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Homework 3: Musical Note Classification using CNNs

 Train a CNN that can classify audio files into their instrument families
- Input: 64x64 mel spectrogram
- OQutput: 11 instrument classes
- Using the NSynth dataset (Engel et al., 2017)
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Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Douglas Eck, Karen Simonyan, and Mohammad Norouzi, “Neural Audio Synthesis of Musical Notes with WaveNet
Autoencoders,” ICML, 2017.
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NSynth Dataset

* A collection of 305,979 single-shot musical notes (Engel et al., 2017)
- Produced from 1,006 commercial sample libraries
- With different MIDI pitches (21-108) and velocities (25, 50, 75, 100, 127)
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Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Douglas Eck, Karen Simonyan, and Mohammad Norouzi, “Neural Audio Synthesis of Musical Notes with WaveNet
Autoencoders,” ICML, 2017.
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Homework 3: Musical Note Classification using CNNs

* Instructions will be released on Gradescope
e Due at 11:59pm ET on February 17

* Late submissions: 1 point deducted per day



(Recap) Reusable Pattern Detectors




(Recap) Convolutional Neural Network (CNNSs)
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(Recap) Convolutional Layer

A convolutional layer consists of many learnable kernels (channels)

To be learned

— [ Convolutional layer ] —

Each kernel detects
a local pattern

channels



(Recap) Benefits of CNNs

Learn local patterns

Invariant to shifts
- Also called translational invariance

Reuse the learned filters across
- Different parts of the image

- Across different images

Higher parameter-efficiency against fully-connected neural network



(Recap) Convolutional Neural Network (CNNSs)

RGB: 3 channels Channels increase as we go deeper

(Grayscale: 1 channel)
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(Recap) A Real Example

class C

UL

def

def

Input Output
NN(nn.Module): channels channels
A basic convolutiona) neural netdvork."""
init__(self): )
P -) Kernel size
super().__init

addlng- same")
nn. Conde(lE 3, padding="same")
nn.Conv2d(32, 3, padding=" same")
self.conv4d nn.Conv2d(64, 128J 3, padding="same"
self.pool = nn.MaxPool2d(2, 2)

self.fc = nn.Linear(128 * 4 * 4,

self.convl nn. Convzd

self.conv2

self.conv3

n_classes)
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forward(self, x): _( \
x = self.pool(F.relu(self.convl(x))) — e < -2| =|16s84 | b f
X = self.pool(F.relu(self.conv2(x))) —>|32 16 x 16| =|8192 fzgzzr::orlr:ecz:se
x = self.pool(F.relu(self.conv3(x))) —|64 8 x8 | =|4096 as we go deeper
x = self.pool(F.relu(self.conv4(x))) - 128lkla x4 | =|2048
x = torch.flatten(x, 1) \ J \C J
x = self.fc(x) More channels,
return x lower resolution

as we go deeper
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(Recap) Learned CNN Kernels in a Trained AlexNet

Top activations

Layer 1

Learned CNN kernels

Boundary
detector

Color detector

Matthew D. Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks,” ECCV, 2014.
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https://arxiv.org/pdf/1311.2901

(Recap) Learned CNN Kernels in a Trained AlexNet

Learned CNN kernels Top activations
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Matthew D. Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks,” ECCV, 2014.
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\ (Recap) Learned CNN Kernels in a Trained AlexNet

Learned CNN kernels Top activations
Grid detector

UELFACLY

Human detector

Matthew D. Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks,” ECCV, 2014.
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https://arxiv.org/pdf/1311.2901

\ (Recap) Learned CNN Kernels in a Trained AlexNet

Learned CNN kernels Top activations

Matthew D. Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks,” ECCV, 2014.
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https://arxiv.org/pdf/1311.2901

(Recap) Activations in a Trained AlexNet

1st convolutional layer 5th convolutional layer

¢s231n.github.io/understanding-cnn/
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https://cs231n.github.io/understanding-cnn/

(Recap) Activations in a Trained AlexNet

1st convolutional layer 5th convolutional layer

Brightness+
Contrast+

¢s231n.github.io/understanding-cnn/

Brightness+
Contrast+
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https://cs231n.github.io/understanding-cnn/

" (Recap) Music Information Research (MIR)

- “Intelligent ways to analyze, retrieve and create music” (vang 2018)

_ e

=

Q

A \
1

@ Retrieval @D‘
O ) 2 )\// \

3

Yang, “Music Information Research,” SNHCC, TIGP, lecture notes, April 2018.
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Music Classification

18



Music Classification Tasks

« Genre classification (pop, rock, r&b, jazz, hip-hop, classical, etc.)

Mood classification (happy, sad, calm, aggressive, cheerful, etc.)

Instrument recognition

Composer identification

Key detection
* Chord estimation

- Music tagging - Can cover everything above!

19



Applications of Music Classification Models

Recommendation

Curation

Playlist generation

Listening behavior analysis

Musicology research

Minz Won, Janne Spijkervet, and Keunwoo Choi, “Music Classification: Beyond Supervised Learning, Towards Real-world Applications,” Tutorials of ISMIR, 2021.
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https://music-classification.github.io/tutorial

Music Classification for Recommendation

S OtifY” The Most Loved Digital

& Audio Streaming Platforms
Share of respondents who have paid for audio downloads
or streaming services from the following platforms”

amazon music
)

=

s °
evusic [N 25% evusic [N 6%
© YouTube Music
* in the 12 months prior to the survey
2,362 (UK)/4,944 (USA) respondents (18-64 y/o) surveyed Jul. 2023-Jun. 2024

* United Kingdom % United States
omsic [N 25 omsic [N 33+
siills SOUNDCL oup . 12% pandora - 23%
p o n d o rc @ Source: Statista Consumer Insights
Anna Fleck, “The Most Loved Digital Audio Streaming Platforms,” Statista, September 30, 2024. 21



https://www.statista.com/chart/29016/most-popular-music-streaming-services/

Music Classification for Recommendation

Soundtrack, classical

What to play next?

Pop, soul, R&B
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Music Classification for Playlist Generation

< Library

5 Songs Added to New Playlist.
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Ask Music (YouTube Music)

X

+ Creating a radio just for you...

TeXt p ro m pt ‘ Ask for music

androidpolice.com/youtube-music-ask-music-ai-playlist-assistant/
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(Source: Android Police)
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) Ask for music
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https://www.androidpolice.com/youtube-music-ask-music-ai-playlist-assistant/

Al Playlist (Spotify)

X

What do you want to
hear today?

Try asking

Playlist

P . Tuning into your request...
4" Tell me your ideas
%_’ Al Playlist

Tap the “+’ in Your Wait as we do
Library to get started our magic

(Source: Spotify)

Main Character Vibes

Not An Angel

d | Love You
|

n. Here's your Main Character

4° Refine this playlist

Create your
playlist

newsroom.spotify.com/2024-04-07/spotify-premium-users-can-now-turn-any-idea-into-a-personalized-playlist-with-ai-playlist-in-beta/
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https://newsroom.spotify.com/2024-04-07/spotify-premium-users-can-now-turn-any-idea-into-a-personalized-playlist-with-ai-playlist-in-beta/

Music Classification for Listening Behavior Analysis

YouTube’s Music Recap

Your listening this year? It's
giving...

/ Amped

In January, you also had Lose
Control on repeat

March was all kinds of happy, at
least musically

Afrobeats

»» Share »» Share

(Source: YouTube)

blog.youtube/news-and-events/2024-music-recap-youtube/
engineering.atspotify.com/2023/01/whats-a-listening-personality/

Spotify’s Listening Personality

The Replayer

You're a comfort listener. You stick with

the songs you like, by the artists you like,

from whenever and wherever. Why rock
the boat?

ity - Ti - Loyalty - Uni

(Source: Spotify)
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https://blog.youtube/news-and-events/2024-music-recap-youtube/
https://engineering.atspotify.com/2023/01/whats-a-listening-personality/

Types of Classification Tasks
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Types of Classification Tasks

 Binary classification
 Multiclass classification

 Multi-label classification
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Binary Classification
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Binary Classification
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Multiclass Classification
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Multiclass Classification
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Multi-label Classification
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Multi-label Classification

%8 ——  Soul, R&B, pop
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Multi-label Classification as Binary Classification
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Multi-label Classification as Multi-class Classification

{Pop} \
{R&B}
{Soul}

{Classical}

{Pop, R&B}

{Pop, Soul}

{Pop, Classical}
{Pop, R&B, Soul}

{R&B, Soul, Classical}
{Pop, R&B, Soul, Classical} )

Label
powerset

36



Input Features

« Waveform

- Time-frequency representation (spectrograms)

- Hand-crafted features or features provided in metadata
- Acoustic: loudness, pitch, timbre

- Rhythmic: beat, tempo, time signature

- Tonal: key, scale, chords

- Instrumentation, expressions, structures, etc.

Frequency

37



Common Datasets

GTZAN: 1,000 30-sec songs, 10 genres

MagnaTagATune: 5,405 29-sec songs, 188 tags, 230 artists

Million Song Dataset (MSD): 1M 30-sec songs, >500K tags, tricky to access

Free Music Archive (FMA): >10K full songs, 163 genres

MTG-Jamendo: 55K full songs, 195 tags

AudioSet: 1M songs, YouTube URLs, low-quality audio

NSynth: ~306K 4-sec instrument sounds

Minz Won, Janne Spijkervet, and Keunwoo Choi, “Music Classification: Beyond Supervised Learning, Towards Real-world Applications,” Tutorials of ISMIR, 2021.
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https://music-classification.github.io/tutorial

Evaluation Metrics
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Evaluation Metrics

- Key: Capture what you care the most!
* The best evaluation metric depends on the actual use case

 Best to use several evaluation metrics to obtain a holistic view of your
model’s performance
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Toy Example: Binary Classification

Positive Negative

(o A
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- Toy Example: Binary Classification
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Accuracy

- Definition: Percentage of correct predictions across all classes

Positive Negative
/ © o o) o\ 0 09~ 0 0°
© 0% © “0%©
© © o ©0 0 00O
®) Accuracy = o o
o) © O
0 o © © 0% 9 o0 o ©0°©°
o) o ©Oo0O © 00O
o © o
=0.82




Confusion Matrix for Binary Classification

Ground truth

Positive

Negative

Prediction
Positive Negative
True Positives False Negatives
(TP) (FN)
False Positives True Negatives
(FP) (TN)
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Confusion Matrix for Binary Classification

Ground truth

Positive

True Positives

Prediction

Negative

False Negatives

(TP) (FN)
Positive
Cat Not Cat
False Positives True Negatives
(FP) (TN)
Negative - C’!‘g &
Cat ¢ 4 Not Cat
ARV d

45



Accuracy on Imbalanced Datasets

« Accuracy does notwork well on imbalanced dataset

- Take a disease with a 1% prevalence for example:
- What if we simply say negative to all diagnoses?

Prediction
Positive Negative
True Positives False Negatives
Positive (TP) (FN)
Ground 0 1 P
Accuracy =099 [
truth - , y &
False Positives True Negatives
Negative (FP) (TN)
0 929




Precision
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How often predictions for
the positive are correct
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Recall
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How well the model finds all
positive instances in the dataset
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Precision vs Recall

Precision
o n©
0% ©
TP O o O
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How well the model finds all
positive instances in the dataset
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When should we care about Precision & Recall?

Rare cancer detection Positive Negative

2 N

A 0 o O O

8 False
Negatives O
Oj o
R B N False
i \ L Positives @)

Aim for high precision or high recall? K O o O o /

High recall ensures most ] i
cancer cases are identified. False alarms vs Missed detections



When should we care about Precision & Recall?

Music recommendation

Aim for high precision or high recall?

High precision ensures that the model
won’'t recommend irrelevant items.

Positive Negative
o © o © o o
Fal
Nega:;\;(\eles O O
Nalo o
False \ O @)
@) Positives
o © o

\_

°

False alarms vs Missed recommendations



F1 Score: Considering both Precision & Recall

» Particularly useful for imbalanced datasets
- Work better than accuracy when the dataset is imbalanced

- For example, music search, retrieval, and recommendation

2

T 1
Precision Recall

=
Il

2 - Precision - Recall

Precision + Recall
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Confusion Matrix for Binary Classification

Ground truth

Positive

True Positives

Prediction
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False Negatives
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Confusion Matrix for Multiclass Classification

Bass sounds got classified
as keyboard sounds

bass
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as bass/keyboard sounds
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Optional Reading

« Minz Won, Janne Spijkervet, and Keunwoo Choi, “Music Classification:
Beyond Supervised Learning, Towards Real-world Applications,” Tutorials of
ISMIR, 2021.
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\ Open Source Music Classification Models

» github.com/minzwon/sota-music-tagging-models

» github.com/jordipons/musicnn
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