PAT 498/598 (Winter 2025)

Music & Al

Lecture 14: Language-based Music Generation

Instructor: Hao-Wen Dong

Homework 5: AI Song Contest

- Please listen to the ten <u>finalists</u> of AI Song Contest 2024
- **Read the about pages** by clicking the cover arts
- Answer the following questions (in 5-10 sentences each)
 - Which is your favorite song?
 - Following Q1, what did they do well?
 - Following Q1, what can be improved?
 - Based on the ten finalists, **what tasks are easy** for current AI in music production?
 - Based on the ten finalists, **what tasks are difficult** for current AI in music production?

Homework 5: AI Song Contest

- Instructions will be released on the <u>course website</u>
- Please submit your work to <u>Gradescope</u>
- Due at 11:59pm ET on March 14
- Late submissions: 1 point deducted per day
- No late submission is allowed a week after the due date

Project

- **Open-ended group project** (group size: 2–3)
 - Building a new AI music tool or Exploring creative & artistic use of AI tools
- Milestones
 - Pitch: Mar 19
 - Presentation: Apr 21
 - Final report: Apr 28
- Due at 11:59pm ET on the date specified
- No late submissions! Submit your work early and update it later.

Project Pitch

- Brief 10-min presentation
 - Team member introduction
 - **Topic**: What do you want to work on?
 - **Topic**: Who is the target audience/user/customer/reader?
 - **Methodology**: How are you going to approach it?
 - **Methodology**: What are the tools (programming languages, platforms, plugins, hardware, etc.) that you'll be using?
 - **Expected results**: What are the expected deliverables (e.g., an instrument, a plugin, a web/mobile app, a standalone software, an installation, a performance, a composition)?
 - **Planning**: What are the milestones? What do you expect to achieve by the end of February and March?

Project Pitch

- Send me an email with the following info by **11:59 PM ET on March 19**
 - Names and U-M IDs of all team members
 - **Topic**: What do you want to work on?
 - **Topic**: Who is the target audience/user/customer/reader?
 - **Methodology**: How are you going to approach it?
 - **Methodology**: What are the tools (programming languages, platforms, plugins, hardware, etc.) that you'll be using?
 - **Expected results**: What are the expected deliverables (e.g., an instrument, a plugin, a web/mobile app, a standalone software, an installation, a performance, a composition)?
 - **Planning**: What are the milestones? What do you expect to achieve by the end of February and March?

Al Song Contest

Al Song Contest

 Annual international competition showcasing the creative potential of human-Al co-creativity in the songwriting process

Yaboi Hanoi – Entering Demons & Gods (2022)

youtu.be/PbrRoR3nEVw

soundcloud.com/yaboi hanoi/enter-demonsand-gods

Reading: The Making of Entering Demons & Gods (2022)

"It was like a saxophonist trained in classical Thai motifs, who played a special 'Thai Edition' saxophone with Phi Nai tunings, had joined the musical conversation. The same was true with the trumpet model and the ບລຸ່ຍ 'Khlui' - a flute from Thai, Laos and Cambodian repertoire. I could assemble a transcultural ensemble to expand the sonic palette of Thai motifs, whilst adhering to underlying tunings and idiomatic inflections like never before."

lamtharnhantrakul.gith ub.io/enter-demonsand-gods/

Synthetic Beat Brigade - How would you touch me? (2023)

youtu.be/O4cJ3acEGDw & drive.google.com/file/d/1QTQ7P3iZI6I0anIwNQ3ewf8g3JjDjesl/view

Synthetic Beat Brigade - How would you touch me? (2023)

- **Ideation**: Spotify API, ChatGPT, Facebook Llama, Google Bison
- Lyrics: ChatGPT 2, Genius API
- **Composition**: Al Drummachine, Mofi, Tonetrasnfer, This patch does not exist, Albeatz, BaiscPitch, Magenta, AlVA, MuseNet
- **Vocals**: Soundly Voice Designer, Vocal Remove, Voice characteristics
- Mastering: Landr
- Cover art, bandart: Midjourney
- **Clip**: ComfyUI for Stable Diffusion + ControlNet

Reading: The Making of How would you touch me? (2023)

"This project is a collaboration between Artificial Intelligence (AI) enthusiasts in four fields: artist management, music and post-production, tech, and creative. In contrast, the majority of the music industry sees AI as a threat. Our team understands that these technological advances will have a significant impact on how we produce music. Because of this, we have decided to use AI for every step of the production process. From ideation to creating the lyrics to producing the music."

drive.google.com/file/d/ 1QTQ7P3iZI6I0anlwNQ 3ewf8g3JjDjesl/view

How can Al Augment Human Creativity?

(Source: Huang et al., 2020)

(Recap) Fundamental Frequency (F0) Estimation

(Recap) Auto-tune Pro

(Source: Antares Audio Technologies)

(Recap) Pitch Correction in Logic Pro

(Source: Logic Pro User Guide)

(Source: Logic Pro User Guide)

(Recap) Polyphonic F0 Estimation

(Recap) F0 Estimation vs Music Transcription

(Source: Benetos et al., 2019)

(Recap) Multitrack Transcription Models

- MT3 (Gardner et al., 2022)
 - github.com/magenta/mt3

(Source: Gardner et al., 2022)

Josh Gardner, Ian Simon, Ethan Manilow, Curtis Hawthorne, and Jesse Engel, "MT3: Multi-Task Multitrack Music Transcription," ICLR, 2022.

(Recap) Beat & Downbeat Estimation

(Source: Davies et al., 2021)

(Recap) Beat & Downbeat Estimation

(Source: Davies et al., 2021)

Beat & Downbeat Estimation

(Source: Meier et al., 2024)

(Recap) Beat Tracking in Pro Tools & Logic Pro

Beat Detective in Pro Tools

ск.з		<mark>┝┝─╞</mark> ┝╺┝─	-+	┝┝┝┝	→┝─┝┝─┝
are	00	Beat D	etective		
	Operation: Audio	Selection	Detection:	Normal	
	O Bar Beat Marker Generation	Start Bar Beat:	Analysis:	Enhanced Resolution*	Analyze
	Groove Template Extraction	End Bar Beat:	1 Sensitivity:	0	39 %
	Region Separation	Time Signature:	Resolution:	O Bars O Beats	O Sub-Beats
	Region Conform	1/16 Note	3	Show Trigger Time	
	C Edit Smoothing	Capture Selection Tap End B	в		
	Use 'Bar I Beat Marker Generation' to	Capture Selection Tap End B	empo ruler.		
				Scroll Prev Scroll Next	Generate

(Source: Logic Pro User Guide)

Beat Mapping in Logic Pro

(Source: Logic Pro User Guide)

(Recap) Tempo Estimation & Beat Tracking in Moises

Tempo estimation

(Source: Moises)

(Recap) Key Detection in Moises

(Source: Moises)

(Recap) Structure Analysis

Music segmentation

Hierarchical music segmentation

Figure 4.28 from [Müller, FMP, Springer 2015]

(Source: Müller & Zalkow, 2019)

(Source: Müller & Zalkow, 2019)

Figure 4.24 from [Müller, FMP, Springer 2015]

(Source: Müller & Chiu, 2024)

(Source: Müller & Zalkow, 2019)

Meinard Müller and Frank Zalkow, "<u>FMP Notebooks: Educational Material for Teaching and Learning Fundamentals of Music Processing</u>," *ISMIR*, 2019. Meinard Müller and Ching-Yu Chiu, "<u>A Basic Tutorial on Novelty and Activation Functions for Music Signal Processing</u>," *TISMIR*, 7(1):179-194, 2024.

(Recap) Optical Music Recognition (OMR)

Goal: Convert scanned sheet music into digital musical notation

(Recap) Common Pipeline of OMR Systems

(Source: Calvo-Zaragoza et al., 2018)

Jorge Calvo-Zaragoza, Juan C. Martinez-Sevilla, Carlos Penarrubia, and Antonio Rios-Vila, "Optical Music Recognition: Recent Advances, Current Challenges, and Future Directions," ICDAR, 2023.

(Recap) Musical Object Recognition

(Source: Pacha et al., 2018)

(Recap) Open-source OMR Software: Oemer

幣首高8

() === =

github.com/BreezeWhite/oemer

breezewhite.github.io/oemer/
Symbolic Music Generation

Four Paradigms of Music Generation

Today, we also have many latent-space based systems!

Topics of Symbolic Music Generation

Unconditional

Symbolic music generation • $\emptyset \rightarrow$ melody • $\emptyset \rightarrow$ lead sheet $\overset{\text{Melody}}{\& \text{chords}}$ • $\emptyset \rightarrow$ sheet music

Today's topic!

Conditional

Automatic arrangement

- Melody \rightarrow lead sheet
- Melody \rightarrow multitrack
- Lead sheet \rightarrow multitrack
- Solo → multitrack
- Multitrack \rightarrow simple version

Performance rendering

• Sheet music \rightarrow performance

Improvisation systems

Performance → performance

Multimodal

X-to-music generation

- Text → sheet music
- Video → sheet music
- X \rightarrow sheet music

Two Paradigms of Symbolic Music Generation

Text-based

- Treat music like text
- Sharing models with natural language processing (NLP)
 - RNNs, LSTMs, Transformers, etc.

Today's topic!

Program_change_0, Note_on_60, Time_shift_2, Note_off_60, Note_on_60, Time_shift_2, Note_off_60, Note_on_76, Time_shift_2, Note_off_67, Note on_67, Time_shift_2, Note_off_67, ...

Image-based

- Treat music like **images**
- Sharing models with computer vision (CV)
 - GANs, VAEs, diffusion models, etc.

Generating Music like Languages

Large Language Models (LLMs)

• The models behind ChatGPT!

🗚 You

What's so cool about AI for music? Give me a brief answer

ChatGPT Word-by-word generation

Al in music is cool because it can compose original pieces. provide personalized recommendations, automate music production tasks, enhance creativity for artists, enable interactive performances, analyze music trends, and even create virtual artists, or bands, expanding the possibilities in music creation and enjoyment.

Language Models

• Predicting the next word given the past sequence of words

Language Models (Mathematically)

Next word

A class of machine learning models that learn the next word probability

Language Models – Generation

• How do we generate a new sentence using a trained language model?

A transformer is a	\rightarrow	Model	\rightarrow	deep
A transformer is a <mark>deep</mark>	\rightarrow	Model	\rightarrow	learning
A transformer is a deep learning	\rightarrow	Model	\rightarrow	model
A transformer is a deep learning model	\rightarrow	Model	\rightarrow	introduced
A transformer is a deep learning model introduced	\rightarrow	Model	\rightarrow	in
A transformer is a deep learning model introduced in	\rightarrow	Model	\rightarrow	2017

Designing a Machine-readable Music Language

- How can we "represent" music in a way that machines understand?
 - Musical representation is a key component of a music generation system
- Why not using sheet music "images" directly?
 - Machines still have a hard time reading sheet music
 - A challenging task known as "optical music recognition" (OMR)
- Examples:
 - ABC notation
 - MIDI

ABC Notation-based Representation

(Recap) ABC Notation

- A simple text-based notation
- Use letters to denote pitches
 - Lower octave (A–G), higher octave (a–g)
- Use prefix to denote accidentals
 - Sharp (^), flat (_), natural (=)

C, D, E, F, |G, A, B, C | D E F G | A B c d | e f g a | b c' d' e' | f' g' a' b'

(Recap) What is this song in ABC notation?

CCGG AAG2 FFEE DDC2: |:GGFF EED2 GGFF EED2 CCGG AAG2 FFEE DDC2:

Twinkle, twinkle, little star!

(Recap) An Example of ABC Notation

Example System: Folk RNN (Sturm et al., 2015)

Data

Collections of folk tunes

Representation

ABC notation without metadata

Model

- LSTM (long short-term memory)
- Working on the character level

folk**RNN** generate a folk tune with a recurrent neural networl

	PRESS TO GENERATE TUNE	
Compose		
	MODEL	
thesession.org (w/ : :)		
TEMPERATURE	SEED	
1	62063	
METER	MODE	
4/4	C Major	
	INITIAL ABC	
Enter start of tune in ABC	C notation	
	1	

folkrnn.org

What is an RNN (Recurrent Neural Network)?

- A type of neural networks that have **loops**
- Widely used for modeling sequences (e.g., in natural language processing)

Vanilla RNNs

- The simplest form of RNNs
- LSTMs and GRUs are also RNNs

(Source: Christopher Olah)

Backpropagation Through Time

• An RNN is essentially a very deep neural network

Example: Folk RNN (Sturm et al., 2015)

Data

Collections of folk tunes

Representation

ABC notation without metadata

Model

- -(LSTM)(long short-term memory)
- Working on the character level

folk**RNN** generate a folk tune with a recurrent neural network

PRESS TO GENERATE TUNI		
Compose		
	MODEL	
thesession.org (w/ : :)		
TEMPERATURE	SEED	
1	62063	
METER	MODE	
4/4	C Major	
	INITIAL ABC	
Enter start of tune in ABC	C notation	

folkrnn.org

Demystifying LSTMs (Hochreiter & Schmidhuber, 1997)

<u>colah.github.io/posts/2015-08-Understanding-LSTMs/</u> Sepp Hochreiter and Jürgen Schmidhuber, "<u>Long Short-Term Memory</u>," *Neural Computation*, 9(8):1735-1780, 1997.

Demystifying LSTMs (Hochreiter & Schmidhuber, 1997)

Vanishing Gradients

An RNN is essentially a very deep neural network

How can LSTMs Help Alleviate Vanishing Gradients?

LSTMs does not completely solve vanishing gradients

Vanilla RNNs vs LSTMs

Vanilla RNN

- Simplest form of RNNs
- Limited long-term memory
- Harder to train (due to gradient vanishing)

LSTM

- Improved memory module
- Better long-term memory
- Easier to train

(Source: Christopher Olah)

Example: Folk RNN (Sturm et al., 2015)

• Data

- Collections of folk tunes
- Representation
 - ABC notation without metadata
- Model
 - LSTM (long short-term memory)
 - Working on the character level

	folk rnn
generate a folk tune with a	recurrent neural network

PRESS TO GENERATE TUNE	
Com	pose
	MODEL
thesession.org (w/ : :)	
TEMPERATURE	SEED
1	62063
METER	MODE
4/4	C Major
	INITIAL ABC
Enter start of tune in ABC	C notation

folkrnn.org

Word-level vs Character-level RNNs

Word-level RNNs

- Predicting word by word
- Most common

Character-level RNNs

- Predicting character by character
- Useful when there is no natural "spaces"

(Source: Christopher Olah)

(Source: Christopher Olah)

colah.github.io/posts/2015-08-Understanding-LSTMs/

Limitations of ABC Notations

- Limited expressiveness
- Monophonic tunes only

MIDI-like Representation

MIDI (Musical Instrument Digital Interface)

- A communication protocol between devices
- MIDI Messages
 - Note on
 - Note off
 - Delta time
 - Program change
 - Control change
 - Pitch bend change

MIDI Note Numbers

- Ranging from 0 to 127
 - Middle C is 60
 - Wider than standard piano's pitch range
- Widely used in various software, keyboards and algorithms

Representing Music using MIDI Messages

- Three main MIDI messages
 - Note on
 - Note off
 - Time Shift

Note_on_67	Time_shift_quarter_note,	Note_off_67
Note_on_67	Time_shift_quarter_note,	Note_off_67,
Note_on_64,	Time_shift_quarter_note,	Note_off_64,
Note_on_64,	Time_shift_quarter_note,	Note_off_64,

Representing Polyphonic Music

- We can now handle music with multi-pitch at the same time
 - In the literature, "polyphonic" & "multi-pitch" are often used interchangeably

Note_on_65, Note_on_68	Time_shift_eighth_note	Note_on_77, Note_on_80	
Time_shift_half_note N	Note_off_77, Note_off_80	Note_on_73, Note_on_77]	
<pre>Time_shift_dotted_quarter_note, Note_off_65, Note_off_68,</pre>			

Example: Performance RNN (Oore et al., 2020)

• Data

- Yamaha e-Piano Competition dataset (MAESTRO)
- Representation
 - 128 Note-On events
 - 128 Note-Off events
 - 125 Time-Shift events (8ms-1s)
 - 32 Set-Velocity events

 Handle dynamics
- Model
 - LSTM

Examples of generated music

Ian Simon and Sageev Oore, "Performance RNN: Generating Music with Expressive Timing and Dynamics," Magenta Blog, June 29, 2017. Sageev Oore, Ian Simon, Sander Dieleman, Douglas Eck, and Karen Simonyan, "This Time with Feeling: Learning Expressive Musical Performance", Neural Computing and Applications, 32, 2020.

Example: A.I. Duet (Mann et al., 2016)

<u>experiments.withgoogle.</u> <u>com/ai/ai-duet/view/</u>

youtu.be/0ZE1bfPtvZo

Example: Music Transformer (Huang et al., 2019)

• Data: Yamaha e-Piano Competition dataset (MAESTRO)

Almost the same representation as

PerformanceRNN

Representation

- 128 Note-On events
- 128 Note-Off events
- 100 Time-Shift events (10ms-1s)
- 32 Set-Velocity events

 Handle dynamics
- Model: Transformer

Examples of generated music

⁽Source: Vaswani et al., 2017; adapted)
Self-attention Mechanism (Cheng et al., 2016)

Transformers learn what to attend to from big data!

Why Attention Mechanism?

(Source: Cheng et al., 2016)

(Source: Bahdanau et al., 2015)

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio, "<u>Neural Machine Translation by Jointly Learning to Align and Translate</u>," *ICLR*, 2015. Jianpeng Cheng, Li Dong, and Mirella Lapata, "<u>Long Short-Term Memory-Networks for Machine Reading</u>," *EMNLP*, 2016.

Visualizing Musical Self-attention

(Each color represents an attention head)

(Source: Huang et al., 2018)

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Ian Simon, Curtis Hawthorne, Andrew M. Dai, Matthew D. Hoffman, Monica Dinculescu, and Douglas Eck, "<u>Music Transformer: Generating Music with Long-Term Structure</u>," *ICLR*, 2019.

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Ian Simon, Curtis Hawthorne, Andrew M. Dai, Matthew D. Hoffman, Monica Dinculescu, and Douglas Eck, "<u>Music Transformer: Generating Music with Long-Term Structure</u>," *Magenta Blog*, December 13, 2018.

Visualizing Musical Self-attention

(Each color represents an attention head)

(Source: Huang et al., 2018)

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Ian Simon, Curtis Hawthorne, Andrew M. Dai, Matthew D. Hoffman, Monica Dinculescu, and Douglas Eck, "<u>Music Transformer: Generating Music with Long-Term Structure</u>," *ICLR*, 2019.

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Ian Simon, Curtis Hawthorne, Andrew M. Dai, Matthew D. Hoffman, Monica Dinculescu, and Douglas Eck, "<u>Music Transformer: Generating Music with Long-Term Structure</u>," *Magenta Blog*, December 13, 2018.

Beyond Solo Music

Representing Multiple Instruments

Prog# INSTRU

Using MIDI program change messages

1 2

3

4

5

6

7

8

- Program numbers: 1–128 (or 0–127)
- 128 instruments in 16 families

(010127)	1	Acoustic Grand	9	Celesta		66	Alto Sax	74	Flute
	2	Bright Acoustic	10	Glockenspiel		67	Tenor Sax	75	Recorder
	3	Electric Grand	11	Music Box		68	Baritone Sax	76	Pan Flute
	4	Honky-Tonk	12	Vibraphone		69	Oboe	77	Blown Bottle
	5	Electric Piano 1	13	Marimba		70	English Horn	78	Shakuhachi
	6	Electric Piano 2	14	Xylophone		71	Bassoon	79	Whistle
	7	Harpsichord	15	Tubular Bells		72	Clarinet	80	Ocarina
	8	Clav	16	Dulcimer					
							81-88 SYNTH LEAD		89-96 SYNTH PAD
		17-24 ORGAN		25-32 GUITAR		81	Lead 1 (square)	89	Pad 1 (new age)
	17	7 Drawbar Organ	25	Acoustic Guitar(nylon)		82	Lead 2 (sawtooth)	90	Pad 2 (warm)
	18	8 Percussive Organ	26	Acoustic Guitar(steel)		83	Lead 3 (calliope)	91	Pad 3 (polysynth)
INSTRUMENT	19	9 Rock Organ	27	Electric Guitar(jazz)		84	Lead 4 (chiff)	92	Pad 4 (choir)
INSTROPLET	20	0 Church Organ	28	Electric Guitar(clean)		85	Lead 5 (charang)	93	Pad 5 (bowed)
1 0 07410	21	1 Reed Organ	29	Electric Guitar(muted)		86	Lead 6 (voice)	94	Pad 6 (metallic)
1-8 PIANO		2 Accoridan	30	Overdriven Guitar		87	Lead 7 (fifths)	95	Pad 7 (halo)
	23	3 Harmonica	31	Distortion Guitar		88	Lead 8 (bass+lead)	96	Pad 8 (sweep)
Acoustic Grand	24	4 Tango Accordian	32	Guitar Harmonics					
Pright Acquistic		33-40 BASS		41-48 STRINGS			97-104 SYNTH EFFECTS		105-112 ETHNIC
BI Ight ACOUSTIC	33	3 Acoustic Bass	41	Violin		97	FX 1 (rain)	105	Sitar
Electric Crand	34	4 Electric Bass(finge	r) 42	Viola		98	FX 2 (soundtrack)	106	Banjo
Electric Granu	35	5 Electric Bass(pick)	43	Cello		99	FX 3 (crystal)	107	Shamisen
Hanley, Taula	36	6 Fretless Bass	44	Contrabass		100	FX 4 (atmosphere)	108	Koto
нопку-топк	37	7 Slap Bass 1	45	Tremolo Strings		101	FX 5 (brightness)	109	Kalimba
Flashet Piece A	38	8 Slap Bass 2	46	Pizzicato Strings		102	FX 6 (gobiins)	110	Bagpipe
Electric Plano 1	39	9 Synth Bass 1	47	Orchestral Strings		103	FX / (echoes)	111	Fladle
	40	0 Synth Bass 2	48	Timpani		104	FX 8 (SCI-II)	112	Shahai
Electric Piano 2									
		49-56 ENSEMBLE		57-64 BRASS			113-120 PERCUSSIVE		121-128 SOUND EFFECTS
Harpsichord	49	9 String Ensemble 1	57	Trumpet		113	Tinkle Bell	121	Guitar Fret Noise
	56	0 String Ensemble 2	58	Trombone		114	Agogo	122	Breath Noise
Clav	51	1 SynthStrings 1	59	Tuba		115	Steel Drums	123	Seashore
	52	2 SynthStrings 2	60	Muted Trumpet		116	Woodblock	124	Bird Tweet
	53	3 Choir Aahs	61	French Horn		117	Taiko Drum	125	Telephone Ring
	54	4 Voice Oohs	62	Brass Section		118	Melodic Tom	126	Helicopter
	55	5 Synth Voice	63	SynthBrass 1		119	Synth Drum	127	Applause
	56	6 Orchestra Hit	64	SynthBrass 2	1 I	120	Reverse Cymbal	128	Gunshot

Prog# INSTRUMENT

9-16 CHROMATIC PERCUSSION

65-72 REED

Soprano Sax

73-80 PIPE

Piccolo

73

rog# INSTRUMENT

1-8 PIANO

(Source: Roger Dannenberg)

Example: MuseNet (Payne et al., 2019)

- **Data**: ClassicalArchives + BitMidi + MAESTRO
- Representation: "instrument:velocity:pitch"
 - Time shifts in real time (sec)
- Model: Transformer

bach piano_strings start tempo90
piano:v72:G1 piano:v72:G2 piano:v72:B4
piano:v72:D4 violin:v80:G4 piano:v72:G4
piano:v72:B5 piano:v72:D5 wait:12
piano:v0:B5 wait:5 piano:v72:D5 wait:12
....

Example of generated music

Example: Multitrack Music Machine (Ens & Pasquier, 2020)

- **Data**: Lakh MIDI Dataset (LMD)
- Representation: as shown →
- Model: Transformer

And TRACK AND MID- CLARK TRACKS	acaceste Mar +	Maarmaal inte 1/42% •	100-00 a and a
			- mark
			-

BAR TRACK MULTI-TRACK **BAR-FILL** PIECE START NOTE ON=60 INST =30 PIECE START TIME DELTA=2 TRACK START TRACK START DENS TY=5 <TRACK> NOTE OFF=60 BAR START INST=30 NOTE ON=64 .EAR> TRACK END DENSITY=5 TRACK_START NOTE ON=67 BAR END BAR START BAR START TIME DELTA=4 <TIM/K> FILL IN B R> NOTE OFF=64 TRACK END BAR END TIME DELTA=4 BAR END TRACK_START NOTE OFF=67 BAR START <TRACK> TRACK END <DAR> TRACK END FILL START BAR END <BAR> BAR START FILL END FILL START < 8' (R> BAR ENL $\langle BAR \rangle$ FILL END

LETS START WITH SOME U2

Fig. 1. The MultiTrack and BarFill representations are shown. The <bar> tokens correspond to complete bars, and the <track> tokens correspond to complete tracks.

(Ens & Pasquier, 2020)

youtu.be/NdeMZ3y-84Q

Jeff Ens and Philippe Pasquier, "MMM : Exploring Conditional Multi-Track Music Generation with the Transformer," arXiv preprint arXiv:2008:06048, 2020.

Example: Multitrack Music Transformer (Dong et al., 2023)

- **Data**: Symbolic Orchestral Database (SOD)
- Representation: "(beat, position, pitch, duration, instrument)"

• No time shift events Why?

• Model: Multi-dimensional Transformer

(0,	0,	0,	0,	0,	0)	Start of song
(1,	0,	0,	0,	0,	15)	Instrument: accordion
(1,	0,	0,	0,	0,	36)	Instrument: trombone
(1,	0,	0,	0,	0,	39)	Instrument: brasses
(2,	0,	0,	0,	0,	0)	Start of notes
(3,	1,	1,	41,	15,	36)	Note: beat=1, position=1, pitch=E2, duration=48, instrument=trombone
(3,	1,	1,	65,	4,	39)	Note: beat=1, position=1, pitch=E4, duration=12, instrument=brasses
(3,	1,	1,	65,	17,	15)	Note: beat=1, position=1, pitch=E4, duration=72, instrument=accordion
(3,	1,	1,	68,	4,	39)	Note: beat=1, position=1, pitch=G4, duration=12, instrument=brasses
(3,	1,	1,	68,	17,	15)	Note: beat=1, position=1, pitch=G4, duration=72, instrument=accordion
(3,	1,	1,	73,	17,	15)	Note: beat=1, position=1, pitch=C5, duration=72, instrument=accordion
(3,	1,	13,	68,	4,	39)	Note: beat=1, position=13, pitch=G4, duration=12, instrument=brasses
(3,	1,	13,	73,	4,	39)	Note: beat=1, position=13, pitch=C5, duration=12, instrument=brasses
(3,	2,	1,	73,	12,	39)	Note: beat=2, position=1, pitch=C5, duration=36, instrument=brasses
(3,	2,	1,	77,	12,	39)	Note: beat=2, position=1, pitch=E5, duration=36, instrument=brasses
			••			
(4,	0,	0,	0,	0,	0)	End of song (Source: Dong et al., 2023)

Hao-Wen Dong, Ke Chen, Shlomo Dubnov, Julian McAuley, and Taylor Berg-Kirkpatrick, "Multitrack Music Transformer," ICASSP, 2023.

Drums in MIDI

- Channel 10 is reserved for drums
- Encoded by MIDI pitches 35-81
- Models that support drums
 - MuseNet (Payne et al., 2019)
 - Song from PI (Chu et al., 2017)
 - MMM (Ens and Pasquier, 2019)
 - and many more...

<u>en.wikipedia.org/wiki/General_MIDI</u>

Christine Payne, "<u>MuseNet</u>," *OpenAl*, 2019. Hang Chu, Raquel Urtasun, and Sanja Fidler, "<u>Song From PI: A Musically Plausible Network for Pop Music Generation</u>," *ICLR Workshop*, 2017. Jeff Ens and Philippe Pasquier, "<u>MMM : Exploring Conditional Multi-Track Music Generation with the Transformer</u>," *arXiv preprint arXiv:2008.06048*, 2020.

(Source: Wikipedia)

The Many Representations for Music Generation

- PerformanceRNN (Oore et al., 2020)
- **REMI** (Huang et al., 2020)
- **MuMIDI** (Ren et al., 2020)
- Compound Word (Hsiao et al., 2021)
- **REMI+** (von Rütte et al., 2023)
- **TSD** (Fradet et al., 2023)
- and so on...

github.com/Natooz/MidiTok

Sageev Oore, Ian Simon, Sander Dieleman, Douglas Eck, and Karen Simonyan, "This Time with Feeling: Learning Expressive Musical Performance", *Neural Computing and Applications*, 32, 2020.

Yu-Siang Huang and Yi-Hsuan Yang, "<u>Pop Music Transformer: Beat-based Modeling and Generation of Expressive Pop Piano Compositions</u>," *MM*, 2020. Yi Ren, Jinzheng He, Xu Tan, Tao Qin, Zhou Zhao, and Tie-Yan Liu, "<u>PopMAG: Pop Music Accompaniment Generation</u>," *MM*, 2020.

Wen-Yi Hsiao, Jen-Yu Liu, Yin-Cheng Yeh, and Yi-Hsuan Yang, "<u>Compound Word Transformer: Learning to Compose Full-Song Music over Dynamic Directed Hypergraphs</u>," AAAI, 2021.

Dimitri von Rütte, Luca Biggio, Yannic Kilcher, and Thomas Hofmann, "<u>FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control</u>," *ICLR*, 2023. Nathan Fradet, Nicolas Gutowski, Fabien Chhel, and Jean-Pierre Briot, "<u>Byte Pair Encoding for Symbolic Music</u>," *EMNLP*, 2023.

Symbolic Music Datasets

- JSBach Chorale
- <u>MusicNet</u>
- Essen Folk Song Dataset
- <u>Wikifonia</u>
- Lakh MIDI Dataset
- <u>MetaMIDI</u>
- Expressive MIDI: <u>MAESTRO</u>

Symbolic Music Datasets

Dataset	Format	Hours	Songs	Genre
Lakh MIDI Dataset	MIDI	>5000	174,533	misc
MAESTRO Dataset	MIDI	201.21	1,282	classical
Wikifonia Lead Sheet Dataset	MusicXML	198.40	6,405	misc
Essen Folk Song Dataset	ABC	56.62	9,034	folk
NES Music Database	MIDI	46.11	5,278	game
MusicNet Dataset	MIDI	30.36	323	classical
Hymnal Tune Dataset	MIDI	18.74	1,756	hymn
Hymnal Dataset	MIDI	17.50	1,723	hymn
music21's Corpus	misc	16.86	613	misc
EMOPIA Dataset	MIDI	10.98	387	рор
Nottingham Database	ABC	10.54	1,036	folk
music21's JSBach Corpus	MusicXML	3.46	410	classical
JSBach Chorale Dataset	MIDI	3.21	382	classical
Haydn Op.20 Dataset	Humdrum	1.26	24	classical

(Source: MusPy Documentation)