
Music & AI

Lecture 8: Deep Learning Fundamentals II

PAT 498/598 (Winter 2025)

Instructor: Hao-Wen Dong



• Instructions will be sent by emails and released on the course website 

• Please submit you work to Gradescope

• Due at 11:59pm ET on February 7

• Late submissions: 1 point deducted per day

Homework 2: Music & Audio Processing
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• A type of machine learning that uses deep neural networks

(Recap) What is Deep Learning?
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Input layer
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Hidden layers

neuron



(Recap) Inside a Neuron
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• A neural network represents a set of functions

(Recap) Neural Networks are Parameterized Functions
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⋯
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𝑓𝜃(𝐱)

𝐱
ො𝐲

All the parameters

𝑾𝟏, … , 𝑾𝑳, 𝐛𝟏, … , 𝐛𝑳

𝐲

Good or bad?

Objective

Find the optimal parameters



(Recap) Shallow vs Deep Neural Networks – In Practice
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Deep neural nets

More expressive
(more parameter efficient)

Shallow neural nets

Less expressive
(less parameter efficient)



How to Train a Neural Network?
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Training a Neural Network

8

Build a neural network
(which defines a set of functions)

Define the objective 
(i.e., what is good for a function)

Find the optimal parameters
(which leads to the best function)



Training a Neural Network
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Build a neural network
(which defines a set of functions)

Define the objective 
(i.e., what is good for a function)

Find the optimal parameters
(which leads to the best function)



• A neural network represents a set of functions

(Recap) Neural Networks are Parameterized Functions
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⋯

⋯

⋯

𝑓𝜃(𝐱)

𝐱
ො𝐲

All the parameters

𝑾𝟏, … , 𝑾𝑳, 𝐛𝟏, … , 𝐛𝑳

𝐲

Good or bad?

Objective

Find the optimal parameters

𝐿 𝜽 = 𝐿 ො𝐲, 𝐲

Loss function



• Measure how well the model perform (in the opposite way)

• The choice of loss function depends on the task and the goals

Loss Function
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𝐿 𝜽 = 𝐿 ො𝐲, 𝐲



• Sometimes called

 Cost function

 Error function

• The opposite is known as

 Objective function

 Reward function (reinforcement learning)

 Fitness function (evolutionary algorithms & genetic algorithms)

 Utility function (economics)

 Profit function (economics)

Loss Function – The Many Names
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• What would be a good objective to train a neural audio codec?

• What do we care about for a codec?

 Reconstruction quality

 Bit rate (compression rate)

 Encoding/decoding speed

• How do we measure reconstruction quality?

 Difference in raw waveforms?

 Difference in spectrograms?

 Perceptual quality (psychoacoustics)?

Example: Audio Codec
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Trainable

Likely not trainable but searchable

Likely not trainable but searchable



Common Loss Functions for Regression
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𝐿 𝜽 = 𝐿 ෝ𝒚, 𝒚
Loss function
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L1 loss
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Why not 𝑳 ෝ𝒚, 𝒚 = ෝ𝒚 − 𝒚?

No activation 
function!



L1 vs L2 Losses
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𝐿 ො𝑦, 𝑦 = | ො𝑦 − 𝑦|
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Mean Absolute Error (MAE)

𝐿 ො𝐲, 𝐲 = 𝐌𝐒𝐄 ො𝐲, 𝐲 =
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2

Mean Squared Error (MSE)

More sensitive 
to outliers



• Logistic regression approaches classification like regression

Binary Cross Entropy for Binary Classification
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𝐿 ො𝑦, 𝑦 = ቊ
− log ො𝑦 ,  if 𝑦 = 1

− log 1 − ො𝑦 , if 𝑦 = 0

= −𝑦 log ො𝑦 − 1 − 𝑦  log 1 − ො𝑦

if 𝑦 = 1 if 𝑦 = 0

Binary cross entropy

(Also called log loss)



Cross Entropy for Multiclass Classification
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Cross Entropy for Multiclass Classification
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𝐿 𝜽 = 𝐿 ො𝐲, 𝐲
Loss function
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𝒆𝒚𝒊

σ𝒋=𝟏
𝒏 𝒆𝒚𝒋

Softmax

Real-valued numbers to 
probability-like numbers



• Intuition:  Map several numbers to 0, 1  while keeping their relative 
magnitude

 Softmax is like the multivariate version of sigmoid

Softmax
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Cross Entropy for Multiclass Classification
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𝐿 ො𝑦, 𝑦 = −𝑦 log ො𝑦 − 1 − 𝑦  log 1 − ො𝑦

Binary Cross Entropy Cross Entropy

𝐿 ො𝐲, 𝐲 = −𝑦1 log ො𝑦1 − 𝑦2 log ො𝑦2 − ⋯ − 𝑦𝑖 log ො𝑦𝑛

= − 

𝑖

𝑛

𝑦𝑖 log ො𝑦𝑖

Only one of them will be one! Only one of them will be one!

Log likelihood



Optimization
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Training a Neural Network
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Build a neural network
(which defines a set of functions)

Define the objective 
(i.e., what is good for a function)

Find the optimal parameters
(which leads to the best function)

ො𝐲 = 𝑓𝜽(𝐱)

𝐿 𝜽

𝜽∗ = arg min
𝜽

𝐿 𝜽



Training a Neural Network
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Build a neural network
(which defines a set of functions)

Define the objective 
(i.e., what is good for a function)

Find the optimal parameters
(which leads to the best function)

ො𝐲 = 𝑓𝜽(𝐱)

𝐿 𝜽

𝜽∗ = arg min
𝜽

𝐿 𝜽



• Many, many ways…

• Most commonly through gradient descent in deep learning

• Alternatively, we can use search or genetic algorithm

Optimizing the Parameters of a Neural Network
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𝜽∗ = arg min
𝜽

𝐿 𝜽



• Intuition:  Gradient can suggest a good direction to tune the parameters

Gradient Descent
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𝑤0

Derivative for a vector, 
matrix or tensor



Gradient Descent – Pseudocode

• Pick an initial weight vector 𝑤0 and learning rate 𝜼

• Repeat until convergence:  𝑤𝑡+1 = 𝑤𝑡 − 𝜼∇𝑓 𝑤𝑡
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𝑤0

Gradient of function 𝒇 
with respect to weight 𝒘



Gradient Descent – Pseudocode

• Pick an initial weight vector 𝑤0 and learning rate 𝜂

• Repeat until convergence:  𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡

27

𝑤0

slope = ∇𝑓 𝑤0 > 0



Gradient Descent – Pseudocode

• Pick an initial weight vector 𝑤0 and learning rate 𝜂

• Repeat until convergence:  𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡
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𝑤0

adjustment = −𝜂∇𝑓 𝑤0 < 0

slope = ∇𝑓 𝑤0 > 0



Gradient Descent – Pseudocode

• Pick an initial weight vector 𝑤0 and learning rate 𝜂

• Repeat until convergence:  𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡
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𝑤0

slope = ∇𝑓 𝑤0 > 0

𝑤1

adjustment = −𝜂∇𝑓 𝑤0 < 0



Gradient Descent – Pseudocode

• Pick an initial weight vector 𝑤0 and learning rate 𝜂

• Repeat until convergence:  𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡
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𝑤0

slope = ∇𝑓 𝑤1 > 0

𝑤1

adjustment = −𝜂∇𝑓 𝑤1 < 0

𝑤2



Gradient Descent – Pseudocode

• Pick an initial weight vector 𝑤0 and learning rate 𝜂

• Repeat until convergence:  𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡

31

𝑤0

slope = ∇𝑓 𝑤2 > 0

𝑤1

adjustment = −𝜂∇𝑓 𝑤2 < 0

𝑤2𝑤3



Gradient Descent – Pseudocode

• Pick an initial weight vector 𝑤0 and learning rate 𝜂

• Repeat until convergence:  𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡
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𝑤0

slope = ∇𝑓 𝑤𝑡 > 0

𝑤1

adjustment = −𝜂∇𝑓 𝑤𝑡 < 0

𝑤2𝑤3



Gradient Descent – 3D Case

33substance3d.adobe.com/community-assets/assets/9fe77d4279e12fe2fbd90b8f7ca18146a565f7ee

https://substance3d.adobe.com/community-assets/assets/9fe77d4279e12fe2fbd90b8f7ca18146a565f7ee


• An efficient way of computing gradients using chain rule

• The reason why we want everything to be differentiable in deep learning

Backpropagation: Efficiently Computing the Gradients
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𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡



Backpropagation: Efficiently Computing the Gradients
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youtu.be/Ilg3gGewQ5U?t=196

https://youtu.be/Ilg3gGewQ5U?t=196


Forward Pass & Backward Pass
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𝐱
ො𝐲

⋯

⋯

⋯

Forward pass

𝐡𝟏 = 𝝋 𝑾𝟏𝐱 + 𝐛𝟏

𝐡𝟐 = 𝝋 𝑾𝟐𝐡𝟏 + 𝐛𝟐

𝐡𝟑 = 𝝋 𝑾𝟐𝐡𝟐 + 𝐛𝟐

ො𝐲 = 𝝋 𝑾𝑳𝐡𝑳−𝟏 + 𝐛𝑳



Forward Pass & Backward Pass
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⋯

⋯

⋯
𝐱

ො𝐲

Backward pass

𝜕𝑳

𝜕𝐡𝑳−𝟏

𝜕𝑳

𝜕𝐡𝟑

𝜕𝑳

𝜕𝐡𝟐

𝜕𝑳

𝜕𝐡1

𝜕𝑳

𝜕𝐱

loss.backward()



Advanced Optimization
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Training a Neural Network

39

Build a neural network
(which defines a set of functions)

Define the objective 
(i.e., what is good for a function)

Find the optimal parameters
(which leads to the best function)

ො𝐲 = 𝑓𝜽(𝐱)

𝐿𝑜𝑠𝑠 𝜽 = 

𝑘

𝑁

𝐿 ො𝐲𝑘 , 𝐲𝑘

𝜽∗ = arg min
𝜽

𝐿 𝜽



Gradient Descent Finds a Local Minimum

40

𝑤0𝑤1𝑤2𝑤3

Local minima

Global minimum



Gradient Descent Finds a Local Minimum

41substance3d.adobe.com/community-assets/assets/9fe77d4279e12fe2fbd90b8f7ca18146a565f7ee

Local minima

https://substance3d.adobe.com/community-assets/assets/9fe77d4279e12fe2fbd90b8f7ca18146a565f7ee


Local Minima in Complex Loss Landscape

42

Global minimum

Local minima
Solution 1

Use an optimizer with 
adaptive learning rate

Solution 2
Use a stochastic 

optimizer

Solution 3
Make the loss 

landscape smoother

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein, “Visualizing the Loss Landscape of Neural Nets,” NeurIPS, 2018.

https://arxiv.org/pdf/1712.09913


Local Minima in Complex Loss Landscape

43

Global minimum

Local minima
Solution 1

Use an optimizer with 
adaptive learning rate

Solution 2
Use a stochastic 

optimizer

Solution 3
Make the loss 

landscape smoother

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein, “Visualizing the Loss Landscape of Neural Nets,” NeurIPS, 2018.

https://arxiv.org/pdf/1712.09913


Smaller learning rate Larger learning rate

Learning Rate in Gradient Descent

44

𝑤2𝑤3 𝑤0𝑤1

𝑤0𝑤1 𝑤2𝑤3𝑤0𝑤1𝑤2𝑤3

𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡

Slow convergence Low precision



• Intuition: Compensate axis that has little progress by comparing the 
current gradients to the previous gradients

Gradient-based Adaptive Learning Rate

45towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Large gradients along one 
axis, small along the other

Gradient 
Descent

AdaGrad

Use larger learning rate for the 
axis with smaller gradients

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c


• Intuition:  Maintain the momentum to escape from local minima

Momentum

46towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Without 
momentum

With 
momentum

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c


Comparison of Optimizers

47analyticsvidhya.com/blog/2021/10/a-comprehensive-guide-on-deep-learning-optimizers/

Momentum-based

Gradient-based

Can we combine them?

https://www.analyticsvidhya.com/blog/2021/10/a-comprehensive-guide-on-deep-learning-optimizers/


• Combine the idea of adaptive learning rate and momentum

• Work empirically well in complex neural network

• The go-to choice for most cases

Adam Optimizer

48



49

• Momentum

 Gets you out of spurious local minima

 Allows the model to explore around

• Gradient-based adaption

 Maintains steady improvement

 Allows faster convergence

Comparison of Optimizers

medium.com/@LayanSA/complete-guide-to-adam-optimization-1e5f29532c3d

https://medium.com/@LayanSA/complete-guide-to-adam-optimization-1e5f29532c3d


Local Minima in Complex Loss Landscape

50

Global minimum

Solution 1
Use an optimizer with 
adaptive learning rate

Solution 2
Use a stochastic 

optimizer

Solution 3
Make the loss 

landscape smoother

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein, “Visualizing the Loss Landscape of Neural Nets,” NeurIPS, 2018.

Local minima

https://arxiv.org/pdf/1712.09913


• How to aggregate the gradients obtained from different training samples?

• Batch gradient descent computes the mean gradients over the whole 
training set

Batch Gradient Descent

51

𝐿𝑜𝑠𝑠 𝜽 = 

𝑘

𝑁

𝐿 ො𝐲, 𝐲 =
1

𝑛


𝑘

𝑁



𝑖

𝑛

ො𝑦𝑖
(𝑘)

− 𝑦𝑖
(𝑘) 2

𝐿𝑜𝑠𝑠 𝜽 = 

𝑘

𝑁

𝐿 ො𝑦, 𝑦 = 

𝑘

𝑁

−𝑦 log ො𝑦 − 1 − 𝑦  log 1 − ො𝑦

𝐿𝑜𝑠𝑠 𝜽 = 

𝑘

𝑁

𝐿 ො𝐲, 𝐲 = − 

𝑘

𝑁



𝑖

𝑛

𝑦𝑖 log ො𝑦𝑖Cross entropy

Binary cross entropy

MSE loss



Stochastic Gradient Descent (SGD)

• Intuition:  Estimate the gradient using one random training sample

• Benefits

 Speed up the computation of the gradient

 Add some randomness to the gradient descent algorithm

52

Gradient descent

analyticsvidhya.com/blog/2022/07/gradient-descent-and-its-types/

Stochastic gradient descent

Help escape spurious local minima

N computations → 1 computation

N N N N N 1
1

1

1
1
1

1
1 1
1 1

1
1
1
1

1 16 gradient 
computations

5N gradient 
computations

https://www.analyticsvidhya.com/blog/2022/07/gradient-descent-and-its-types/


• Gradient estimate using one single sample can be unreliable

Stochastic Gradient Descent is Noisy and Unstable

53towardsdatascience.com/deep-learning-optimizers-436171c9e23f

Loss

Epoch Epoch

How about we use more samples to estimate the gradient?

https://towardsdatascience.com/deep-learning-optimizers-436171c9e23f


• Intuition:  Estimate the gradient using several random training samples

Mini-batch Gradient Descent

54analyticsvidhya.com/blog/2022/07/gradient-descent-and-its-types/

Loss

Epoch Epoch Epoch

batch size = 𝑁 batch size = 1 1 < batch size < 𝑁

https://www.analyticsvidhya.com/blog/2022/07/gradient-descent-and-its-types/


• An epoch is a full run of the whole dataset

• Steps per epoch depends on the batch size

Effects of Batch Size

55

# 𝐬𝐭𝐞𝐩𝐬 =
# 𝐭𝐫𝐚𝐢𝐧𝐢𝐧𝐠 𝐬𝐚𝐦𝐩𝐥𝐞𝐬

𝐛𝐚𝐭𝐜𝐡 𝐬𝐢𝐳𝐞

medium.com/deep-learning-experiments/effect-of-batch-size-on-neural-net-training-c5ae8516e57

Loss

Epoch

Went through 4 times 
more weight updates

https://medium.com/deep-learning-experiments/effect-of-batch-size-on-neural-net-training-c5ae8516e57


Local Minima in Complex Loss Landscape

56

Global minimum

Solution 1
Use an optimizer with 
adaptive learning rate

Solution 2
Use a stochastic 

optimizer

Solution 3
Make the loss 

landscape smoother

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein, “Visualizing the Loss Landscape of Neural Nets,” NeurIPS, 2018.

Local minima

https://arxiv.org/pdf/1712.09913


Skip Connections

57Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein, “Visualizing the Loss Landscape of Neural Nets,” NeurIPS, 2018.

Without skip connections

With skip connections

https://arxiv.org/pdf/1712.09913
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