PAT 498/598 (Winter 2025)

Music & Al

Lecture 15: Pianoroll-based Music Generation

Instructor: Hao-Wen Dong

Homework 5: AI Song Contest

- Please listen to the ten <u>finalists</u> of AI Song Contest 2024
- **Read the about pages** by clicking the cover arts
- Answer the following questions (in 5-10 sentences each)
 - Which is your favorite song?
 - Following Q1, what did they do well?
 - Following Q1, what can be improved?
 - Based on the ten finalists, **what tasks are easy** for current AI in music production?
 - Based on the ten finalists, **what tasks are difficult** for current AI in music production?

Homework 5: AI Song Contest

- Instructions will be released on the <u>course website</u>
- Please submit your work to <u>Gradescope</u>
- Due at 11:59pm ET on March 14
- Late submissions: 1 point deducted per day
- No late submission is allowed a week after the due date

Project

- **Open-ended group project** (group size: 2–3)
 - Building a new AI music tool or Exploring creative & artistic use of AI tools
- Milestones
 - Pitch: Mar 19
 - Presentation: Apr 21
 - Final report: Apr 28
- Due at 11:59pm ET on the date specified
- No late submissions! Submit your work early and update it later.

Project Pitch

- Brief 10-min presentation
 - Team member introduction
 - **Topic**: What do you want to work on?
 - **Topic**: Who is the target audience/user/customer/reader?
 - **Methodology**: How are you going to approach it?
 - **Methodology**: What are the tools (programming languages, platforms, plugins, hardware, etc.) that you'll be using?
 - **Expected results**: What are the expected deliverables (e.g., an instrument, a plugin, a web/mobile app, a standalone software, an installation, a performance, a composition)?
 - **Planning**: What are the milestones? What do you expect to achieve by the end of February and March?

Project Pitch

- Send me an email with the following info by **11:59 PM ET on March 19**
 - Names and U-M IDs of all team members
 - **Topic**: What do you want to work on?
 - **Topic**: Who is the target audience/user/customer/reader?
 - **Methodology**: How are you going to approach it?
 - **Methodology**: What are the tools (programming languages, platforms, plugins, hardware, etc.) that you'll be using?
 - **Expected results**: What are the expected deliverables (e.g., an instrument, a plugin, a web/mobile app, a standalone software, an installation, a performance, a composition)?
 - **Planning**: What are the milestones? What do you expect to achieve by the end of February and March?

(Recap) Al Song Contest

 Annual international competition showcasing the creative potential of human-Al co-creativity in the songwriting process

aisongcontest.com

(Recap) Yaboi Hanoi – Entering Demons & Gods (2022)

youtu.be/PbrRoR3nEVw

soundcloud.com/yaboi hanoi/enter-demonsand-gods

(Recap) The Making of Entering Demons & Gods (2022)

"It was like a saxophonist trained in classical Thai motifs, who played a special 'Thai Edition' saxophone with Phi Nai tunings, had joined the musical conversation. The same was true with the trumpet model and the ບລຸ່ຍ 'Khlui' - a flute from Thai, Laos and Cambodian repertoire. I could assemble a transcultural ensemble to expand the sonic palette of Thai motifs, whilst adhering to underlying tunings and idiomatic inflections like never before."

lamtharnhantrakul.gith ub.io/enter-demonsand-gods/

(Recap) How can Al Augment Human Creativity?

(Source: Huang et al., 2020)

(Recap) Four Paradigms of Music Generation

Today, we also have many latent-space based systems!

(Recap) Topics of Symbolic Music Generation

Unconditional

Symbolic music generation • $\emptyset \rightarrow$ melody • $\emptyset \rightarrow$ lead sheet $\stackrel{\text{Melody}}{\& \text{chords}}$ • $\emptyset \rightarrow$ sheet music

Today's topic!

Conditional

Automatic arrangement

- Melody \rightarrow lead sheet
- Melody \rightarrow multitrack
- Lead sheet \rightarrow multitrack
- Solo → multitrack
- Multitrack \rightarrow simple version

Performance rendering

• Sheet music \rightarrow performance

Improvisation systems

Performance → performance

Multimodal

X-to-music generation

- Text → sheet music
- Video → sheet music
- X \rightarrow sheet music

(Recap) Two Paradigms of Symbolic Music Generation

Text-based

- Treat music like **text**
- Sharing models with natural language processing (NLP)
 - RNNs, LSTMs, Transformers, etc.

Today's topic!

Program_change_0, Note_on_60, Time_shift_2, Note_off_60, Note_on_60, Time_shift_2, Note_off_60, Note_on_76, Time_shift_2, Note_off_67, Note_on_67, Time_shift_2, Note_off_67, ...

- Treat music like **images**
- Sharing models with computer vision (CV)

Image-based

- GANs, VAEs, diffusion models, etc.

(Recap) Language Models

• Predicting the next word given the past sequence of words

(Recap) Language Models (Mathematically)

Next word

A class of machine learning models that learn the next word probability

(Recap) Language Models – Generation

• How do we generate a new sentence using a trained language model?

A transformer is a	\rightarrow	Model	\rightarrow	deep
A transformer is a <mark>deep</mark>	\rightarrow	Model	\rightarrow	learning
A transformer is a deep learning	\rightarrow	Model	\rightarrow	model
A transformer is a deep learning model	\rightarrow	Model	\rightarrow	introduced
A transformer is a deep learning model introduced	\rightarrow	Model	\rightarrow	in
A transformer is a deep learning model introduced in		Model	\rightarrow	2017

(Recap) Designing a Machine-readable Music Language

- How can we "represent" music in a way that machines understand?
 - Musical representation is a key component of a music generation system
- Why not using sheet music "images" directly?
 - Machines still have a hard time reading sheet music
 - A challenging task known as "optical music recognition" (OMR)
- Examples:
 - ABC notation
 - MIDI

(Recap) An Example of ABC Notation

(Recap) Example System: Folk RNN (Sturm et al., 2015)

Data

- Collections of folk tunes
- Representation
 - ABC notation without metadata
- Model
 - LSTM (long short-term memory)
 - Working on the character level

folk**RNN**

generate a folk tune with a recurrent neura

	PRESS TO GENERATE TUNE			
Com	pose			
	MODEL			
thesession.org (w/ : :)				
TEMPERATURE	SEED			
1	62063			
METER	MODE			
4/4	C Major			
	INITIAL ABC			
Enter start of tune in ABC	C notation			

folkrnn.org

(Recap) Demystifying LSTMs (Hochreiter & Schmidhuber, 1997)

<u>colah.github.io/posts/2015-08-Understanding-LSTMs/</u> Sepp Hochreiter and Jürgen Schmidhuber, "<u>Long Short-Term Memory</u>," *Neural Computation*, 9(8):1735-1780, 1997.

(Recap) Representing Polyphonic Music

- We can now handle music with multi-pitch at the same time
 - In the literature, "polyphonic" & "multi-pitch" are often used interchangeably

Note_on_65, Note_on_68	Time_shift_eighth_note	Note_on_77, Note_on_80				
Time_shift_half_note	Note_off_77, Note_off_80	Note_on_73, Note_on_77]				
Time_shift_dotted_quarter_note, Note_off_65, Note_off_68,						

(Recap) Example: Performance RNN (Oore et al., 2020)

• Data

- Yamaha e-Piano Competition dataset (MAESTRO)
- Representation
 - 128 Note-On events
 - 128 Note-Off events
 - 125 Time-Shift events (8ms-1s)
 - 32 Set-Velocity events

 Handle dynamics
- Model
 - LSTM

Examples of generated music

(Recap) Example: A.I. Duet (Mann et al., 2016)

<u>experiments.withgoogle.</u> <u>com/ai/ai-duet/view/</u>

youtu.be/0ZE1bfPtvZo

(Recap) Example: Music Transformer (Huang et al., 2019)

• Data

Yamaha e-Piano Competition dataset (MAESTRO)

Almost the same representation as

PerformanceRNN

Representation

- 128 Note-On events
- 128 Note-Off events
- 100 Time-Shift events (10ms-1s)
- 32 Set-Velocity events

 Handle dynamics
- Model
 - Transformer

Examples of generated music

(Recap) Self-attention Mechanism (Cheng et al., 2016)

Transformers learn what to attend to from big data!

(Recap) Visualizing Musical Self-attention

(Each color represents an attention head)

(Source: Huang et al., 2018)

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Ian Simon, Curtis Hawthorne, Andrew M. Dai, Matthew D. Hoffman, Monica Dinculescu, and Douglas Eck, "<u>Music Transformer: Generating Music with Long-Term Structure</u>," *ICLR*, 2019.

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Ian Simon, Curtis Hawthorne, Andrew M. Dai, Matthew D. Hoffman, Monica Dinculescu, and Douglas Eck, "<u>Music Transformer: Generating Music with Long-Term Structure</u>," *Magenta Blog*, December 13, 2018.

(Recap) Visualizing Musical Self-attention

(Each color represents an attention head)

(Source: Huang et al., 2018)

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Ian Simon, Curtis Hawthorne, Andrew M. Dai, Matthew D. Hoffman, Monica Dinculescu, and Douglas Eck, "<u>Music Transformer: Generating Music with Long-Term Structure</u>," *ICLR*, 2019.

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Ian Simon, Curtis Hawthorne, Andrew M. Dai, Matthew D. Hoffman, Monica Dinculescu, and Douglas Eck, "<u>Music Transformer: Generating Music with Long-Term Structure</u>," *Magenta Blog*, December 13, 2018.

(Recap) Example: MuseNet (Payne et al., 2019)

- **Data**: ClassicalArchives + BitMidi + MAESTRO
- Representation: "instrument:velocity:pitch"
 - Time shifts in real time (sec)
- Model: Transformer

bach piano_strings start tempo90
piano:v72:G1 piano:v72:G2 piano:v72:B4
piano:v72:D4 violin:v80:G4 piano:v72:G4
piano:v72:B5 piano:v72:D5 wait:12
piano:v0:B5 wait:5 piano:v72:D5 wait:12
....

Example of generated music

(Recap) Example: Multitrack Music Transformer (Dong et al., 2023)

- **Data**: Symbolic Orchestral Database (SOD)
- Representation: "(beat, position, pitch, duration, instrument)"

• No time shift events Why?

• Model: Multi-dimensional Transformer

(0,	0,	0,	0,	0,	0)	Start of song
(1,	0,	0,	0,	0,	15)	Instrument: accordion
(1,	0,	0,	0,	0,	36)	Instrument: trombone
(1,	0,	0,	0,	0,	39)	Instrument: brasses
(2,	0,	0,	0,	0,	0)	Start of notes
(3,	1,	1,	41,	15,	36)	Note: beat=1, position=1, pitch=E2, duration=48, instrument=trombone
(3,	1,	1,	65,	4,	39)	Note: beat=1, position=1, pitch=E4, duration=12, instrument=brasses
(3,	1,	1,	65,	17,	15)	Note: beat=1, position=1, pitch=E4, duration=72, instrument=accordion
(3,	1,	1,	68,	4,	39)	Note: beat=1, position=1, pitch=G4, duration=12, instrument=brasses
(3,	1,	1,	68,	17,	15)	Note: beat=1, position=1, pitch=G4, duration=72, instrument=accordion
(3,	1,	1,	73,	17,	15)	Note: beat=1, position=1, pitch=C5, duration=72, instrument=accordion
(3,	1,	13,	68,	4,	39)	Note: beat=1, position=13, pitch=G4, duration=12, instrument=brasses
(3,	1,	13,	73,	4,	39)	Note: beat=1, position=13, pitch=C5, duration=12, instrument=brasses
(3,	2,	1,	73,	12,	39)	Note: beat=2, position=1, pitch=C5, duration=36, instrument=brasses
(3,	2,	1,	77,	12,	39)	Note: beat=2, position=1, pitch=E5, duration=36, instrument=brasses
			••			
(4,	0,	0,	0,	0,	0)	End of song (Source: Dong et al., 2023)

Hao-Wen Dong, Ke Chen, Shlomo Dubnov, Julian McAuley, and Taylor Berg-Kirkpatrick, "Multitrack Music Transformer," ICASSP, 2023.

Generative Adversarial Nets (GANs)

Discriminative vs Generative Models

Discriminative

Discriminative models learn the decision boundary

P(y|x)

Generative models learn the underlying distribution

P(x) or P(x|y)

Generating Data from a Random Distribution

Random distribution

Data distribution

If we can learn this mapping, we can easily generate new samples from the data distribution

A Loss Function for Distributions

But what about another neural network!?

Generative Adversarial Nets (GANs) (Goodfellow et al., 2014)

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio, "Generative Adversarial Networks," NeurIPS, 2014.

Generative Adversarial Nets (GANs) – Training

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio, "Generative Adversarial Networks," NeurIPS, 2014.

Generative Adversarial Nets (GANs) – Generation

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio, "Generative Adversarial Networks," NeurIPS, 2014.
Deep Convolutional GANs (DCGANs) (Radford et al., 2014)

MuseGAN – A GAN for Pianorolls (Dong et al., 2018)

The generator improves over time

So does the discriminator!

(Source: Dong et al., 2018)

Piano Roll Representation

Piano Rolls

(Source: Draconichiaro)

(Source: Tangerineduel)

Draconichiaro, CC By-SA 4.0, via <u>Wikimedia Commons</u> Tangerineduel, CC By-SA 4.0, via <u>Wikimedia Commons</u>

Player Pianos

youtu.be/07krQ661fok

Piano Roll Representation

(Recap) Reusable Pattern Detectors

Why Piano Rolls?

Many musical patterns like melodies, chords, scales and arpeggios are translational invariant in the temporal and pitch axes

Music Generation using GANs

Example: MidiNet (Yang et al., 2017)

(Source: Yang et al., 2017)

(Recap) Generative Adversarial Nets (GANs) (Goodfellow et al., 2014)

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio, "Generative Adversarial Networks," NeurIPS, 2014.

Example: MidiNet (Yang et al., 2017)

Examples of generated music

MidiNet generates music measure-by-measure by conditioning on the last measure generated

Example: MidiNet (Yang et al., 2017)

(Source: Yang et al., 2017)

Li-Chia Yang, Szu-Yu Chou, and Yi-Hsuan Yang, "MidiNet: A Convolutional Generative Adversarial Network for Symbolic-domain Music Generation," ISMIR, 2017.

Example: MuseGAN (Dong et al., 2018)

Example: MuseGAN (Dong et al., 2018)

(Source: Dong et al., 2018)

Example: MuseGAN (Dong et al., 2018)

Examples of generated music

(Source: Dong et al., 2018)

Diffusion Models

Autoencoders

• A neural network where the **input and output are the same**

Autoencoders – Reconstruction Examples

(Source: tensorflow.org)

Denoising Autoencoders (Pascal et al., 2008)

tensorflow.org/tutorials/generative/autoencoder

(Source: tensorflow.org)

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol, "Extracting and Composing Robust Features with Denoising Autoencoders," *ICML*, 2008. Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Manzagol, "Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion," *PMLR*, 11(110):3371-2408, 2010.

(Recap) Generating Data from a Random Distribution

Random distribution

Data distribution

If we can learn this mapping, we can easily generate new samples from the data distribution

Diffusion Models (Ho et al., 2020)

• Intuition: Many denoising autoencoders stacked together

Diffusion Models – Training

• Intuition: Many denoising autoencoders stacked together

Diffusion Models (Ho et al., 2020)

• Intuition: Many denoising autoencoders stacked together

Diffusion Models – Generation

Remove noise gradually

(Backward diffusion process)

Input Output

Coarse shapes (low-frequency components) **Fine details** (high-frequency components)

(Source: Ho et al., 2020)

Music Generation using Diffusion Models

Example: Polyffusion (Min et al., 2023)

(Source: Min et al., 2023)

polyffusion.github.io

(Source: Wang et al., 2024)

Ziyu Wang, Lejun Min, and Gus Xia, "Whole-Song Hierarchical Generation of Symbolic Music Using Cascaded Diffusion Models," ICLR, 2024.

Ziyu Wang, Lejun Min, and Gus Xia, "Whole-Song Hierarchical Generation of Symbolic Music Using Cascaded Diffusion Models," ICLR, 2024.

(Source: Wang et al., 2024)

wholesonggen.github.io

Ziyu Wang, Lejun Min, and Gus Xia, "Whole-Song Hierarchical Generation of Symbolic Music Using Cascaded Diffusion Models," ICLR, 2024.

Music Infilling Models

Example: DeepBach (Hadjeres et al., 2017)

(Source: Hadjeres et al., 2017)

Example: DeepBach (Hadjeres et al., 2017)

Algorithm 1 Pseudo-Gibbs sampling

- 1: **Input:** Chorale length L, metadata \mathcal{M} containing lists of length L, probability distributions (p_1, p_2, p_3, p_4) , maximum number of iterations M
- 2: Create four lists $\mathcal{V} = (\mathcal{V}_1, \mathcal{V}_2, \mathcal{V}_3, \mathcal{V}_4)$ of length L
- 3: {The lists are initialized with random notes drawn from the ranges of the corresponding voices (sampled uniformly or from the marginal distributions of the notes)}
- 4: for m from 1 to M do
- 5: Choose voice *i* uniformly between 1 and 4
- 6: Choose time t uniformly between 1 and L
- 7: Re-sample \mathcal{V}_i^t from $p_i(\mathcal{V}_i^t | \mathcal{V}_{\setminus i,t}, \mathcal{M}, \theta_i)$
- 8: end for
- 9: **Output:** $\mathcal{V} = (\mathcal{V}_1, \mathcal{V}_2, \mathcal{V}_3, \mathcal{V}_4)$

⁽Source: Hadjeres et al., 2017)

Example: DeepBach (Hadjeres et al., 2017)

Reharmonization example

youtu.be/QiBM7-5hA6o
• Based on Orderless NADE (Uria et al, 2014)

(Source: Huang et al., 2019)

Benigno Uria, Iain Murray, and Hugo Larochelle, "<u>A Deep and Tractable Density Estimator</u>," *ICML*, 2014. Cheng-Zhi Anna Huang, Tim Cooijmans, Adam Roberts, Aaron Courville, and Douglas Eck, "<u>Counterpoint by Convolution</u>," *ISMIR*, 2017. Cheng-Zhi Anna Huang, Tim Cooijmans, Monica Dinculescu, Adam Roberts, and Curtis Hawthorne, "<u>Coconet: the ML model behind today's Bach Doodle</u>," *Magenta Blog*, 2019.

(Source: Huang et al., 2019)

Cheng-Zhi Anna Huang, Tim Cooijmans, Adam Roberts, Aaron Courville, and Douglas Eck, "<u>Counterpoint by Convolution</u>," *ISMIR*, 2017. Cheng-Zhi Anna Huang, Tim Cooijmans, Monica Dinculescu, Adam Roberts, and Curtis Hawthorne, "<u>Coconet: the ML model behind today's Bach Doodle</u>," *Magenta Blog*, 2019.

(Source: Huang et al., 2017)

(Source: Huang et al., 2017)

Example: JS Bach Doodle (2019)

youtu.be/XBfYPp6KF2g & magenta.tensorflow.org/coconet

doodles.google/doodle/ celebrating-johannsebastian-bach/

Controllable Music Generation

Example: Music FaderNet (Tan & Herremans, 2020)

(Source: Tan & Herremeans, 2020)

Valence-Arousal Model for Emotion

(Source: mrAnmol)

Example: Music FaderNet (Tan & Herremans, 2020)

(Source: Tan & Herremeans, 2020)

music-fadernets.github.io

Example: Music SketchNet (Chen et al., 2020)

(Source: Chen et al., 2020)

Ke Chen, Cheng-i Wang, Taylor Berg-Kirkpatrick, and Shlomo Dubnov, "Music FaderNets: Controllable Music Generation Based On High-Level Features via Low-Level Feature Modelling," ISMIR, 2020.

Example: Music SketchNet (Chen et al., 2020)

(Source: Chen et al., 2020)

Ke Chen, Cheng-i Wang, Taylor Berg-Kirkpatrick, and Shlomo Dubnov, "Music FaderNets: Controllable Music Generation Based On High-Level Features via Low-Level Feature Modelling," ISMIR, 2020.