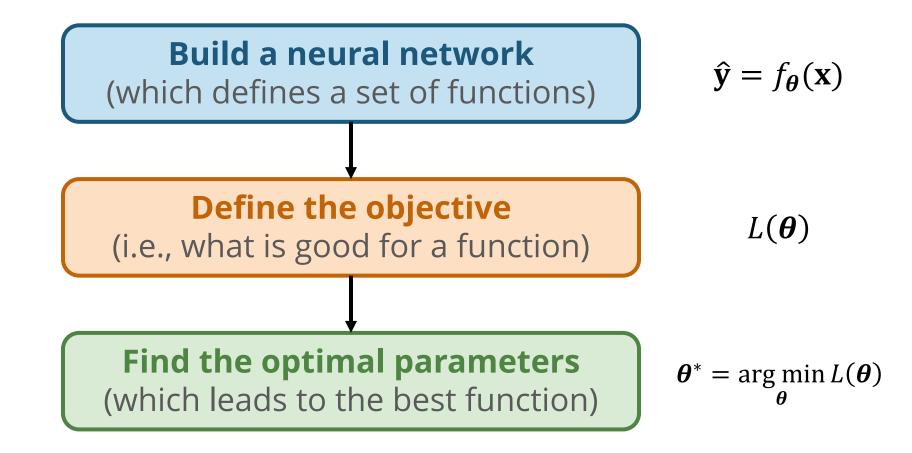


Cross Entropy for Multiclass Classification

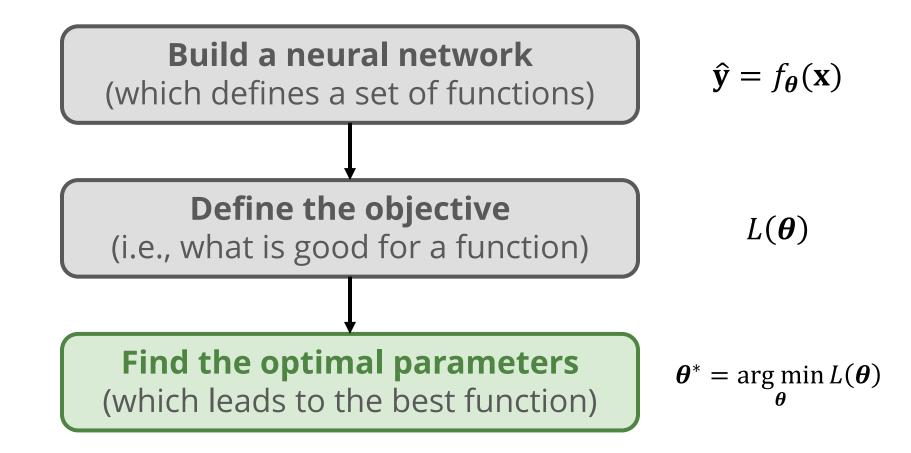


Optimization

Training a Neural Network



Training a Neural Network



Optimizing the Parameters of a Neural Network

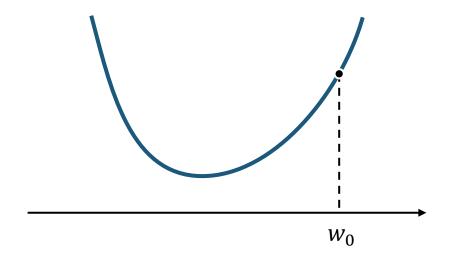
- Many, many ways...
- Most commonly through **gradient descent** in deep learning
- Alternatively, we can use search or genetic algorithm

$$\boldsymbol{\theta}^* = \operatorname*{arg\,min}_{\boldsymbol{\theta}} L(\boldsymbol{\theta})$$

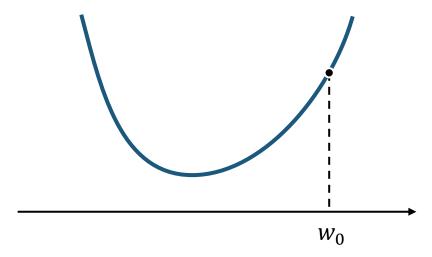
Gradient Descent

• Intuition: Gradient can suggest a good direction to tune the parameters

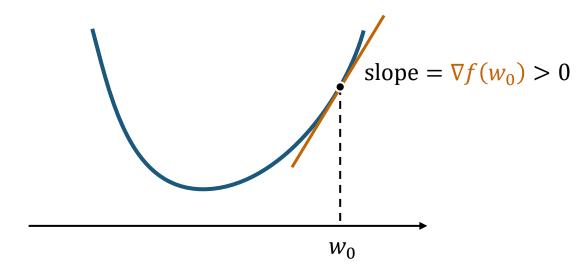
Derivative for a vector, matrix or tensor



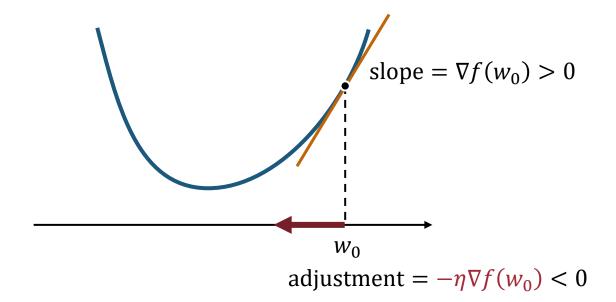
- Pick an initial weight vector w_0 and learning rate η
- Repeat until convergence: $w_{t+1} = w_t \eta \nabla f(w_t) \longrightarrow$ Gradient of function f with respect to weight w



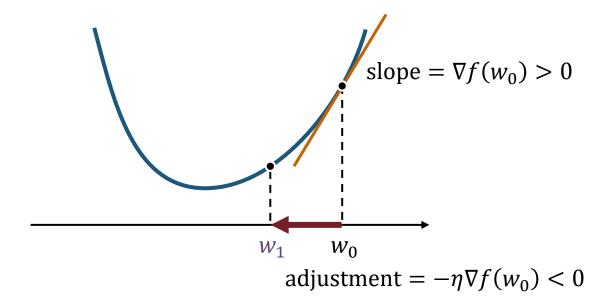
- Pick an initial weight vector w_0 and learning rate η
- Repeat until convergence: $w_{t+1} = w_t \eta \nabla f(w_t)$



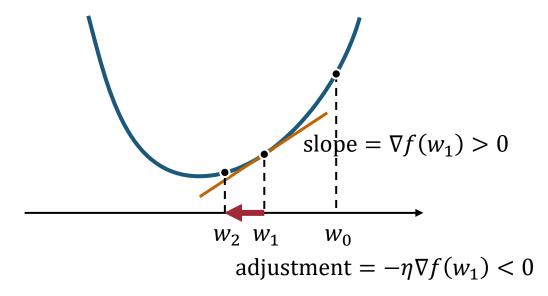
- Pick an initial weight vector w_0 and learning rate η
- Repeat until convergence: $w_{t+1} = w_t \eta \nabla f(w_t)$



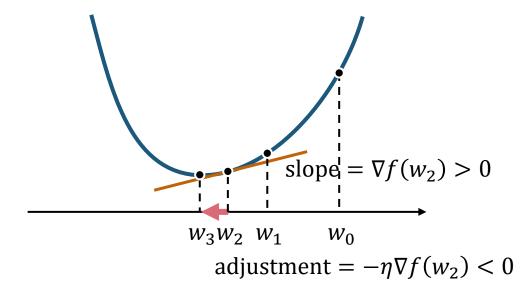
- Pick an initial weight vector w_0 and learning rate η
- Repeat until convergence: $w_{t+1} = w_t \eta \nabla f(w_t)$



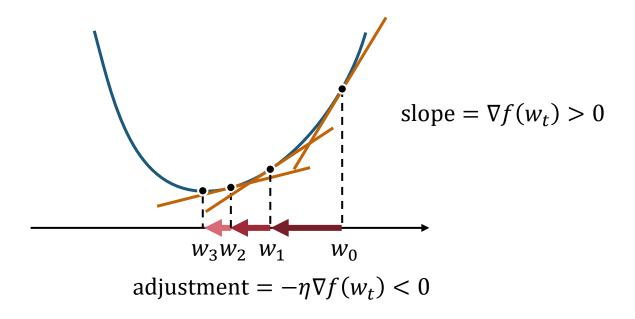
- Pick an initial weight vector w_0 and learning rate η
- Repeat until convergence: $w_{t+1} = w_t \eta \nabla f(w_t)$



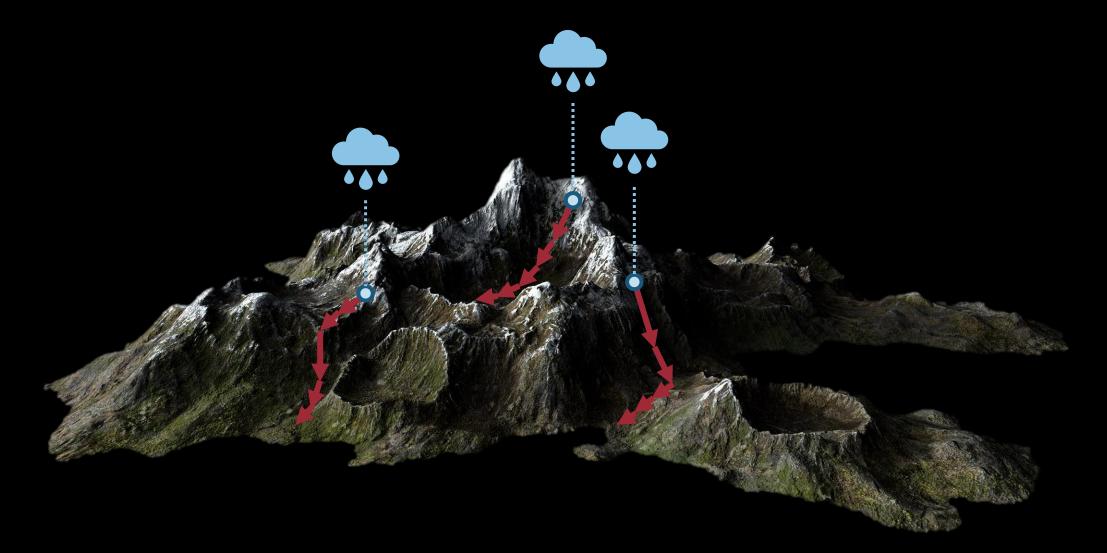
- Pick an initial weight vector w_0 and learning rate η
- Repeat until convergence: $w_{t+1} = w_t \eta \nabla f(w_t)$



- Pick an initial weight vector w_0 and learning rate η
- Repeat until convergence: $w_{t+1} = w_t \eta \nabla f(w_t)$



Gradient Descent – 3D Case

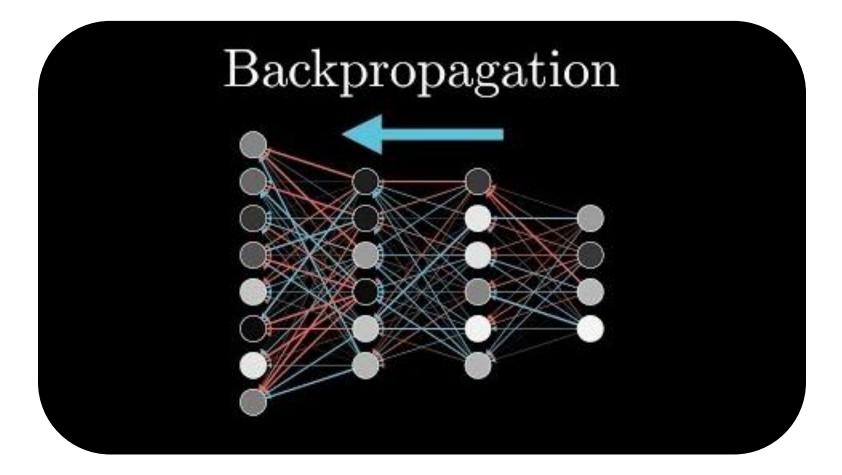


Backpropagation: Efficiently Computing the Gradients

- An efficient way of **computing gradients** using chain rule
- The reason why we want **everything to be differentiable** in deep learning

$$w_{t+1} = w_t - \eta \nabla f(w_t)$$

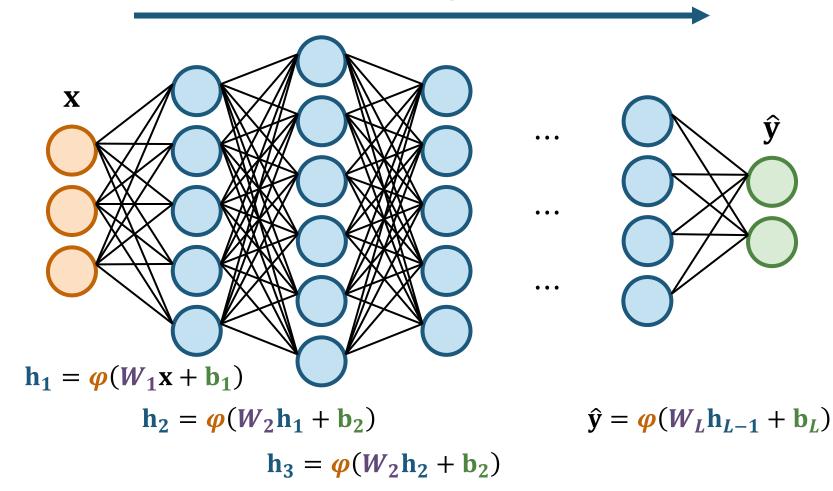
Backpropagation: Efficiently Computing the Gradients



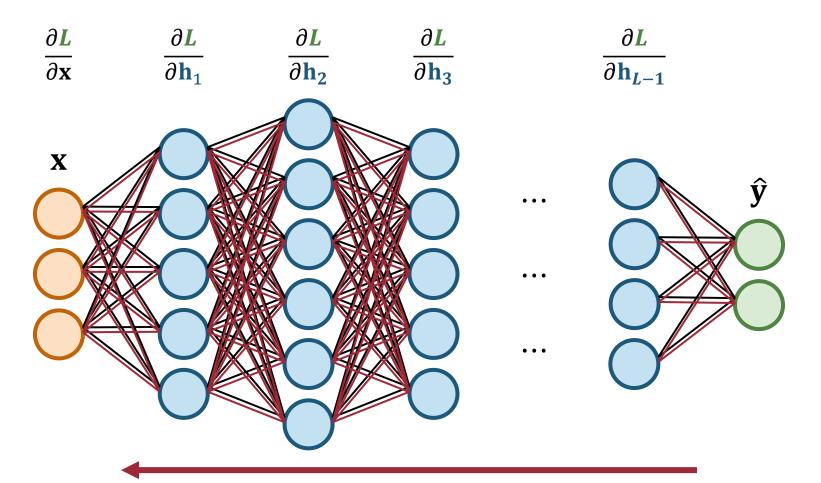
youtu.be/Ilg3gGewQ5U?t=196

Forward Pass & Backward Pass

Forward pass



Forward Pass & Backward Pass

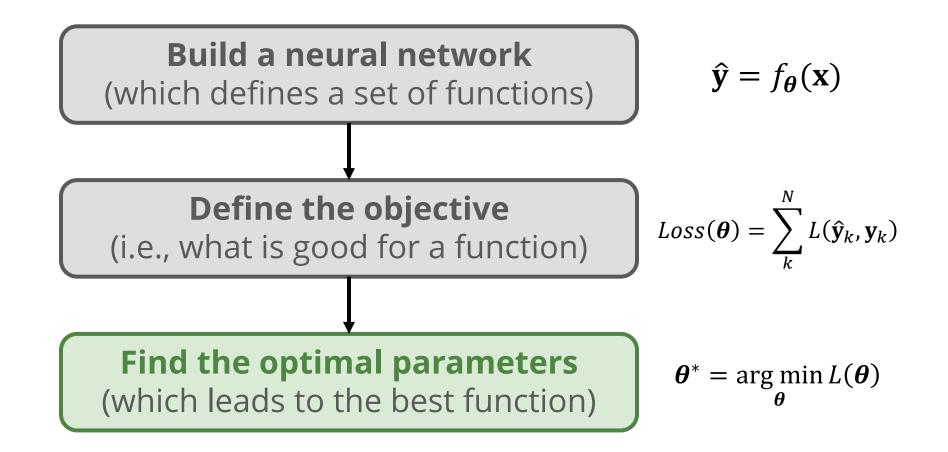


Backward pass

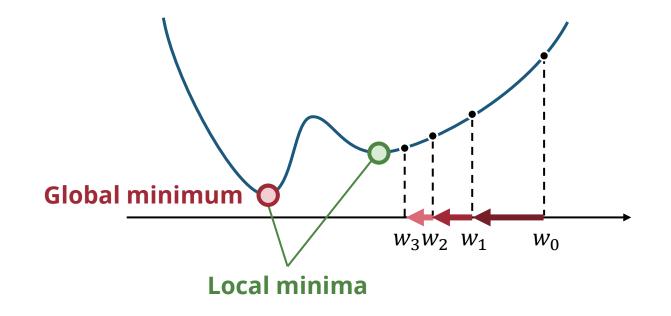
loss.backward()

Advanced Optimization

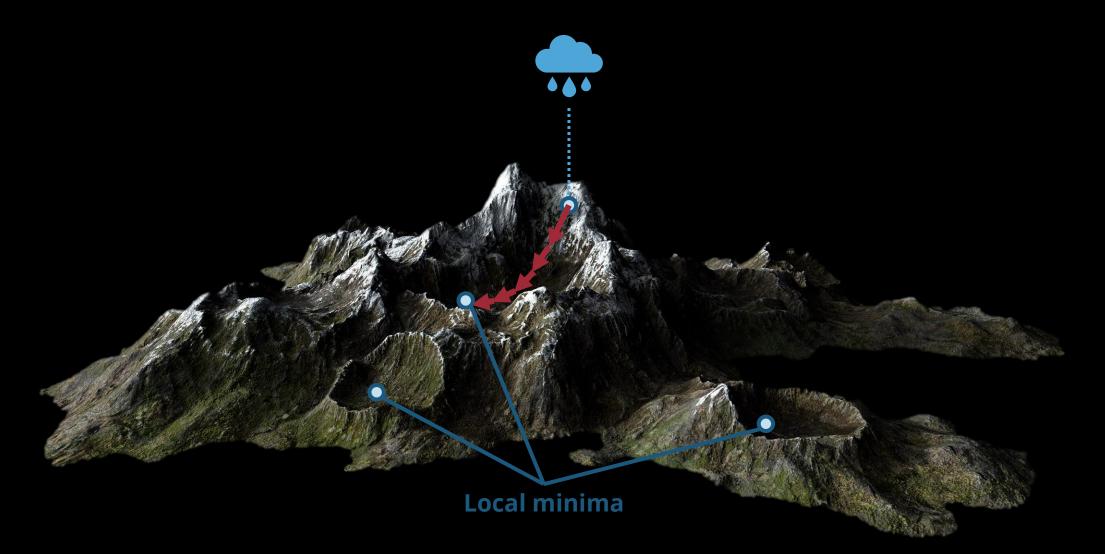
Training a Neural Network



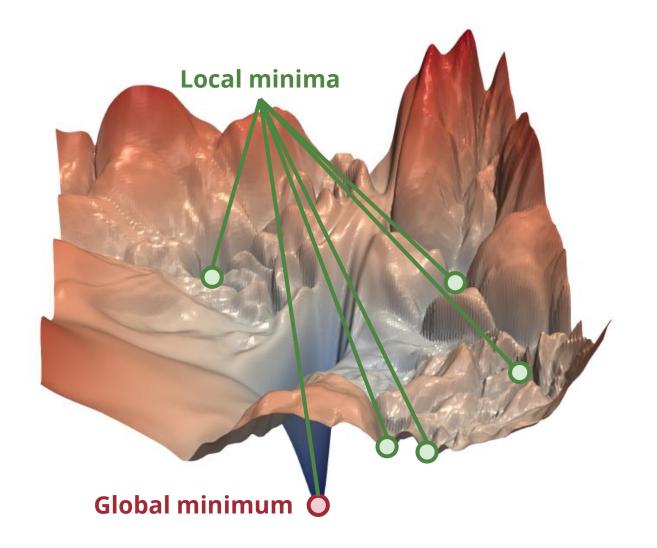
Gradient Descent Finds a Local Minimum



Gradient Descent Finds a Local Minimum



Local Minima in Complex Loss Landscape

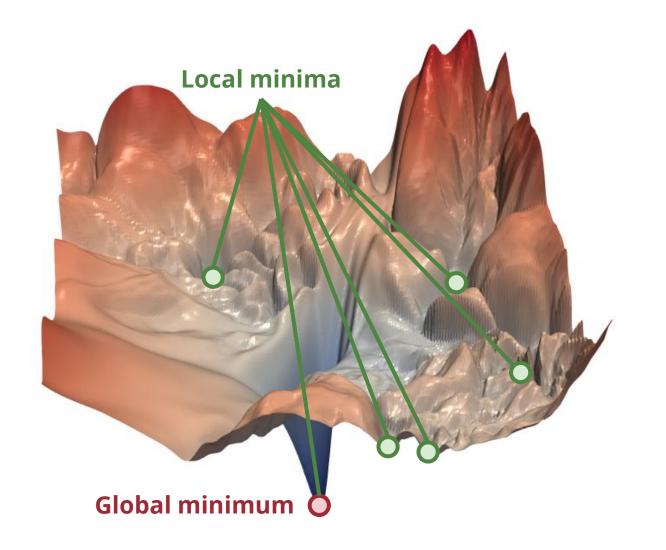


Solution 1 Use an optimizer with adaptive learning rate

> Solution 2 Use a stochastic optimizer

Solution 3 Make the loss landscape smoother

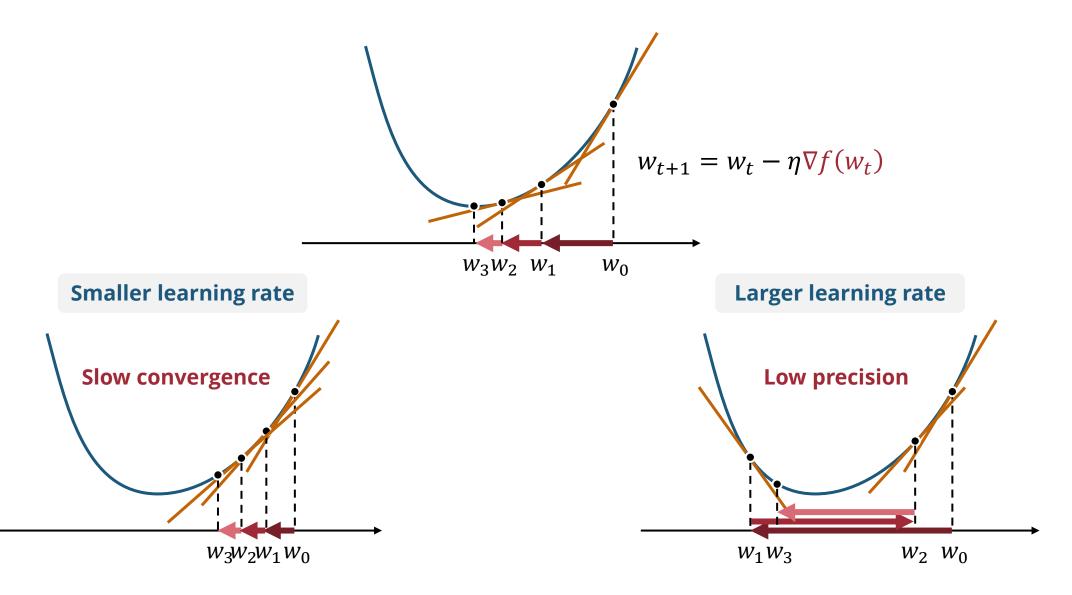
Local Minima in Complex Loss Landscape



Solution 1 Use an optimizer with adaptive learning rate

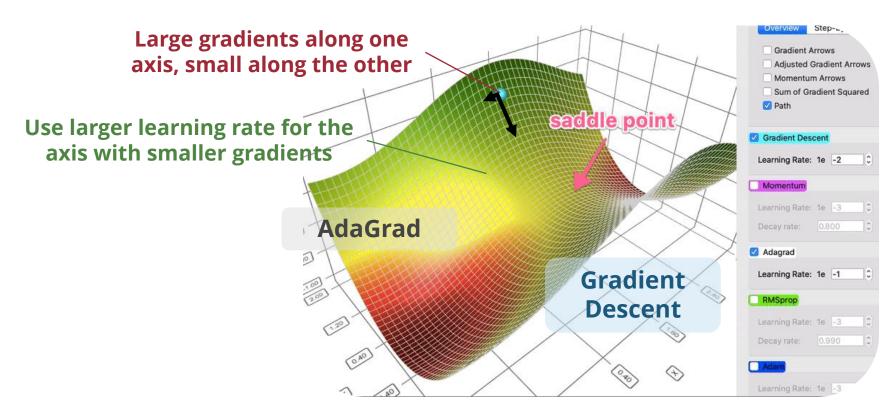
> Solution 2 Use a stochastic optimizer

Solution 3 Make the loss landscape smoother Learning Rate in Gradient Descent



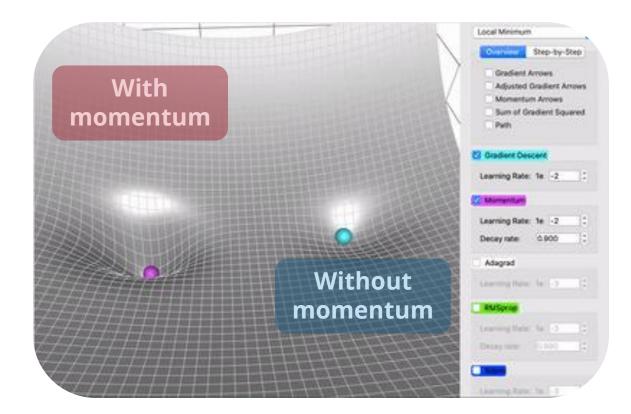
Gradient-based Adaptive Learning Rate

• Intuition: Compensate axis that has little progress by comparing the current gradients to the previous gradients

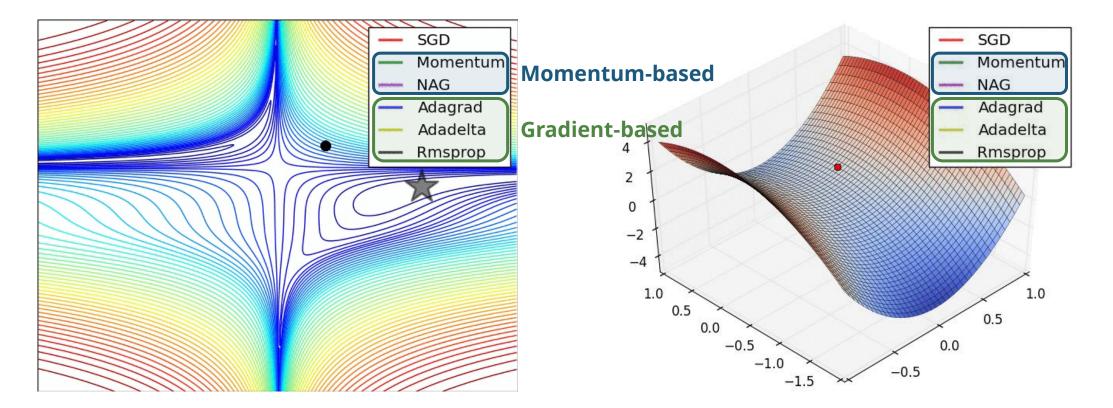


Momentum

• Intuition: Maintain the momentum to escape from local minima



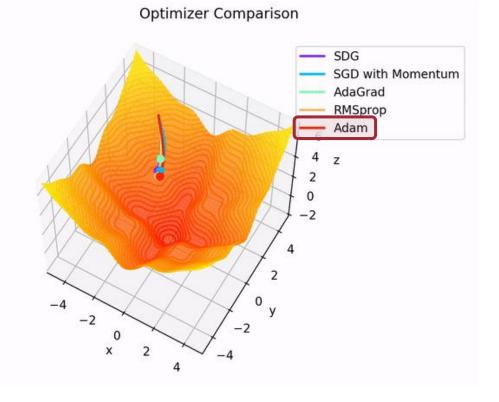
Comparison of Optimizers



Can we combine them?

Adam Optimizer

- Combine the idea of adaptive learning rate and momentum
- Work **empirically well** in complex neural network
- The go-to choice for most cases



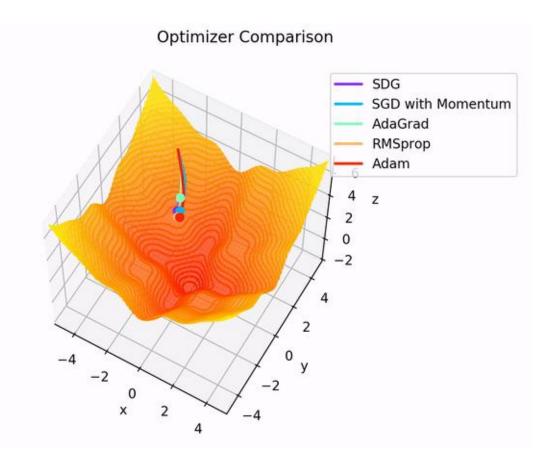
Comparison of Optimizers

Momentum

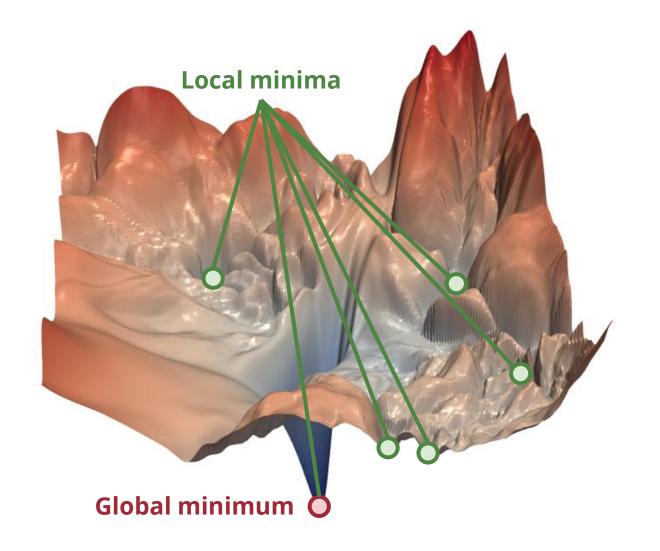
- Gets you out of spurious local minima
- Allows the model to explore around

Gradient-based adaption

- Maintains steady improvement
- Allows faster convergence



Local Minima in Complex Loss Landscape



Solution 1 Use an optimizer with adaptive learning rate

> Solution 2 Use a stochastic optimizer

Solution 3 Make the loss landscape smoother

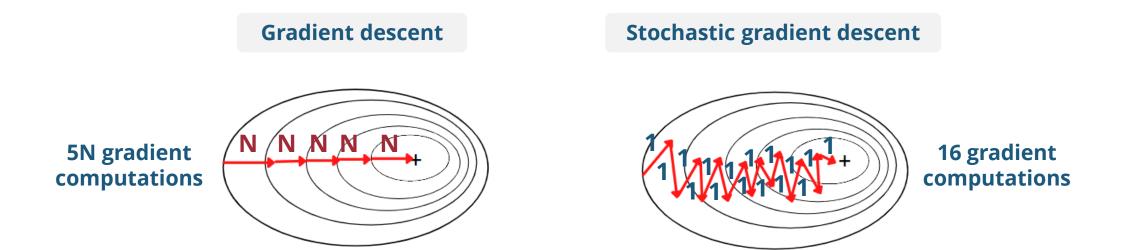
Batch Gradient Descent

- How to aggregate the gradients obtained from different training samples?
- Batch gradient descent computes the mean gradients over the whole training set

$$MSE \ loss \qquad Loss(\boldsymbol{\theta}) = \sum_{k}^{N} L(\hat{\mathbf{y}}, \mathbf{y}) = \frac{1}{n} \sum_{k}^{N} \sum_{i}^{n} \left(\hat{y}_{i}^{(k)} - y_{i}^{(k)} \right)^{2}$$
$$Binary \ cross \ entropy \qquad Loss(\boldsymbol{\theta}) = \sum_{k}^{N} L(\hat{y}, y) = \sum_{k}^{N} -y \log \hat{y} - (1 - y) \log(1 - \hat{y})$$
$$Cross \ entropy \qquad Loss(\boldsymbol{\theta}) = \sum_{k}^{N} L(\hat{\mathbf{y}}, \mathbf{y}) = -\sum_{k}^{N} \sum_{i}^{n} y_{i} \log \hat{y}_{i}$$

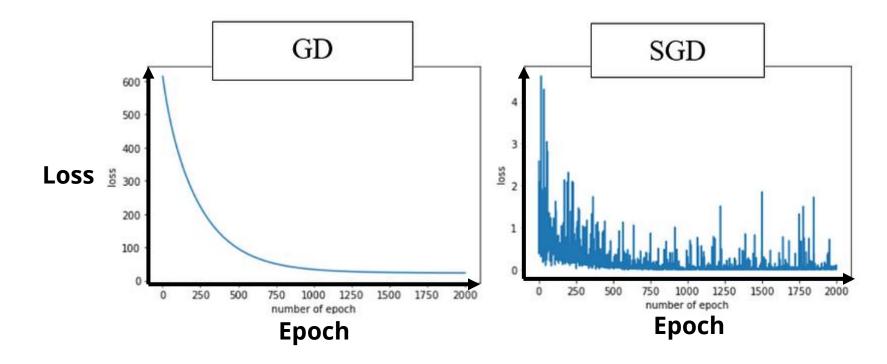
Stochastic Gradient Descent (SGD)

- Intuition: Estimate the gradient using one random training sample
- Benefits
 - Speed up the computation of the gradient N computations → 1 computation
 - Add some **randomness** to the gradient descent algorithm Help escape spurious local minima



Stochastic Gradient Descent is Noisy and Unstable

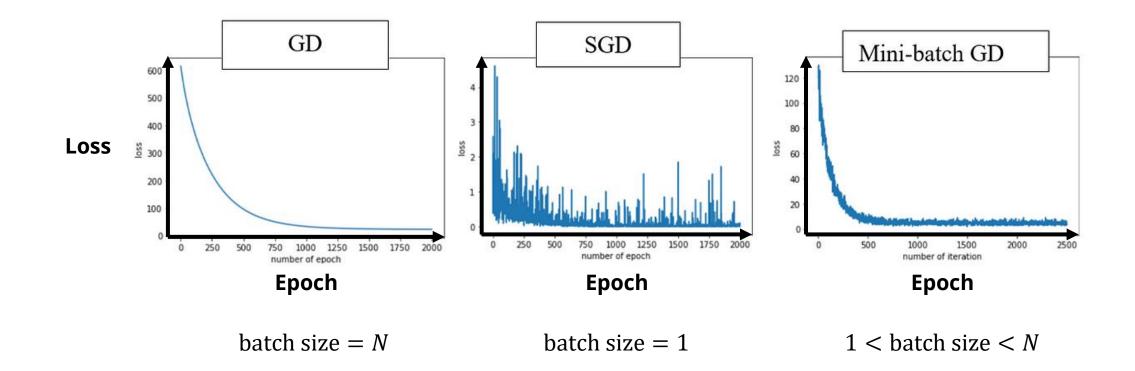
• Gradient estimate using one single sample can be unreliable



How about we use more samples to estimate the gradient?

Mini-batch Gradient Descent

Intuition: Estimate the gradient using several random training samples



Effects of Batch Size

- An **epoch** is a full run of the whole dataset
- Steps per epoch depends on the batch size

0.7

0.6

0.5

0.4

0.3

0.2

200

100

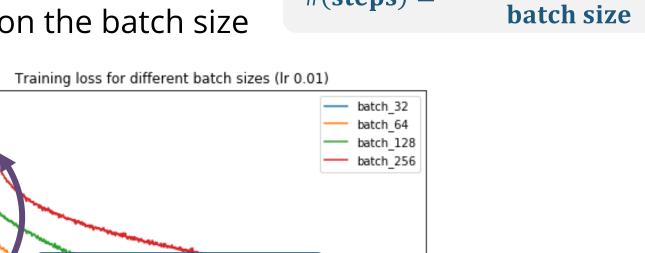
0

300

400

Fraining loss

Loss



Went through 4 times

more weight updates

500

600

800

900

1000

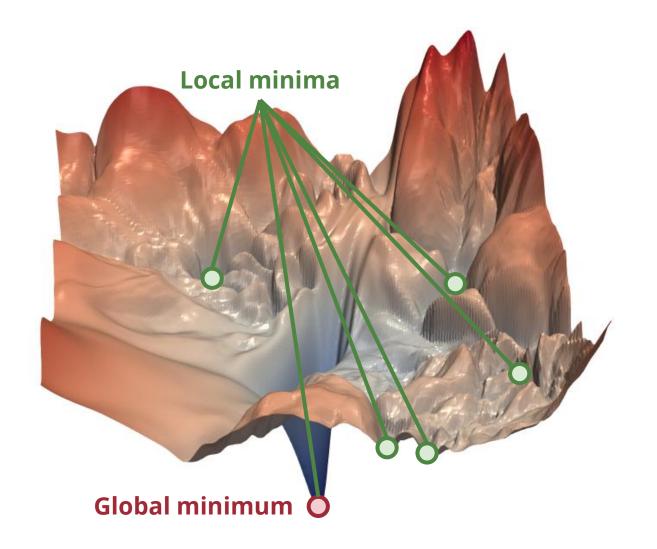
1100

700

#(steps) =

#(training samples)

Local Minima in Complex Loss Landscape



Solution 1 Use an optimizer with adaptive learning rate

> Solution 2 Use a stochastic optimizer

Solution 3 Make the loss landscape smoother

Skip Connections

Without skip connections

