
Music & AI

Lecture 12: Source Separation

PAT 498/598 (Winter 2025)

Instructor: Hao-Wen Dong



• Genre classification (pop, rock, r&b, jazz, hip-hop, classical, etc.)

• Mood classification (happy, sad, calm, aggressive, cheerful, etc.)

• Instrument recognition

• Composer identification

• Key detection

• Chord estimation

• Music tagging → Can cover everything above!

(Recap) Music Classification Tasks
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(Recap) Music Classification for Recommendation
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(Recap) Music Classification for Playlist Generation
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• Binary classification

• Multiclass classification

• Multi-label classification

(Recap) Types of Classification Tasks

5



(Recap) Binary Classification
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(Recap) Multiclass Classification
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(Recap) Multi-label Classification
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(Recap) Multi-label Classification as Binary Classification
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• Waveform

• Time-frequency representation (spectrograms)

• Hand-crafted features or features provided in metadata

 Acoustic:  loudness, pitch, timbre

 Rhythmic:  beat, tempo, time signature

 Tonal: key, scale, chords

 Instrumentation, expressions, structures, etc.

(Recap) Input Features
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• GTZAN:  1,000 30-sec songs, 10 genres

• MagnaTagATune:  5,405 29-sec songs, 188 tags, 230 artists

• Million Song Dataset (MSD):  1M 30-sec songs, >500K tags, tricky to access

• Free Music Archive (FMA):  >10K full songs, 163 genres

• MTG-Jamendo:  55K full songs, 195 tags

• AudioSet:  1M songs, YouTube URLs, low-quality audio

• NSynth:  ~306K 4-sec instrument sounds

(Recap) Common Datasets

11Minz Won, Janne Spijkervetand Keunwoo Choi, “Music Classification: Beyond Supervised Learning, Towards Real-world Applications,” Tutorials of ISMIR, 2021.

https://music-classification.github.io/tutorial


(Recap) Confusion Matrix for Binary Classification
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(Recap) Precision vs Recall
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• Particularly useful for imbalanced datasets

 Work better than accuracy when the dataset is imbalanced

 For example, music search, retrieval, and recommendation 

(Recap) F1 Score: Considering both Precision & Recall
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(Recap) Confusion Matrix for Multi-label Classification
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Source Separation
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Source Separation

17Illustration inspired by Ethan Manilow, Prem Seetharman, and Justin Salamon’s Tutorial on “Open Source Tools & Data for Music Source Separation” at ISMIR 2020.
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Source Separation

18Illustration inspired by Ethan Manilow, Prem Seetharman, and Justin Salamon’s Tutorial on “Open Source Tools & Data for Music Source Separation” at ISMIR 2020.
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https://source-separation.github.io/tutorial


Stem Splitter in Logic Pro

19support.apple.com/guide/logicpro/extract-vocal-instrumental-stems-stem-lgcp61bae908/mac

(Source: Logic Pro User Guide) (Source: Logic Pro User Guide)

https://support.apple.com/guide/logicpro/extract-vocal-instrumental-stems-stem-lgcp61bae908/mac


Extracting Stems from Sample in FL Studio

20image-line.com/fl-studio-learning/fl-studio-online-manual/html/playlist.htm#audio_clip_extractstems

(Source: FL Studio Reference Manual)

https://www.image-line.com/fl-studio-learning/fl-studio-online-manual/html/playlist.htm#audio_clip_extractstems
https://www.image-line.com/fl-studio-learning/fl-studio-online-manual/html/playlist.htm#audio_clip_extractstems


• Also known as

 Stem separation

 Stem splitter

 Music demixing → slightly different meaning

 Stem extraction → slightly different meaning

Source Separation
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Source Separation does NOT Remove Effects
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Effect removal is a different task!
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• Musical applications

 Remixing & sampling

 Music practicing & education

 Karaoke accompaniment generation

• MIR tasks  (Oftentimes source separation is the first step)

 Music transcription

 Musical instrument & vocal detection

 Singer identification

 Lyric recognition

 Lyric-to-music alignment

Applications of Source Separation

23Ethan Manilow, Prem Seetharman, and Justin Salamon, “Open Source Tools & Data for Music Source Separation,” Tutorials of ISMIR, 2020.

https://source-separation.github.io/tutorial


Moises
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• Free Moises Pro license until Summer 2025

• Register at studio.moises.ai/claim-trial/UMichFree/monthly/

 Use your U-M email (@umich.edu)

 Sign up in your desktop browser

 Ignore the prompt to upgrade your account

 Deadline to sign up:  March 14

Moises
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https://studio.moises.ai/claim-trial/UMichFree/monthly/


Moises Demo

26

youtu.be/cyXPgU5UiB8

https://youtu.be/cyXPgU5UiB8


Moises VST Plugin

27help.moises.ai/hc/en-us/articles/11228246270876-How-do-I-set-up-Moises-Stems-on-a-DAW

(Source: Moises)

https://help.moises.ai/hc/en-us/articles/11228246270876-How-do-I-set-up-Moises-Stems-on-a-DAW


Moises VST Plugin
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(Source: Moises)

moises.ai/features/stems-vst-plugin/

https://moises.ai/features/stems-vst-plugin/


• Part 1: “This is the way that a lot of tracks start”

• Part 2: Creating backing vocals from scratch

• Part 3: A new way to mix drums

How to Produce Music with Moises
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https://www.youtube.com/watch?v=2qsPWBf0AFU
https://www.youtube.com/watch?v=6kGHKB_rEOQ
https://www.youtube.com/watch?v=3w56bvKN04g


How does it work?
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Mathematical Formulation
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• There are more than one solution to 𝑥 = 𝑠1 + 𝑠2 +⋯+ 𝑠𝑁
 In fact, there are infinite possibilities

• However, we do know what’s more likely than another!

Source Separation is an Ill-posed Problem
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Deep Learning Based Source Separation
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Demucs (Défossez et al., 2019)

34Alexandre Défossez, Nicolas Usunier, Léon Bottou, and Francis Bach, ”Music Source Separation in the Waveform Domain,” arXiv preprint arXiv:1911.13254, 2019.

(Source: Défossez et al., 2019)Input (mixture)

Output 
(sources)

https://arxiv.org/pdf/1911.13254


U-Net (Ronneberger et al., 2015)

35Olaf Ronneberger, Philipp Fischer, and Thomas Brox, ”U-Net: Convolutional Networks for Biomedical Image Segmentation,” MICCAI, 2015. 

(Source: Ronneberger et al., 2015)

https://arxiv.org/pdf/1505.04597


U-Net (Ronneberger et al., 2015)

36Olaf Ronneberger, Philipp Fischer, and Thomas Brox, ”U-Net: Convolutional Networks for Biomedical Image Segmentation,” MICCAI, 2015. 

(Source: Ronneberger et al., 2015)

Skip connections

https://arxiv.org/pdf/1505.04597


A Toy Example of U-Net
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(copies)

A Toy Example of U-Net
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U-Net (Ronneberger et al., 2015)

39Olaf Ronneberger, Philipp Fischer, and Thomas Brox, ”U-Net: Convolutional Networks for Biomedical Image Segmentation,” MICCAI, 2015. 

(Source: Ronneberger et al., 2015)
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https://arxiv.org/pdf/1505.04597


Applications of U-Nets
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Omar Barakat, “Depth estimation with deep Neural networks part 1,” Medium, January 11, 2018
Mona Kharaji, Hossein Abbasi, Yasin Orouskhani, Mostafa Shomalzadeh, Foad Kazemi, and Maysam Orouskhani, “nnU-Net for Brain Tumor Segmentation,” Neuroscience 
Informatics, 2024.
Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross 
Girshick, “Segment Anything,” ICCV, 2023.

Tumor Segmentation

Depth Estimation

Image Segmentation

(Source: Kharaji et al., 2024)

(Source: Kirillov et al., 2023)

(Source: Barakat, 2018)

https://medium.com/@omarbarakat1995/depth-estimation-with-deep-neural-networks-part-1-5fa6d2237d0d
https://www.sciencedirect.com/science/article/pii/S2772528624000013
https://arxiv.org/abs/2304.02643


Applications of U-Nets

41

Colorization

Sim2Real
Style Transfer

(Source: Rombach et al., 2022)

Semantic Synthesis

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, Björn Ommer, “High-Resolution Image Synthesis with Latent Diffusion Models,” CVPR, 2022.
Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros, “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks,” ICCV, 2017. 

(Source: Zhu et al., 2018)

(Source: Zhu et al., 2018)

(Source: Zhu et al., 2018)

https://arxiv.org/pdf/2112.10752
https://arxiv.org/pdf/1703.10593


Demucs (Défossez et al., 2019)

42Alexandre Défossez, Nicolas Usunier, Léon Bottou, and Francis Bach, ”Music Source Separation in the Waveform Domain,” arXiv preprint arXiv:1911.13254, 2019.

(Source: Défossez et al., 2019)Input (mixture)

Output 
(sources)

https://arxiv.org/pdf/1911.13254


Demucs-Hybrid (Rouard et al., 2023)

43Simon Rouard, Francisco Massa, and Alexandre Défossez, ”Hybrid Transformers for Music Source Separation,” ICASSP, 2023.

(Source: Rouard et al., 2023)
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Frequency-domain module
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https://arxiv.org/pdf/2211.08553


• MIR-1K

• MedleyDB

• iKala

• DSD100

• MUSDB18 & MUSDB18-HQ

• MoisesDB

• Synthetic: Slakh2100, SynthSOD

Datasets

44Ethan Manilow, Prem Seetharman, and Justin Salamon, “Open Source Tools & Data for Music Source Separation,” Tutorials of ISMIR, 2020.

https://sites.google.com/site/unvoicedsoundseparation/mir-1k
https://sites.google.com/site/unvoicedsoundseparation/mir-1k
http://medleydb.weebly.com/
http://mac.citi.sinica.edu.tw/ikala/
https://sigsep.github.io/datasets/dsd100.html
https://sigsep.github.io/datasets/musdb.html
https://sigsep.github.io/datasets/musdb.html
https://github.com/moises-ai/moises-db
http://www.slakh.com/
https://zenodo.org/records/13759492
https://source-separation.github.io/tutorial


Datasets

45sigsep.github.io/datasets/

(Source: SigSep)

https://sigsep.github.io/datasets/


Choral Separation (Chen et al., 2022)
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Mixture Soprano Alto Tenor Bass

Ke Chen, Hao-Wen Dong, Yi Luo, Julian McAuley, Taylor Berg-Kirkpatrick, Miller Puckette, and Shlomo Dubnov, “Improving Choral Music Separation through Expressive 
Synthesized Data from Sampled Instruments,” ISMIR, 2022.
retrocirce.github.io/cms_demo/

Data Augmentation

Demo

SoundFont Standard
Expressive

(vowels only)
Expressive

(words)

https://arxiv.org/pdf/2209.02871
https://arxiv.org/pdf/2209.02871
https://retrocirce.github.io/cms_demo/


• This is NOT based on source separation

• Sharing this simply because it’s cool! 

• It’s based on a ML-based music harmonization model!

Blob Opera

47

artsandculture.google.com/experiment/blob-opera/AAHWrq360NcGbw

https://artsandculture.google.com/experiment/blob-opera/AAHWrq360NcGbw


Beyond Known Sources: Query by Audio

48
Ke Chen, Xingjian Du, Bilei Zhu, Zejun Ma, Taylor Berg-Kirkpatrick, and Shlomo Dubnov, ”Zero-shot Audio Source Separation through Query-based Learning from Weakly-
labeled Data,” AAAI, 2022.

Query

Mixture Output

https://arxiv.org/pdf/2112.07891
https://arxiv.org/pdf/2112.07891


• Part 1: Harmonic-Percussive Source Separation (HPSS) using librosa

Homework 4: Source Separation
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• Part 2: Music Source Separation using Demucs

Homework 4: Source Separation

50



• Instructions will be released on the course website

• Please submit your work to Gradescope

• Due at 11:59pm ET on February 26

• Late submissions: 1 point deducted per day

• No late submission is allowed a week after the due date

Homework 4: Source Separation

51

https://hermandong.com/teaching/pat498_598_winter2025/
https://www.gradescope.com/courses/937416


• Ethan Manilow, Prem Seetharman, and Justin Salamon, “Open Source Tools 
& Data for Music Source Separation,” Tutorials of ISMIR, 2020.

Optional Reading

52

https://source-separation.github.io/tutorial
https://source-separation.github.io/tutorial
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