
Music & AI

Lecture 11: Music Classification

PAT 498/598 (Winter 2025)

Instructor: Hao-Wen Dong



• Train a CNN that can classify audio files into their instrument families

 Input:  64x64 mel spectrogram

 Output:  11 instrument classes

 Using the NSynth dataset (Engel et al., 2017)

Homework 3: Musical Note Classification using CNNs

2
Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Douglas Eck, Karen Simonyan, and Mohammad Norouzi, “Neural Audio Synthesis of Musical Notes with WaveNet 
Autoencoders,” ICML, 2017.
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https://arxiv.org/pdf/1704.01279
https://arxiv.org/pdf/1704.01279


NSynth Dataset

3
Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Douglas Eck, Karen Simonyan, and Mohammad Norouzi, “Neural Audio Synthesis of Musical Notes with WaveNet 
Autoencoders,” ICML, 2017.

• A collection of 305,979 single-shot musical notes (Engel et al., 2017)

 Produced from 1,006 commercial sample libraries

 With different MIDI pitches (21–108) and velocities (25, 50, 75, 100, 127)

https://arxiv.org/pdf/1704.01279
https://arxiv.org/pdf/1704.01279


• Instructions will be released on Gradescope

• Due at 11:59pm ET on February 17

• Late submissions: 1 point deducted per day

Homework 3: Musical Note Classification using CNNs

4



(Recap) Reusable Pattern Detectors
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(Recap) Convolutional Neural Network (CNNs)
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• A convolutional layer consists of many learnable kernels (channels)

(Recap) Convolutional Layer
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• Learn local patterns

• Invariant to shifts

 Also called translational invariance

• Reuse the learned filters across

 Different parts of the image

 Across different images

• Higher parameter-efficiency against fully-connected neural network

(Recap) Benefits of CNNs
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(Recap) Convolutional Neural Network (CNNs)
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(Recap) A Real Example
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(Recap) Learned CNN Kernels in a Trained AlexNet

11Matthew D. Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks,” ECCV, 2014.

Top activations

Learned CNN kernels
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https://arxiv.org/pdf/1311.2901


(Recap) Learned CNN Kernels in a Trained AlexNet

12Matthew D. Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks,” ECCV, 2014.
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https://arxiv.org/pdf/1311.2901


(Recap) Learned CNN Kernels in a Trained AlexNet

13Matthew D. Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks,” ECCV, 2014.

Grid detector
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Learned CNN kernels Top activations

https://arxiv.org/pdf/1311.2901


(Recap) Learned CNN Kernels in a Trained AlexNet

14Matthew D. Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks,” ECCV, 2014.

Learned CNN kernels Top activations

https://arxiv.org/pdf/1311.2901


(Recap) Activations in a Trained AlexNet

15cs231n.github.io/understanding-cnn/

1st convolutional layer 5th convolutional layer

https://cs231n.github.io/understanding-cnn/


(Recap) Activations in a Trained AlexNet

16cs231n.github.io/understanding-cnn/

1st convolutional layer 5th convolutional layer

Brightness+
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https://cs231n.github.io/understanding-cnn/


• “Intelligent ways to analyze, retrieve and create music” (Yang 2018)

(Recap) Music Information Research (MIR)

CreationRetrieval

Analysis

Yang, “Music Information Research,” SNHCC, TIGP, lecture notes, April 2018. 17



Music Classification
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• Genre classification (pop, rock, r&b, jazz, hip-hop, classical, etc.)

• Mood classification (happy, sad, calm, aggressive, cheerful, etc.)

• Instrument recognition

• Composer identification

• Key detection

• Chord estimation

• Music tagging → Can cover everything above!

Music Classification Tasks
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• Recommendation

• Curation

• Playlist generation

• Listening behavior analysis

• Musicology research

Applications of Music Classification Models

20Minz Won, Janne Spijkervet, and Keunwoo Choi, “Music Classification: Beyond Supervised Learning, Towards Real-world Applications,” Tutorials of ISMIR, 2021.

https://music-classification.github.io/tutorial


Music Classification for Recommendation

21Anna Fleck, “The Most Loved Digital Audio Streaming Platforms,” Statista, September 30, 2024.

https://www.statista.com/chart/29016/most-popular-music-streaming-services/


Music Classification for Recommendation
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Music Classification for Playlist Generation
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Ask Music (YouTube Music)

24androidpolice.com/youtube-music-ask-music-ai-playlist-assistant/

(Source: Android Police)

Text prompt

https://www.androidpolice.com/youtube-music-ask-music-ai-playlist-assistant/


AI Playlist (Spotify)

25newsroom.spotify.com/2024-04-07/spotify-premium-users-can-now-turn-any-idea-into-a-personalized-playlist-with-ai-playlist-in-beta/

(Source: Spotify)

https://newsroom.spotify.com/2024-04-07/spotify-premium-users-can-now-turn-any-idea-into-a-personalized-playlist-with-ai-playlist-in-beta/


Music Classification for Listening Behavior Analysis

26
blog.youtube/news-and-events/2024-music-recap-youtube/
engineering.atspotify.com/2023/01/whats-a-listening-personality/

Spotify’s Listening PersonalityYouTube’s Music Recap

(Source: Spotify)(Source: YouTube)

https://blog.youtube/news-and-events/2024-music-recap-youtube/
https://engineering.atspotify.com/2023/01/whats-a-listening-personality/


Types of Classification Tasks
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• Binary classification

• Multiclass classification

• Multi-label classification

Types of Classification Tasks

28



Binary Classification

29

Is Classical?



Binary Classification
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Multiclass Classification
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Multiclass Classification
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Multi-label Classification
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Multi-label Classification
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Soul, R&B, pop



Multi-label Classification as Binary Classification
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Multi-label Classification as Multi-class Classification
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• Waveform

• Time-frequency representation (spectrograms)

• Hand-crafted features or features provided in metadata

 Acoustic:  loudness, pitch, timbre

 Rhythmic:  beat, tempo, time signature

 Tonal: key, scale, chords

 Instrumentation, expressions, structures, etc.

Input Features
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• GTZAN:  1,000 30-sec songs, 10 genres

• MagnaTagATune:  5,405 29-sec songs, 188 tags, 230 artists

• Million Song Dataset (MSD):  1M 30-sec songs, >500K tags, tricky to access

• Free Music Archive (FMA):  >10K full songs, 163 genres

• MTG-Jamendo:  55K full songs, 195 tags

• AudioSet:  1M songs, YouTube URLs, low-quality audio

• NSynth:  ~306K 4-sec instrument sounds

Common Datasets

38Minz Won, Janne Spijkervet, and Keunwoo Choi, “Music Classification: Beyond Supervised Learning, Towards Real-world Applications,” Tutorials of ISMIR, 2021.

https://music-classification.github.io/tutorial


Evaluation Metrics

39



• Key:  Capture what you care the most!

• The best evaluation metric depends on the actual use case

• Best to use several evaluation metrics to obtain a holistic view of your 
model’s performance

Evaluation Metrics

40



Toy Example: Binary Classification

41

Positive Negative



Toy Example: Binary Classification
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• Definition:  Percentage of correct predictions across all classes

Accuracy

43

Positive Negative

= 0.82

Accuracy =



Confusion Matrix for Binary Classification

44
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Confusion Matrix for Binary Classification
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• Accuracy does not work well on imbalanced dataset

• Take a disease with a 1% prevalence for example:

 What if we simply say negative to all diagnoses?

Accuracy on Imbalanced Datasets

46

False Positives
(FP)

False Negatives
(FN)

True Positives
(TP)

True Negatives
(TN)

Prediction

Ground 
truth

Positive Negative

Positive

Negative

0

99

1

0

Accuracy = 0.99



Precision

47
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Recall

48

Positive Negative
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Precision vs Recall

49
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Positive Negative

When should we care about Precision & Recall? 

50

False 
Positives

False 
Negatives

Rare cancer detection

High recall ensures most 
cancer cases are identified. False alarms vs Missed detections

Aim for high precision or high recall?



Positive Negative

When should we care about Precision & Recall? 

51

Music recommendation

High precision ensures that the model 
won’t recommend irrelevant items. False alarms vs Missed recommendations

Aim for high precision or high recall?

False 
Positives

False 
Negatives



• Particularly useful for imbalanced datasets

 Work better than accuracy when the dataset is imbalanced

 For example, music search, retrieval, and recommendation 

F1 Score: Considering both Precision & Recall

52
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Confusion Matrix for Binary Classification
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Confusion Matrix for Multiclass Classification

54

Bass sounds got classified 
as keyboard sounds

Guitar sounds got classified 
as bass/keyboard sounds

Organ sounds got 
classified as vocals



• Minz Won, Janne Spijkervet, and Keunwoo Choi, “Music Classification: 
Beyond Supervised Learning, Towards Real-world Applications,” Tutorials of 
ISMIR, 2021.

Optional Reading

55

https://music-classification.github.io/tutorial
https://music-classification.github.io/tutorial


• github.com/minzwon/sota-music-tagging-models

• github.com/jordipons/musicnn

Open Source Music Classification Models

56

https://github.com/minzwon/sota-music-tagging-models
https://github.com/jordipons/musicnn
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