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Homework 2: Music & Audio Processing

* We will be coding in Python for Homework 2

* You may use Google Colab directly
- Google Colab is a free online service where you can run Python code

* Alternatively, you may also download the notebook and run it in your local
Python environment

- For example, you can run the notebook in Jupyter Lab

“pip install jupyterlab
* jupyter lab


https://colab.research.google.com/
https://jupyter.org/

Homework 2: Music & Audio Processing

Instructions will be sent by emails and released on the course website

Please submit you work to Gradescope

Due at 11:59pm ET on February 7

Late submissions: 1 point deducted per day

* You must upload your code as an IPython notebook (.ipynb) file. You will
receive zero credit for the whole assignment if the code is missing.



(Recap) Nyquist-Shannon Sampling Theorem

- Theorem: If a signal contains no frequencies higher than f,,,,, then the
signal can be perfectly reconstructed when sampled at a rate £, > 21,4«

* 2fmax IS Usually referred to as the Nyquist rate

1
T = To reconstruct a signal of frequency f,,.x

fmax
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We need a sampling rate larger than 2f .,

l
|




Recap) Spectral Analysis
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What is Deep Learning?



(Recap) Al vs ML vs DL

~

/

-

Artificial Intelligence Machine Learning Deep Learning
Algorithms that exhibit Algorithms that show Algorithms that learn
intelligent behaviors intelligence through from data using deep

like humans learning from data neural networks

-

1950s 1980s 2010s



\ (Recap) Components of a Machine Learning Model

Optimization Defining inputs & outputs

Improve on task T,

with respect to performance metric P,

Objective function

based on experience E (loss function)

Training data



What is Deep Learning?

* A type of machine learning that uses deep neural networks
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What is Deep Learning?

Output layer
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* A type of machine learning that uses deep neural networks
Input layer
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Hidden layers



Neural Networks
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Inside a Neuron S
Sigmoid function
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Human Neuron

Cell body

Nucleus

Endoplasmic
reticulum

Mitochondrion

Casey Henley, Introduction to Neuroscience
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https://openbooks.lib.msu.edu/introneuroscience1/chapter/action-potentials/

~ Why Sigmoid?

n Successful initiation
0-— . .
(action potential)

Threshold potential

_______________ Resting membrane
potential

Membrane Potential (mV)

Failed|initiation

Casey Henley, Introduction to Neuroscience

Unit step

AN
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Threshold

Sigmoid
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https://openbooks.lib.msu.edu/introneuroscience1/chapter/action-potentials/

Why Bias Term?

* Allow nonzero outputs when all inputs are zero

0 0 0
Yy = oW +wps + -+ wppp +b) = @(b)
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Artificial vs Human Neuron

Artificial neuron

Casey Henley, Introduction to Neuroscience
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https://openbooks.lib.msu.edu/introneuroscience1/chapter/action-potentials/

Artificial Neural Networks

* Although inspired by human neural networks, artificial neural networks
nowadays do not work like human brains

- Lacking functional hierarchy, high-level feedback loops, memory module, etc.

- Human brains work more like spiking neural networks - Efficiency!

‘ v‘“
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Fully Connected Feedforward Network

« Most basic form of deep neural networks
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Math Formulation
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Math Formulation

Input layer

Hidden layers
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Math Formulation
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Math Formulation
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Math Formulation
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Math Formulation

h=¢e(Wx+b)
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Math Formulation

h=¢e(Wx+b)
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Math Formulation
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Math Formulation
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Math Formulation
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Math Formulation
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Fully Connected Feedforward Network

\‘v /'
Af’A )" ’W

hy = (Wx+by)
h, = ¢(W;h; + b;) y=@W.h,_;+Dbp)
hz = (W;h; + b;)
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Neural Networks are Parameterized Functions

* A neural network represents a set of functions
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Neural Networks are Parameterized Functions

* A neural network represents a set of functions

fi 0 (X)

AII the parameters
W 1) ===y WL,bl, ey bL
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\ (Preview) Training a Neural Network

Build a neural network
(which defines a set of functions)

|

l

Define the objective
(i.e., what is good for a function)

|

1

Find the optimal parameters
(which leads to the best function)

|
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Neural Networks are Parameterized Functions

* A neural network represents a set of functions

Find the optimal parameters

y
\
’ (X) ' Good or bad?
J
AII the parameters Objective

W 1y wee) WL,bl, = bL
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Activation Functions
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Why do We Need Activation Functions?

« Activation functions introduce nonlinearity to a neural network

* A linear function is a weighted sum of the inputs (plus a bias term)
f(xq, X9, 0, X)) = A1X1 + 3%y + A3x3 + -+ ayx, + b

- Examples of nonlinear functions:

1
fx) = X

. — 42 . . .
flx) = x3 Nonlinear functions are hard to model and approximate.

- f(xy) = e* That's where deep neural networks shine!

" f(x1,x2) = x1%;
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Why do We Need Activation Functions?

h; = (W;x+ by)

A

7 LAY
X = A QN
SO =105
KO Y §‘\ ":i

(]
4,
Iﬁ‘\

?A’\{ IR ‘é X
APY/

b, € R?

37



~ Why do We Need Activation Functions?

h; = (W;x+by) y=¢@W.h,_;+bp)
h, = @(W3h; + b;) y=oW, oW, _1h;,_,+b; 1) +by)
h; = ¢(W3h; + b3) y=oW, oW1 oW, _5h;_3+b;_5) +b;,_4) +by)

y=¢@W.h,_;+Dbp) y=oW, oW,y oW 5 @(-x-) +b;_5) +b;_4) +b;)
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~ Why do We Need Activation Functions?

With activation functions, a neural network
can represent nonlinear functions

y=oW, oW,y oW, @(-x--)+b;_5) +b;, 1) +by)

|

y=W W, (W;_,(¢-x-)+b;_5)+b,_1)+Dby

Without activation functions, a neural
network can only represent linear functions
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Commonly Used Activation Functions

Sigmoid tanh RelLU

Z, if z=>0
0, otherwise

o(z) = tanh(z) = ReLU(2) = {



RelLUs & Piecewise Linear Functions
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Expressiveness of Neural Networks
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Universal Approximation Theorem

* A neural network with one hidden layer can
approximate any continuous function given
sufficient hidden neurons and appropriate
activation functions

- Sigmoid, ReLUs are good activation functions
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Shallow vs Deep Neural Networks

45 connections

45 connections (3x9+9x2)

X5+5x3+3x3+3x2)

45 connections
(B3X3+3Xx3+3X3+3X2+2X2+2%x2+2x2)

44



Shallow vs Deep Neural Networks - In Practice

Shallow neural nets Deep neural nets

Less expressive More expressive
(less parameter efficient) (more parameter efficient)

45



How Deep is Deep Enough: et o [

Convolutions. Subsampling

Convolutions ~ Subsampling Full connection

- Deeper is not always better
- Actual number of parameters

- Optimization difficulties
- Data size

AlexNet
(2012)

192 132

112x112x128 i ﬂ

- Inductive bias of the model VGG-19

(2015)
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Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner, “Gradient-based learning applied to document recognition,” Proc. IEEE, 1998.
Alex Krizhevsky, llya Sutskever, and Geoffrey E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” NeurIPS, 2012.
Karen Simonyan and Andrew Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition,” /CLR, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep Residual Learning for Image Recognition,” CVPR, 2016.



https://hal.science/hal-03926082/document
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://arxiv.org/pdf/1409.1556
https://arxiv.org/pdf/1512.03385

\ Computation Cost vs Classification Accuracy

X (eI (Ek Inception-v4
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= 60 - e BV 36 M ~125M  155M
BN-AlexNet
3 “AlexNet
- 2012 : , 5 High cost
50 ; : . . : . . ; Low performance
0 5 10 15 20 25 30 35 40

Operations [G-Ops]
—

Computation cost
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Neural Networks are NOT always Layer-by-Layer

Skip connections

AN, @
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Used in ResNets, U-Nets, diffusion models

Feedback loops
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Used in RNNs, LSTMs, GRUs
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Regression vs Classification
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Regression vs Classification

Regression

Classification

Age

5

Output a number

Is human?

Yes / No

Output a label
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Regression Example: Stock Price Prediction
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\ Regression Example: Depth Estimation

y = [O’ OO)WXH

medium.com/@omarbarakat1995/depth-estimation-with-deep-neural-networks-part-1-5fa6d2237d0d
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https://medium.com/@omarbarakat1995/depth-estimation-with-deep-neural-networks-part-1-5fa6d2237d0d

Classification Example: Image Recognition

y € {cat, dog, bear, bird} y€1{0,1,2,..,9}
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Classification Example: Spam Filter

}

POWERD

CONGRATULATIONS!!

Your Email was selected in Powerball Lottery
Draw with the sum of 1.5million dollars.
Kindly send your Full Name, Address and
Phone Number for claims.

Yours Sincerely
Mr. James Hodges
Head Of Operations

<
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N

Call for Panelists with
Internship/work Experience for
PAT Seminar @ Sep 13 Inbox x

Hao-Wen Dong <h.. Mon, Sep 9, 4:04PM (1day ago) Yy €
to PAT, pat.grads «

Hi folks,

We are planning an internship panel for our PAT seminar this Friday. That
being said, we'll need some panelists! If you did an internship this
summer (or previously) or have experience working in the industry,
please let me know! Also, feel free to recommend anyone who you
think would be a good panelist for this topic.

The goal of the panel is to give you a sense of what the application
process/timeline is like and what the whole internship experience is like.

Looking forward to hearing from you! And see you on Friday!

Best,
Herman

= spam

y € {spam, not spam}

= not spam
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