
Music & AI

Lecture 7: Deep Learning Fundamentals

PAT 498/598 (Winter 2025)

Instructor: Hao-Wen Dong



• We will be coding in Python for Homework 2

• You may use Google Colab directly

 Google Colab is a free online service where you can run Python code

• Alternatively, you may also download the notebook and run it in your local 
Python environment

 For example, you can run the notebook in Jupyter Lab

 pip install jupyterlab

 jupyter lab

Homework 2: Music & Audio Processing
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https://colab.research.google.com/
https://jupyter.org/


• Instructions will be sent by emails and released on the course website 

• Please submit you work to Gradescope

• Due at 11:59pm ET on February 7

• Late submissions: 1 point deducted per day

• You must upload your code as an IPython notebook (.ipynb) file. You will 
receive zero credit for the whole assignment if the code is missing.

Homework 2: Music & Audio Processing
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• Theorem:  If a signal contains no frequencies higher than 𝑓𝑚𝑎𝑥, then the 
signal can be perfectly reconstructed when sampled at a rate 𝑓𝑠 > 2𝑓𝑚𝑎𝑥

  2𝑓𝑚𝑎𝑥 is usually referred to as the Nyquist rate

(Recap) Nyquist–Shannon Sampling Theorem
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𝑇 =
1

𝑓𝑚𝑎𝑥

1

2
𝑇 =

1

2𝑓𝑚𝑎𝑥
We need a sampling rate larger than 𝟐𝒇𝒎𝒂𝒙

To reconstruct a signal of frequency 𝒇𝒎𝒂𝒙



(Recap) Spectral Analysis
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2Hz 10Hz
5Hz



What is Deep Learning?
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Artificial Intelligence

Algorithms that exhibit 
intelligent behaviors 

like humans

1950s

(Recap) AI vs ML vs DL
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Machine Learning

Algorithms that show 
intelligence through 
learning from data

1980s 2010s

Deep Learning

Algorithms that learn 
from data using deep 

neural networks



Improve on task T,

with respect to performance metric P,

based on experience E

(Recap) Components of a Machine Learning Model
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Optimization

Objective function
(loss function)

Training data

Defining inputs & outputs



• A type of machine learning that uses deep neural networks

What is Deep Learning?
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⋯
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• A type of machine learning that uses deep neural networks

What is Deep Learning?

10

⋯

⋯

⋯

Input layer

Output layer

Hidden layers

neuron



Neural Networks
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Inside a Neuron
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Human Neuron

13Casey Henley, Introduction to Neuroscience

Threshold potential

Failed initiation

Successful initiation
(action potential)

https://openbooks.lib.msu.edu/introneuroscience1/chapter/action-potentials/


Why Sigmoid?

14Casey Henley, Introduction to Neuroscience

0 2 4-2-4

0.5

1

Sigmoid

Threshold potential

Failed initiation

Successful initiation
(action potential)

Unit step

0 2 4-2-4

1

Nondifferentiable

Threshold

𝜎 𝑧 =
1

1 + 𝑒−𝑧

https://openbooks.lib.msu.edu/introneuroscience1/chapter/action-potentials/


• Allow nonzero outputs when all inputs are zero

Why Bias Term?
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ෝ𝒚  = 𝝋 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑛𝑥𝑛 + 𝑏
0 0 0

= 𝝋 𝑏



Artificial vs Human Neuron
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Human neuron

𝑥1

𝑥2

𝑥3 +

𝑥𝑛

⋮

𝝋

𝑤1

𝑤2

𝑤3

𝑤𝑛

𝑏

ො𝑦

Artificial neuron

Casey Henley, Introduction to Neuroscience

0 2 4-2-4

0.5

1

Sigmoid
Threshold 
potential

https://openbooks.lib.msu.edu/introneuroscience1/chapter/action-potentials/


• Although inspired by human neural networks, artificial neural networks 
nowadays do not work like human brains

 Lacking functional hierarchy, high-level feedback loops, memory module, etc.

 Human brains work more like spiking neural networks → Efficiency!

Artificial Neural Networks
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• Most basic form of deep neural networks

Fully Connected Feedforward Network
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Math Formulation
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Math Formulation
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⋮ ⋮⋮ ⋮⋮⋮

Input layer Output layerHidden layers



Math Formulation
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Math Formulation
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Math Formulation
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Math Formulation

24

⋯

⋯

⋯

⋯

⋮ ⋮⋮ ⋮⋮⋮

𝐡 = 𝝋 𝑾𝐱 + 𝐛
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Math Formulation
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Math Formulation
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Math Formulation
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𝐡𝟏 = 𝝋 𝑾𝟏𝐱 + 𝐛𝟏

𝐱 𝐡𝟏



Math Formulation
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⋮ ⋮⋮ ⋮⋮⋮

𝐱 𝐡𝟏 𝐡𝟐

𝐡𝟐 = 𝝋 𝑾𝟐𝐡𝟏 + 𝐛𝟐



Math Formulation
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⋮ ⋮⋮ ⋮⋮⋮

𝐱 𝐡𝟏 𝐡𝟐 ෝ𝒚𝐡𝟑 𝐡𝑳−𝟏

𝐡𝟏 = 𝝋 𝑾𝟏𝐱 + 𝐛𝟏

𝐡𝟐 = 𝝋 𝑾𝟐𝐡𝟏 + 𝐛𝟐

𝐡𝟑 = 𝝋 𝑾𝟐𝐡𝟐 + 𝐛𝟐

ෝ𝒚 = 𝝋 𝑾𝑳𝐡𝑳−𝟏 + 𝐛𝑳



Fully Connected Feedforward Network
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⋯

⋯

⋯

𝐡𝟏 = 𝝋 𝑾𝟏𝐱 + 𝐛𝟏

𝐡𝟐 = 𝝋 𝑾𝟐𝐡𝟏 + 𝐛𝟐

𝐡𝟑 = 𝝋 𝑾𝟐𝐡𝟐 + 𝐛𝟐

ෝ𝒚 = 𝝋 𝑾𝑳𝐡𝑳−𝟏 + 𝐛𝑳



• A neural network represents a set of functions

Neural Networks are Parameterized Functions
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⋯

⋯

⋯

𝑓(𝐱)

𝐱
ෝ𝒚



• A neural network represents a set of functions

Neural Networks are Parameterized Functions
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⋯

⋯

⋯

𝑓𝜃(𝐱)

𝐱
ෝ𝒚

All the parameters

𝑾𝟏, … , 𝑾𝑳, 𝐛𝟏, … , 𝐛𝑳



(Preview) Training a Neural Network
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Build a neural network
(which defines a set of functions)

Define the objective 
(i.e., what is good for a function)

Find the optimal parameters
(which leads to the best function)



• A neural network represents a set of functions

Neural Networks are Parameterized Functions
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⋯

⋯

⋯

𝑓𝜃(𝐱)

𝐱
ෝ𝒚

All the parameters

𝑾𝟏, … , 𝑾𝑳, 𝐛𝟏, … , 𝐛𝑳

𝒚

Good or bad?

Objective

Find the optimal parameters



Activation Functions
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• Activation functions introduce nonlinearity to a neural network

• A linear function is a weighted sum of the inputs (plus a bias term)

𝑓 𝑥1, 𝑥2, … , 𝑥𝑛 = 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ + 𝑎𝑛𝑥𝑛 + 𝑏

• Examples of nonlinear functions:

 𝑓 𝑥1 =
1

𝑥1

 𝑓 𝑥1 = 𝑥1
2

 𝑓 𝑥1 = 𝑒𝑥

 𝑓 𝑥1, 𝑥2 = 𝑥1𝑥2

Why do We Need Activation Functions?
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Nonlinear functions are hard to model and approximate. 
That’s where deep neural networks shine!



Why do We Need Activation Functions?
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⋯

⋯

⋯

𝑾𝟏 ∈ ℝ𝟓×𝟑

𝐛𝟏 ∈ ℝ𝟓

𝑾𝟐 ∈ ℝ𝟔×𝟓

𝐛𝟐 ∈ ℝ𝟔

𝑾𝟑 ∈ ℝ𝟓×𝟔

𝐛𝟑 ∈ ℝ𝟓

𝑾𝑳 ∈ ℝ𝟑×𝟐

𝐛𝑳 ∈ ℝ𝟐

𝐡𝟏 = 𝝋 𝑾𝟏𝐱 + 𝐛𝟏



Why do We Need Activation Functions?
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ෝ𝒚 = 𝝋 𝑾𝑳 𝝋 𝑾𝑳−𝟏𝐡𝑳−𝟐 + 𝐛𝑳−𝟏  + 𝐛𝑳

ෝ𝒚 = 𝝋 𝑾𝑳𝐡𝑳−𝟏 + 𝐛𝑳𝐡𝟏 = 𝝋 𝑾𝟏𝐱 + 𝐛𝟏

𝐡𝟐 = 𝝋 𝑾𝟐𝐡𝟏 + 𝐛𝟐

𝐡𝟑 = 𝝋 𝑾𝟑𝐡𝟐 + 𝐛𝟑

ෝ𝒚 = 𝝋 𝑾𝑳𝐡𝑳−𝟏 + 𝐛𝑳

⋮

ෝ𝒚 = 𝝋 𝑾𝑳 𝝋 𝑾𝑳−𝟏 𝝋 𝑾𝑳−𝟐𝐡𝑳−𝟑 + 𝐛𝑳−𝟐  + 𝐛𝑳−𝟏  + 𝐛𝑳

⋮

ෝ𝒚 = 𝝋 𝑾𝑳 𝝋 𝑾𝑳−𝟏 𝝋 𝑾𝑳−𝟐 𝝋 ⋯ 𝐱 ⋯  + 𝐛𝑳−𝟐  + 𝐛𝑳−𝟏  + 𝐛𝑳



Why do We Need Activation Functions?
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ෝ𝒚 = 𝝋 𝑾𝑳 𝝋 𝑾𝑳−𝟏 𝝋 𝑾𝑳−𝟐 𝝋 ⋯ 𝐱 ⋯ + 𝐛𝑳−𝟐  + 𝐛𝑳−𝟏  + 𝐛𝑳

ෝ𝒚 = 𝑾𝑳 𝑾𝑳−𝟏 𝑾𝑳−𝟐 ⋯ 𝐱 ⋯ + 𝐛𝑳−𝟐 + 𝐛𝑳−𝟏 + 𝐛𝑳

Without activation functions, a neural 
network can only represent linear functions

With activation functions, a neural network 
can represent nonlinear functions



0 2 4-2-4

1

2

3

Commonly Used Activation Functions
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0 2 4-2-4

0.5

1

Sigmoid ReLUtanh

0

2 4-2-4

1

-1

𝜎 𝑧 =
1

1 + 𝑒−𝑧 tanh 𝑧 =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
ReLU 𝑧 = ቊ

𝑧,  if 𝑧 ≥ 0 
0, otherwise



ReLUs & Piecewise Linear Functions

41



Expressiveness of Neural Networks

42



Universal Approximation Theorem

43

• A neural network with one hidden layer can 
approximate any continuous function given 
sufficient hidden neurons and appropriate 
activation functions

 Sigmoid, ReLUs are good activation functions

Then why do we want to go deep?

⋮



Shallow vs Deep Neural Networks
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45 connections
(3 x 9 + 9 x 2)

45 connections
(3 x 5 + 5 x 3 + 3 x 3 + 3 x 2)

45 connections
(3 x 3 + 3 x 3 + 3 x 3 + 3 x 2 + 2 x 2 + 2 x 2 + 2 x 2)



Shallow vs Deep Neural Networks – In Practice
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Deep neural nets

More expressive
(more parameter efficient)

Shallow neural nets

Less expressive
(less parameter efficient)



• Deeper is not always better

 Actual number of parameters

 Optimization difficulties

 Data size

 Inductive bias of the model

How Deep is Deep Enough?
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LeNet 
(1998)

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner, “Gradient-based learning applied to document recognition,” Proc. IEEE, 1998.
Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” NeurIPS, 2012.
Karen Simonyan and Andrew Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition,” ICLR, 2015.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep Residual Learning for Image Recognition,” CVPR, 2016.

AlexNet
(2012)

VGG-19
(2015)

ResNet
(2015)

https://hal.science/hal-03926082/document
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://arxiv.org/pdf/1409.1556
https://arxiv.org/pdf/1512.03385


Computation Cost vs Classification Accuracy
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2012

2014

2015

2015 2015

Classification 
accuracy

Computation cost

Low cost
High performance

High cost
Low performance



Neural Networks are NOT always Layer-by-Layer
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Skip connections Feedback loops

Used in ResNets, U-Nets, diffusion models Used in RNNs, LSTMs, GRUs



Regression vs Classification
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Regression vs Classification

50

𝑓𝜃(𝐱)Regression 5

Age

Classification Yes / No𝑓𝜃(𝐱)
Is human?

Output a number

Output a label



Regression Example: Stock Price Prediction
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𝑦 ∈ [0, ∞)

𝑓

 

= 108.15

𝑓

 

= 18.95



Regression Example: Depth Estimation
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𝐲 ∈ 0, ∞ 𝑊×𝐻

𝑓 =

𝑓 =

medium.com/@omarbarakat1995/depth-estimation-with-deep-neural-networks-part-1-5fa6d2237d0d

https://medium.com/@omarbarakat1995/depth-estimation-with-deep-neural-networks-part-1-5fa6d2237d0d


Classification Example: Image Recognition
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𝑓  = cat

𝑓  = dog

𝑓  = bear

𝑓  = 8

𝑓  = 6

𝑦 ∈ cat, dog, bear, bird 𝑦 ∈ 0, 1, 2, … , 9



Classification Example: Spam Filter
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𝑓

 

= spam

𝑓

 

= not spam

𝑦 ∈ spam, not spam
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