PAT 498/598 (Winter 2025)

Music & Al

Lecture 5: Music & Audio Processing Fundamentals

Instructor: Hao-Wen Dong

(Recap) Al vs ML vs DL

(Recap) Machine Learning

(Recap) Components of a Machine Learning Model

Improve on task T, with respect to performance metric P, based on experience E

• Task T

Violin transcription

- Performance metric P
- Experience E

Percentage of correctly predicted notes Recordings with sheet music

(Recap) Components of a Machine Learning Model

Improve on task T, with respect to performance metric P, based on experience E

• Task T

Beat tracking

- Performance metric P
- Experience E

Average difference from actual timings Recordings with beat timestamps

<u>audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S3_BeatTracking.html</u> Meinard Müller, "<u>Fundamentals of Music Processing – Using Python and Jupyter Notebooks</u>," *Springer Verlag*, 2021. Meinard Müller and Frank Zalkow, "<u>FMP Notebooks: Educational Material for Teaching and Learning Fundamentals of Music Processing</u>," *ISMIR*, 2019.

(Recap) Types of Machine Learning

- Supervised learning
 - Classification: discrete outputs
 - **Regression**: *continuous* outputs
- Unsupervised learning
 Self-supervised learning
- Semi-supervised learning
- Reinforcement learning

Given pairs of example inputs and outputs

Given only example inputs

- Given example inputs and a few example outputs
- Given scalar rewards for a sequence of actions

(Recap) Examples of Machine Learning Algorithms

Linear regression

Decision tree

(Recap) Example: Linear Regression

Positive correlation

Negative correlation

(Source: Georgieva et al., 2024)

(Recap) Building a Decision Tree

(Recap) Components of a Machine Learning Model

Music & Audio Processing

What is a **Sound**?

youtu.be/aPswnDcteS4

Sound is a Pressure Wave

©2011. Dan Russell

(Source: Russell, 2011)

Human Auditory System

youtu.be/eQEaiZ2j9oc

Longitudinal vs Transverse Waves

Auditory Perception

Human Ears

(Source: NIH/NIDCD)

National Institute on Deafness and Other Communication Disorders (NIDCD), "How Do We Hear?," National Institutes of Health (NIH), 2015.

Cochlea in the Inner Ear

National Institute on Deafness and Other Communication Disorders (NIDCD), "<u>How Do We Hear?</u>," National Institutes of Health (NIH), 2015. Joseph E. Hawkins, "<u>Transmission of sound within the inner ear</u>," Britannica.

Hair Cells in the Cochlea

(Source: COSMOS Magazine)

Sound Intensity & Decibels

• **Sound intensity** is defined as the sound power per unit area

- Usually measured in watt per square meter (W/m²)
- Sound intensity *level* is defined as

$$I_{\rm dB} \coloneqq 10 \log_{10} \left(\frac{I}{I_{REF}} \right)$$

- $I_{REF} \coloneqq 10^{-12} W/m^2$ is the **threshold of hearing** (TOH)
- TOH: minimum sound intensity of a pure tone that a human can hear

Loudness Measure: Decibels

	Decibels	Intensity	Type of sound	
00	130	10	Artillery fire at close proximity (threshold of pain)	
~~	120	1	Amplified rock music; near jet engine	
	110	10 ⁻¹	Loud orchestral music, in audience	
2	100	10 ⁻²	Electric saw	
	90	10 ⁻³	Bus or truck interior	
00	80	10 ⁻⁴	Automobile interior	
	70	10 ⁻⁵	Average street noise; loud telephone bell	00
	60	10 ⁻⁶	Normal conversation; business office	
	50	10 ⁻⁷	Restaurant; private office	
	40	10 ⁻⁸	Quiet room in home	
60	30	10 ⁻⁹	Quiet lecture hall; bedroom	
	20	10 ⁻¹⁰	Radio, television, or recording studio	
62	10	10 ⁻¹¹	Soundproof room	
	0	10 ⁻¹²	Absolute silence (threshold of hearing)	

(Unit: W/m²)

(Source: Britannica)

Common Gains in Decibels

- +10 dB = 10x intensity (3.16x amplitude)
- +3 dB ≈ 2x intensity (1.414x amplitude)

- +20 dB = 10x amplitude (100x intensity)
- +6 dB ≈ 2x amplitude (4x intensity)

Sound Propagation & Inverse Square Law

Singer's Formants (Sundberg, 1991)

(Source: Sundberg, 1977)

Singer's Formants (Sundberg, 1991)

(Source: Sundberg, 1977)

Psychoacoustics

- Acoustics and Psychoacoustics (PAT 102)
- Advanced Psychoacoustics (PAT 421)

Digital Audio

Digital Audio

1 Second

(Source: van den Oord et al., 2016)

Aaron van den Oord and Sander Dieleman, "<u>WaveNet: A generative model for raw audio</u>," *DeepMind Blog*, September 8, 2016.

Waveform

Digitalizing Audio: Timing

Digitalizing Audio: Amplitude

Resolution: Sampling Rate

Sampling Rate

• Definition: Number of samples second

- How many times the "sound pressure" is measured per second
- The higher the sampling rate, the lower the distortion

Common sampling rates

- Telephone: 8 kHz
- CD: 44.1 kHz
- **DVD**: 48 kHz
- Modern audio interfaces & DAWs: 96 kHz, 192 kHz

Resolution: Bit Depth

• Definition: Number of bits used to store each sample

- How many bits used to store the amplitude
- The higher the sampling rate, the lower the distortion

Common bit depth

- Chiptunes: 8 bit
- CD: 16 bit
- Modern audio interfaces & DAWs: 24 bit, 32 bit

Bit Depth

- 8 bit: -128 to 127
- 16 bit: -32,768 to 32,767
- **24 bit**: -8,388,608 to 8,388,607
- **32 bit**: 32-bit floating numbers

Resolution: Sampling Rate & Bit Depth

Bit Depth ≠ Bit Rate

• Bit Depth: Number of bits used to store each sample

• Example: **CD quality** is **16bit/44.1kHz**

• Bit Rate: Amount of data transferred per second (unit: bits/sec)

- Example: 320K MP3 files → 320kbps (320,000 bits per second)
- Example: YouTube recommendation → 128 kbps for mono and 384 kbps for stereo
- Determines the file size!