PAT 498/598 (Winter 2025)

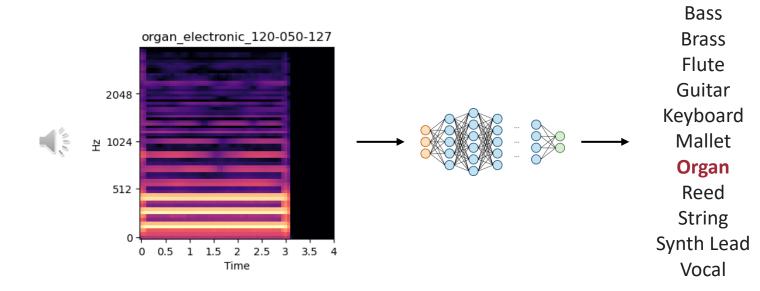
Music & Al

Lecture 11: Music Classification

Instructor: Hao-Wen Dong

Homework 3: Musical Note Classification using CNNs

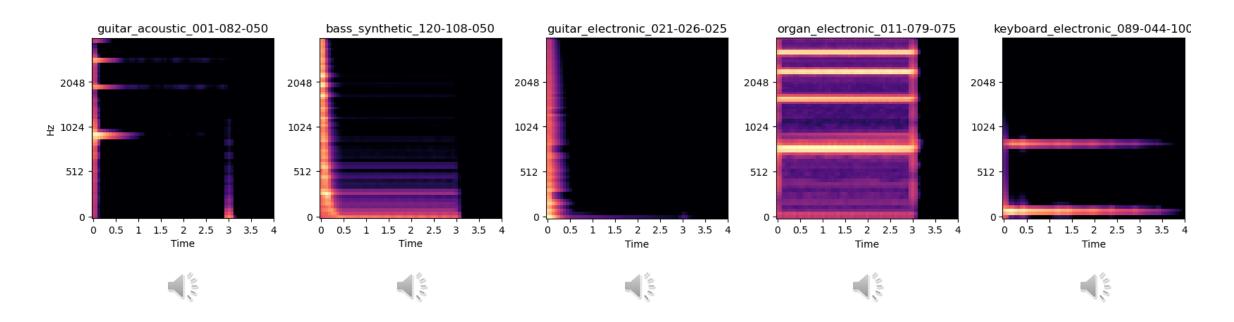
- Train a CNN that can classify audio files into their **instrument families**
 - Input: 64x64 mel spectrogram
 - Output: 11 instrument classes
 - Using the **NSynth** dataset (Engel et al., 2017)



Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Douglas Eck, Karen Simonyan, and Mohammad Norouzi, "<u>Neural Audio Synthesis of Musical Notes with WaveNet</u> <u>Autoencoders</u>," *ICML*, 2017.

NSynth Dataset

- A collection of 305,979 single-shot musical notes (Engel et al., 2017)
 - Produced from 1,006 commercial sample libraries
 - With different **MIDI pitches** (21–108) and **velocities** (25, 50, 75, 100, 127)



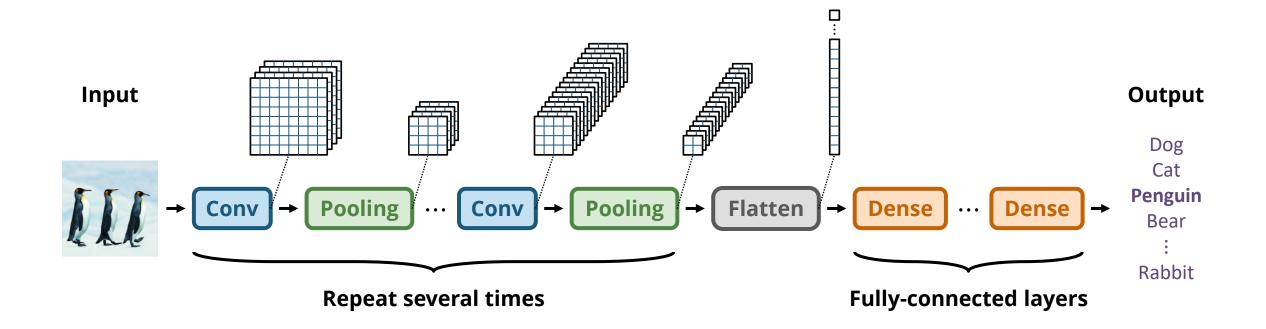
Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Douglas Eck, Karen Simonyan, and Mohammad Norouzi, "Neural Audio Synthesis of Musical Notes with WaveNet Autoencoders," ICML, 2017.

Homework 3: Musical Note Classification using CNNs

- Instructions will be released on Gradescope
- Due at **11:59pm ET** on **February 17**
- Late submissions: 1 point deducted per day

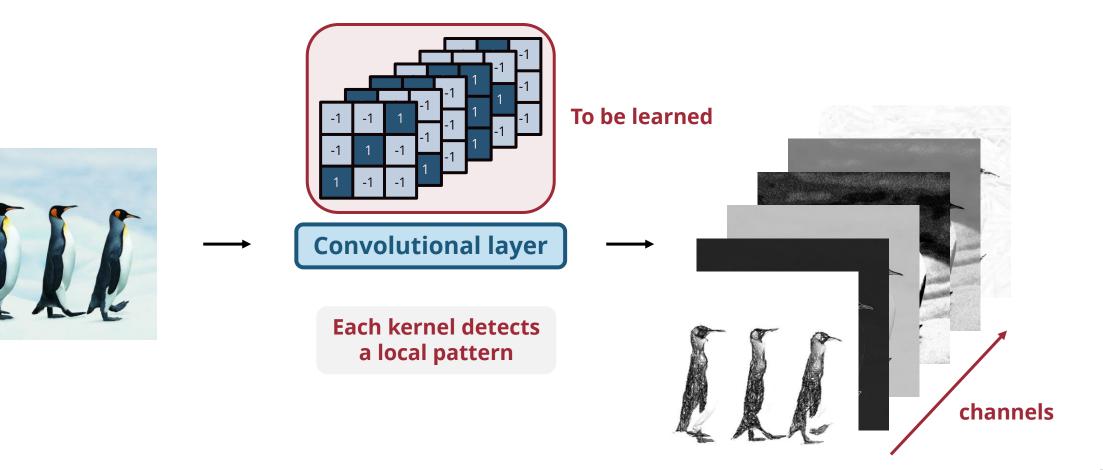
(Recap) Reusable Pattern Detectors

(Recap) Convolutional Neural Network (CNNs)



(Recap) Convolutional Layer

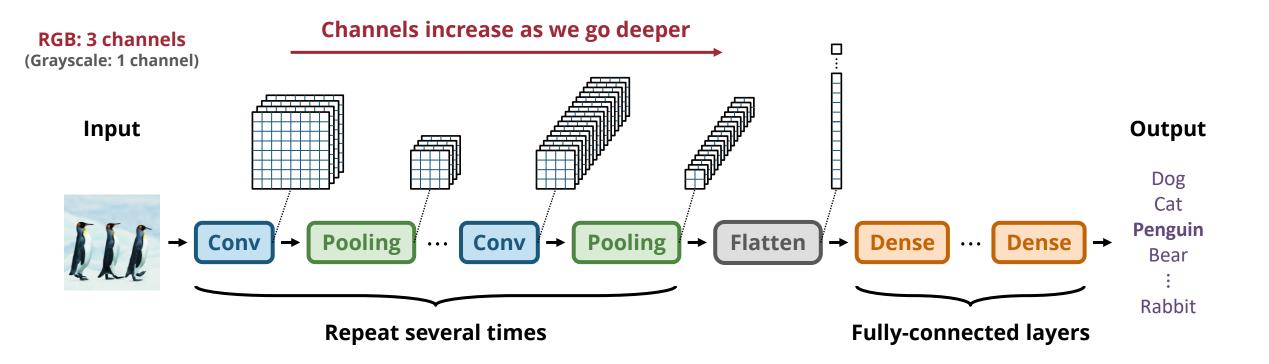
• A convolutional layer consists of many **learnable kernels** (channels)



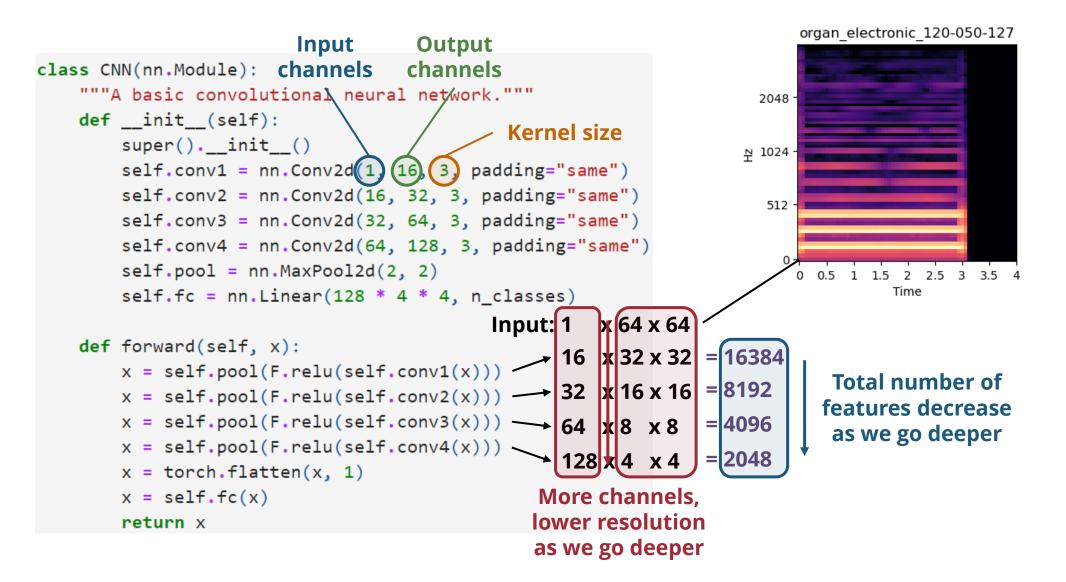
(Recap) Benefits of CNNs

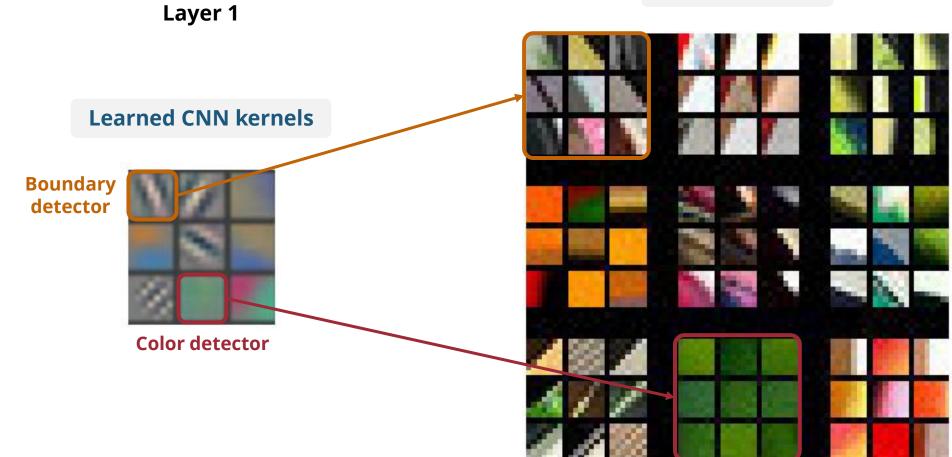
- Learn local patterns
- Invariant to shifts
 - Also called translational invariance
- Reuse the learned filters across
 - Different parts of the image
 - Across different images
- Higher parameter-efficiency against fully-connected neural network

(Recap) Convolutional Neural Network (CNNs)



(Recap) A Real Example

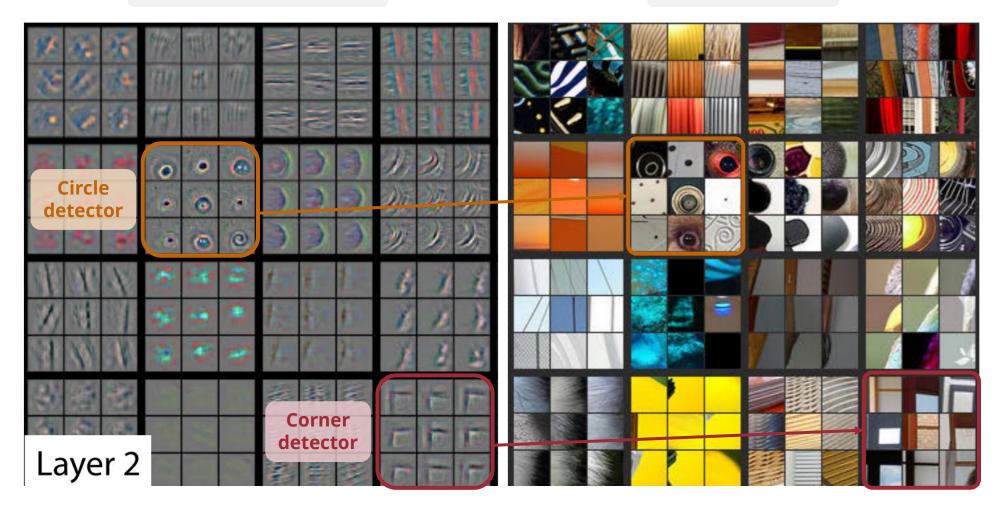




Top activations

Learned CNN kernels

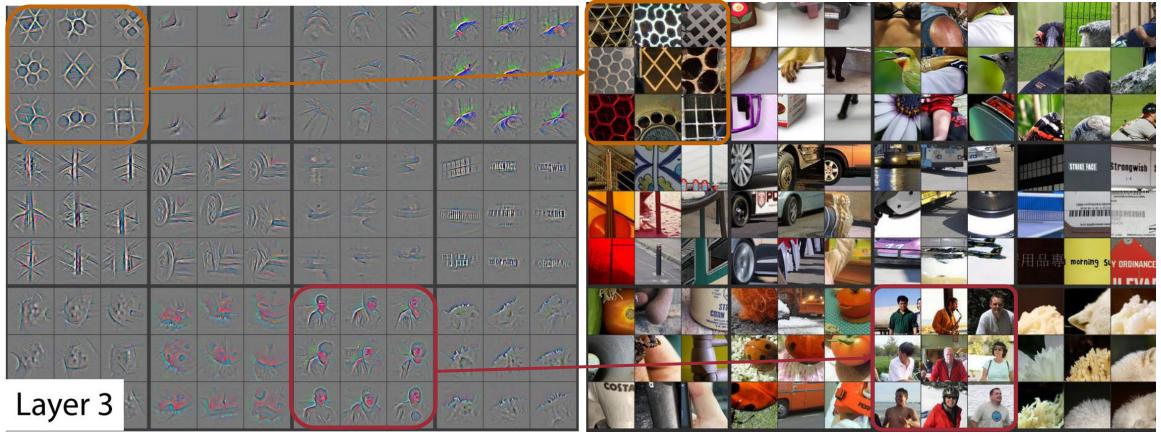
Top activations



Learned CNN kernels

Top activations

Grid detector

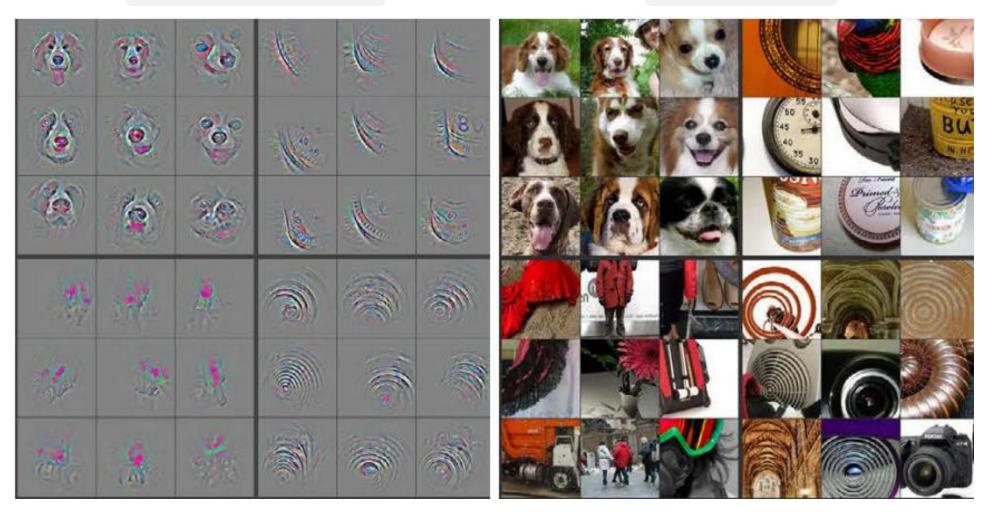


Human detector

Matthew D. Zeiler and Rob Fergus, "Visualizing and Understanding Convolutional Networks," ECCV, 2014.

Learned CNN kernels

Top activations



Matthew D. Zeiler and Rob Fergus, "Visualizing and Understanding Convolutional Networks," ECCV, 2014.

(Recap) Activations in a Trained AlexNet

1st convolutional layer

N.			

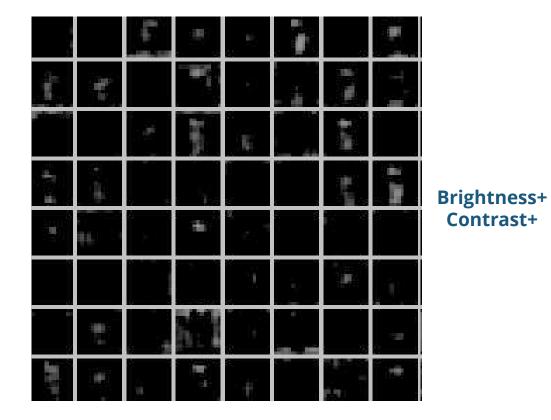
5th convolutional layer

		1				- 91
	1		*1		1	
		- 14	la la la	ŧ.	1	
-					1	
	1 L		+			
					3	
100			. i	i i		

(Recap) Activations in a Trained AlexNet

1st convolutional layer

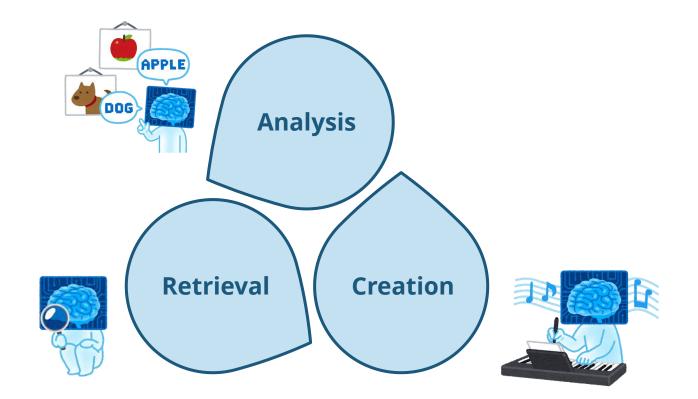
5th convolutional layer



Brightness+ Contrast+

(Recap) Music Information Research (MIR)

• "Intelligent ways to analyze, retrieve and create music" (Yang 2018)



Music Classification

Music Classification Tasks

- **Genre classification** (pop, rock, r&b, jazz, hip-hop, classical, etc.)
- **Mood classification** (happy, sad, calm, aggressive, cheerful, etc.)
- Instrument recognition
- Composer identification
- Key detection
- Chord estimation
- Music tagging \rightarrow Can cover everything above!

Applications of Music Classification Models

- Recommendation
- Curation
- Playlist generation
- Listening behavior analysis
- Musicology research

Music Classification for Recommendation

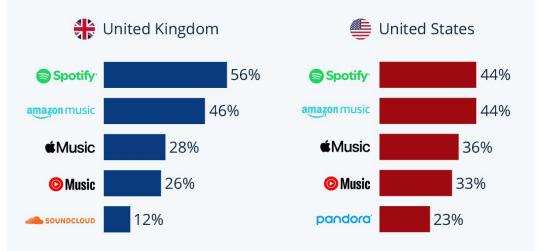
amazon music

ÉMusic

pandora

The Most Loved Digital Audio Streaming Platforms

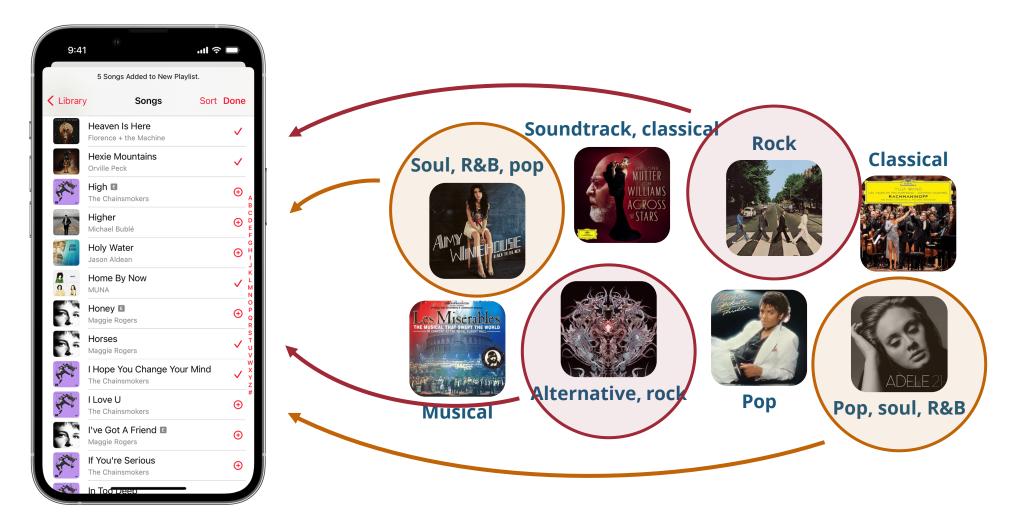
Share of respondents who have paid for audio downloads or streaming services from the following platforms^{*}



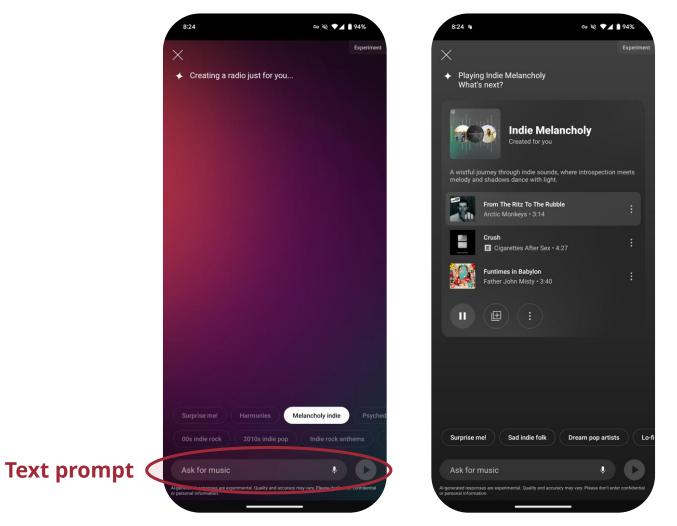
* in the 12 months prior to the survey 2,362 (UK)/4,944 (USA) respondents (18-64 y/o) surveyed Jul. 2023-Jun. 2024 Source: Statista Consumer Insights

Music Classification for Recommendation

Music Classification for Playlist Generation

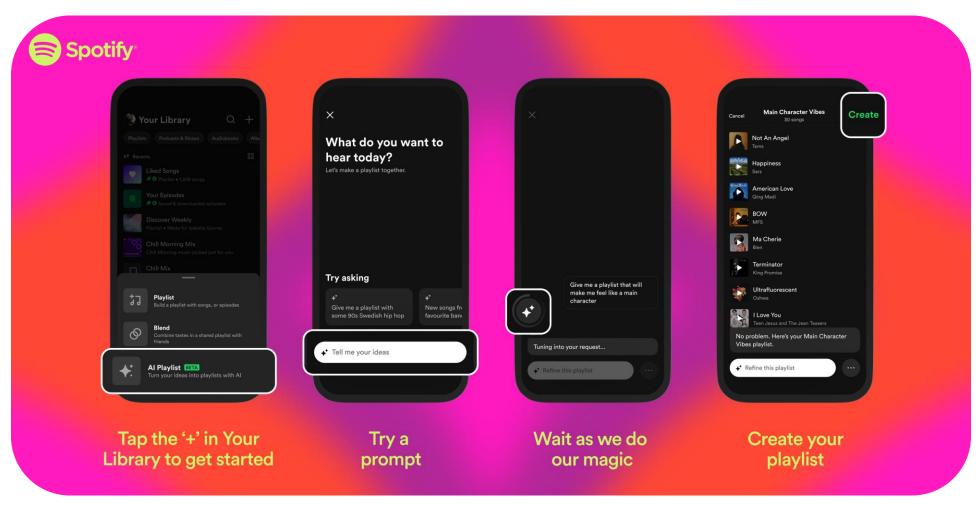


Ask Music (YouTube Music)



(Source: Android Police)

Al Playlist (Spotify)



(Source: Spotify)

Music Classification for Listening Behavior Analysis

YouTube's Music Recap

(Source: YouTube)

blog.youtube/news-and-events/2024-music-recap-youtube/ engineering.atspotify.com/2023/01/whats-a-listening-personality/

Spotify's Listening Personality

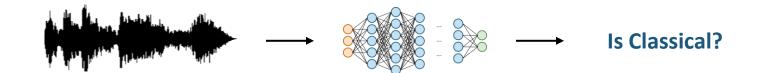
(Source: Spotify)

Types of Classification Tasks

Types of Classification Tasks

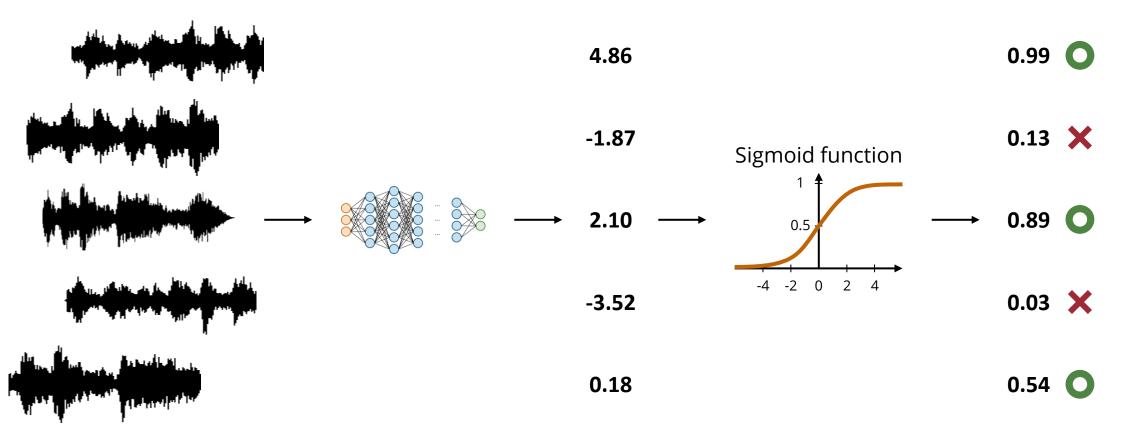
- **Binary** classification
- Multiclass classification
- Multi-label classification

Binary Classification

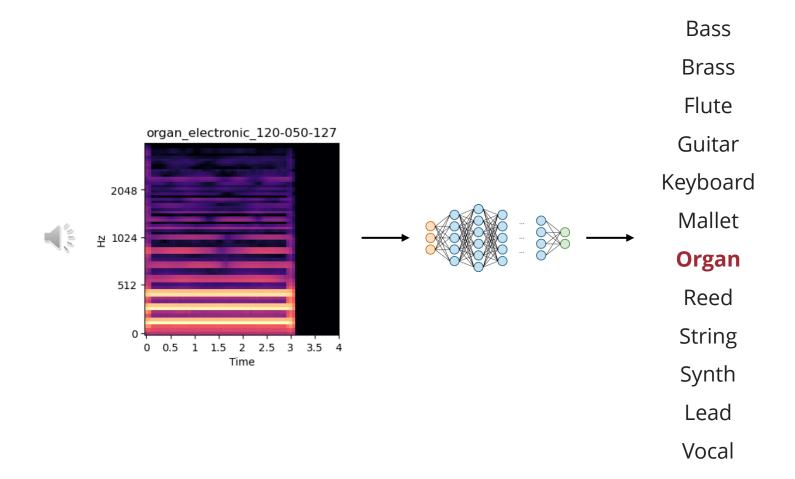


Binary Classification

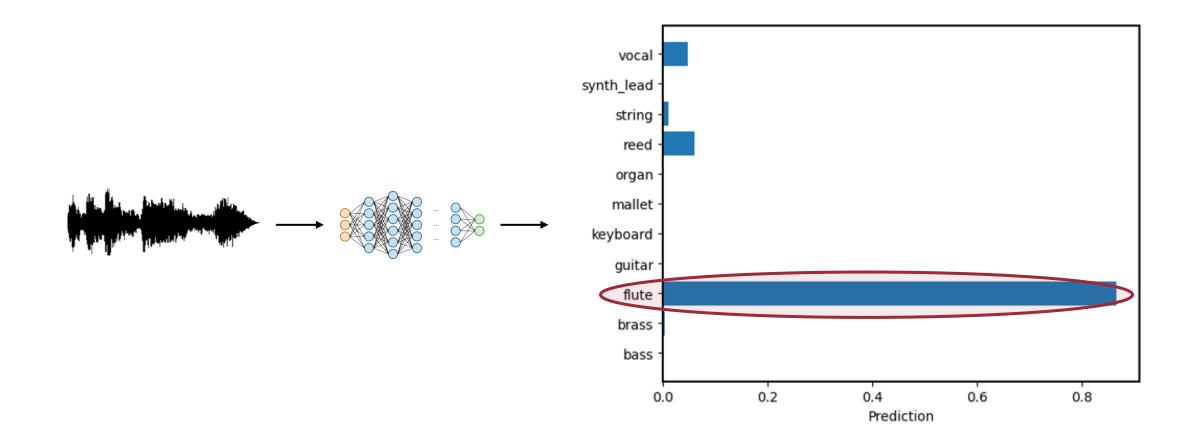
Is Classical?



Multiclass Classification



Multiclass Classification



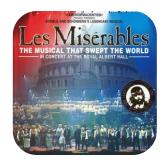
Multi-label Classification

Soul, R&B, pop

Soundtrack, classical

Rock

Classical



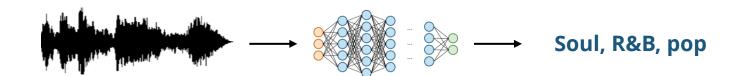
Musical

Alternative, rock

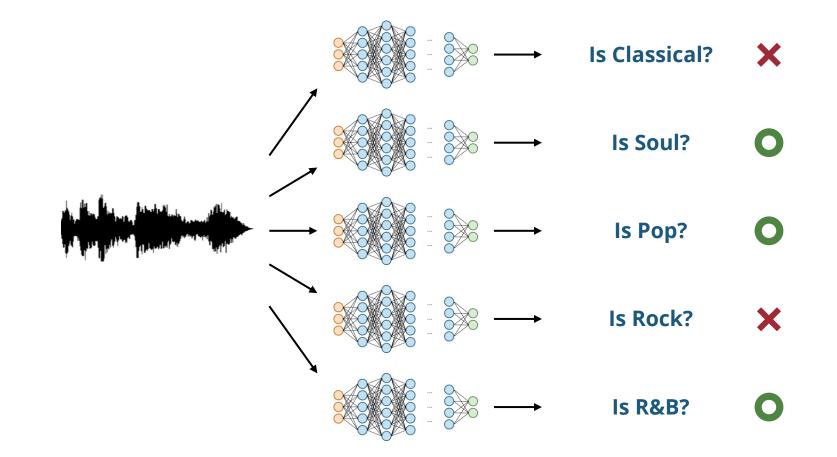
Рор

Pop, soul, R&B

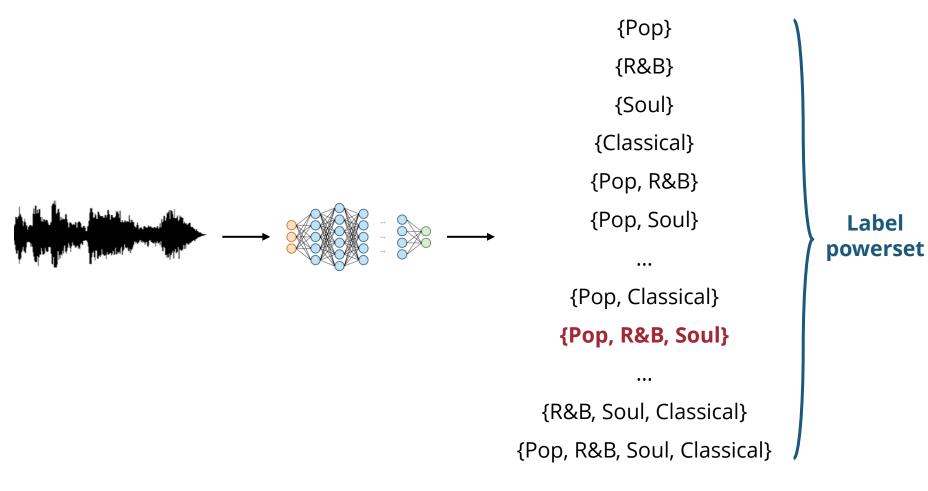
Multi-label Classification



Multi-label Classification as Binary Classification

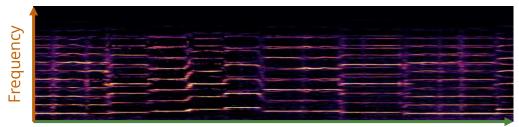


Multi-label Classification as Multi-class Classification



Input Features

- Waveform
- Time-frequency representation (spectrograms)
- Hand-crafted features or features provided in metadata
 - <u>Acoustic</u>: loudness, pitch, timbre
 - <u>Rhythmic</u>: beat, tempo, time signature
 - <u>Tonal</u>: key, scale, chords
 - Instrumentation, expressions, structures, etc.



Common Datasets

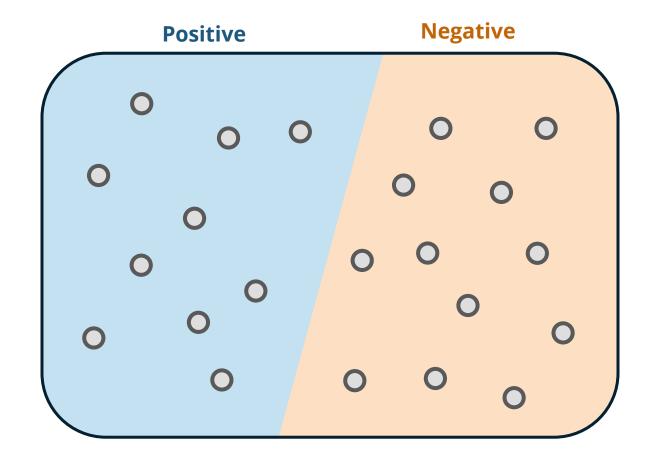
- **GTZAN:** 1,000 30-sec songs, 10 genres
- MagnaTagATune: 5,405 29-sec songs, 188 tags, 230 artists
- Million Song Dataset (MSD): 1M 30-sec songs, >500K tags, tricky to access
- Free Music Archive (FMA): >10K full songs, 163 genres
- MTG-Jamendo: 55K full songs, 195 tags
- AudioSet: 1M songs, YouTube URLs, low-quality audio
- **NSynth:** ~306K 4-sec instrument sounds

Evaluation Metrics

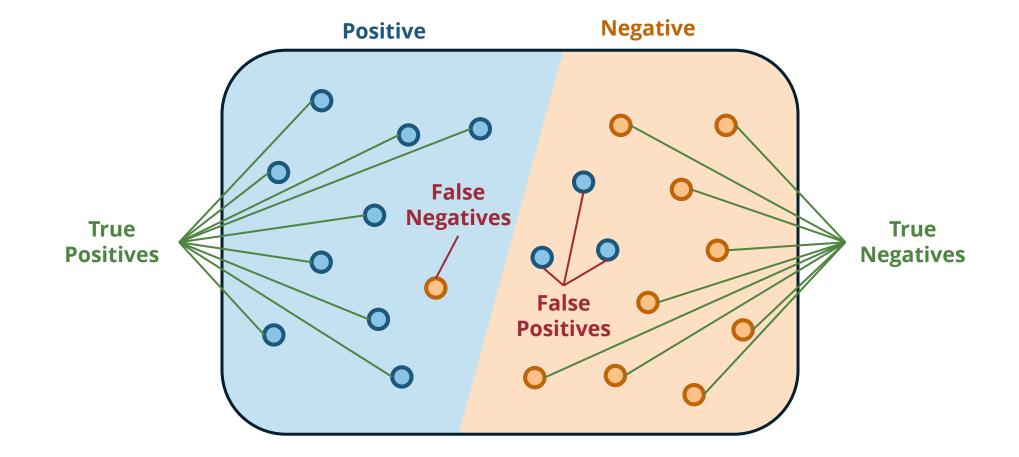
Evaluation Metrics

- **Key**: Capture what you care the most!
- The best evaluation metric depends on the actual use case
- Best to use several evaluation metrics to obtain a holistic view of your model's performance

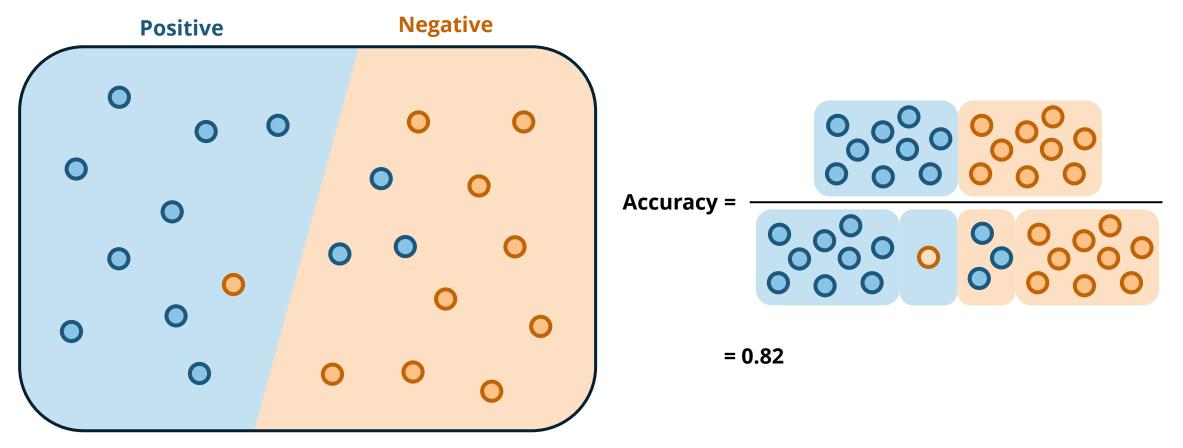
Toy Example: Binary Classification



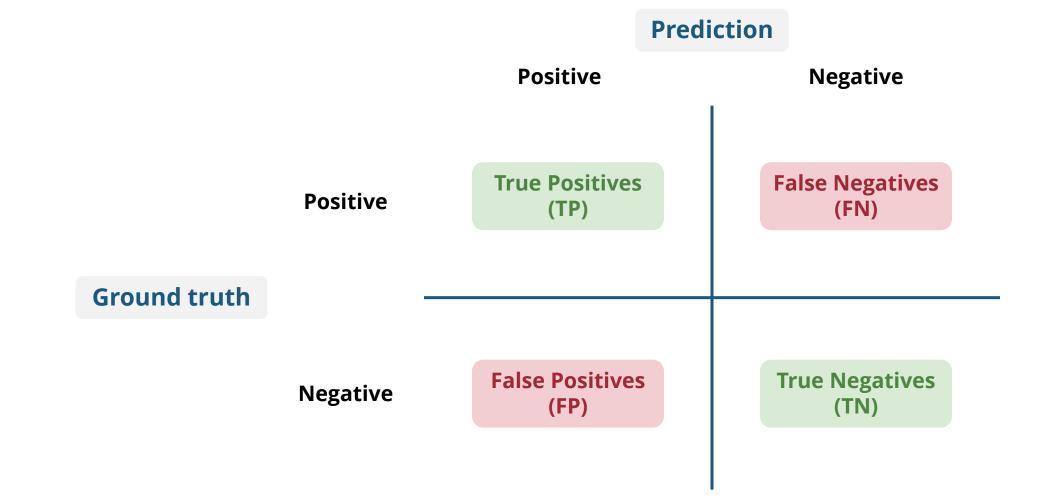
Toy Example: Binary Classification



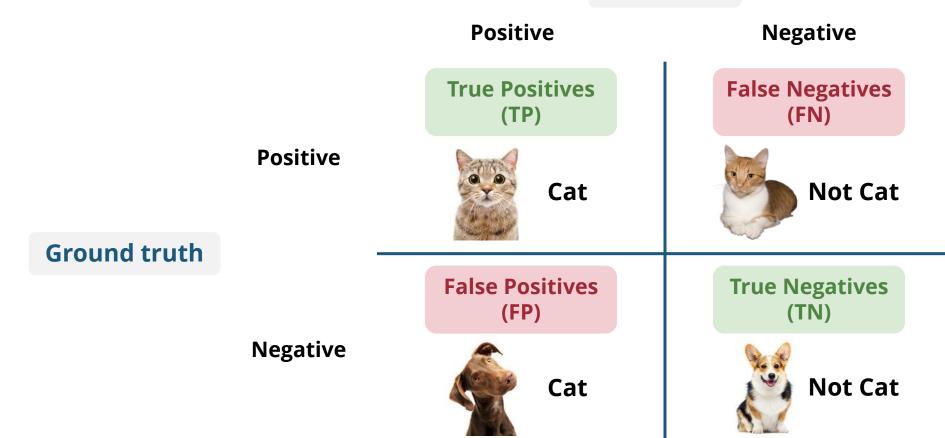
• **Definition**: Percentage of correct predictions across all classes



Confusion Matrix for Binary Classification



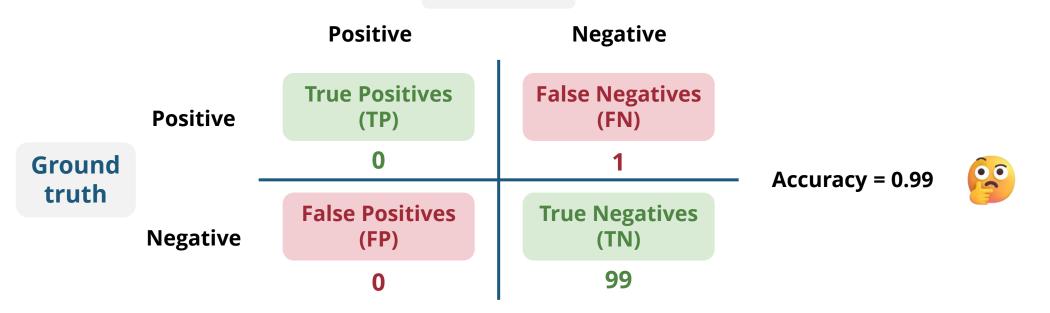
Confusion Matrix for Binary Classification



Prediction

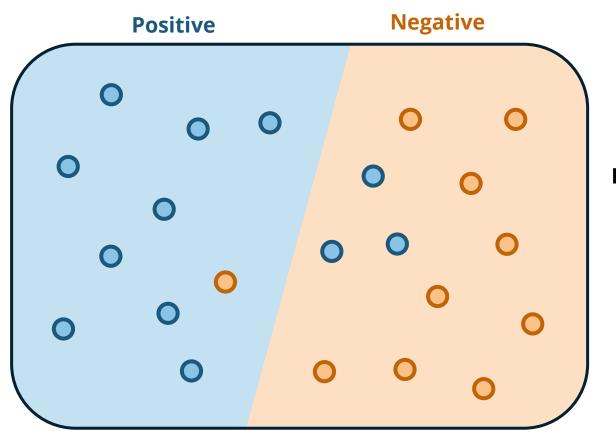
Accuracy on Imbalanced Datasets

- Accuracy does *not* work well on *imbalanced dataset*
- Take **a disease with a 1% prevalence** for example:
 - What if we simply say **negative to all diagnoses**?



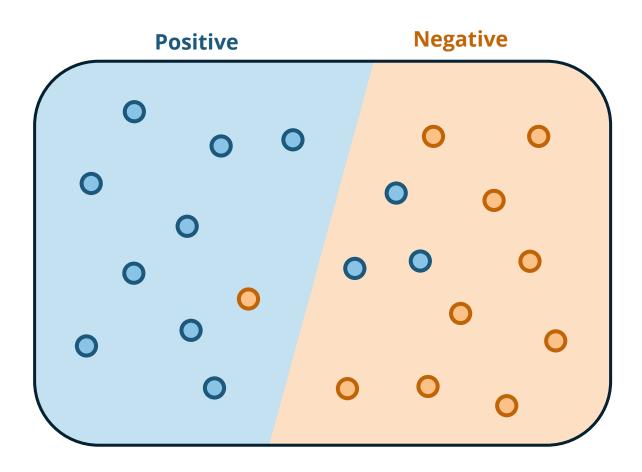
Prediction

Precision



Precision =
$$\frac{TP}{TP + FP}$$
 = $\frac{00000}{0000}$ = 0.75

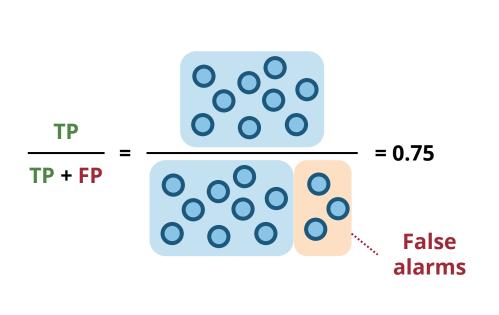
How often predictions for the positive are correct Recall



$$\operatorname{Recall} = \frac{\operatorname{TP}}{\operatorname{TP} + \operatorname{FN}} = \frac{00000}{0000} = 0.9$$

How well the model finds all positive instances in the dataset

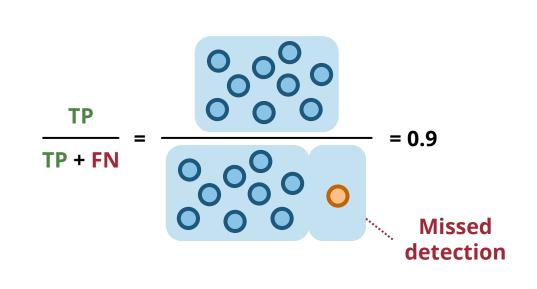
Precision vs Recall



Precision

How often predictions for the positive are correct

How well the model finds all positive instances in the dataset



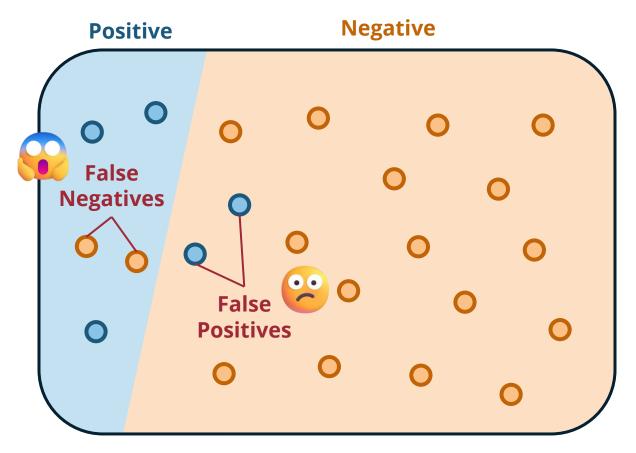
Recall

When should we care about Precision & Recall?

Rare cancer detection

Aim for high precision or high recall?

High recall ensures most cancer cases are identified.



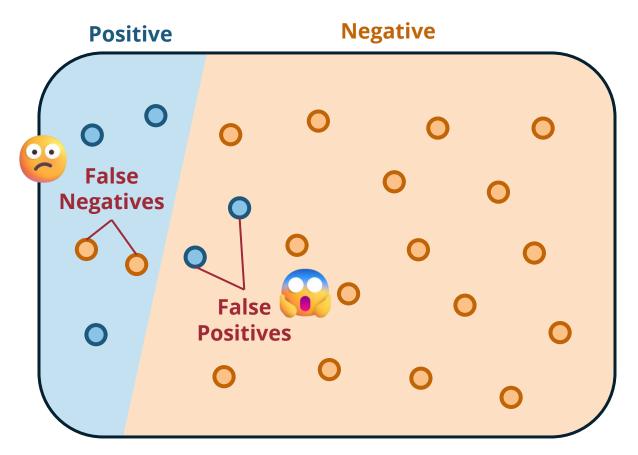
False alarms vs Missed detections

When should we care about Precision & Recall?

Music recommendation

Aim for high precision or high recall?

High precision ensures that the model won't recommend irrelevant items.



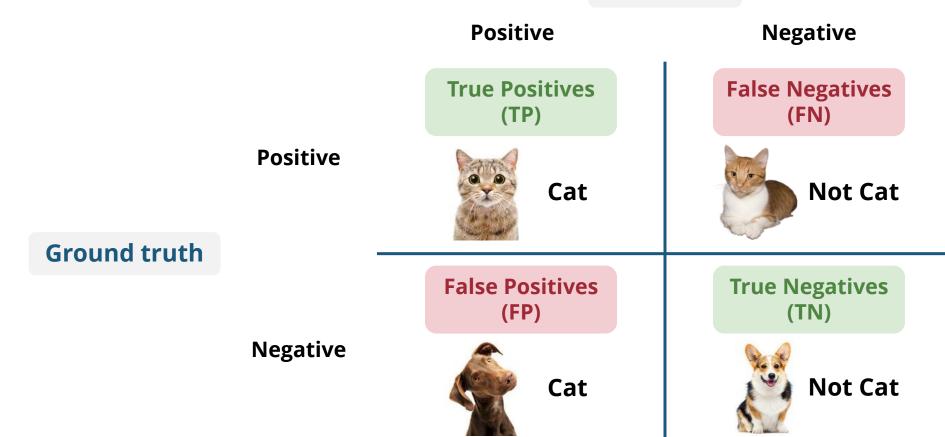
False alarms vs Missed recommendations

F1 Score: Considering both Precision & Recall

- Particularly useful for imbalanced datasets
 - Work better than accuracy when the dataset is imbalanced
 - For example, music search, retrieval, and recommendation

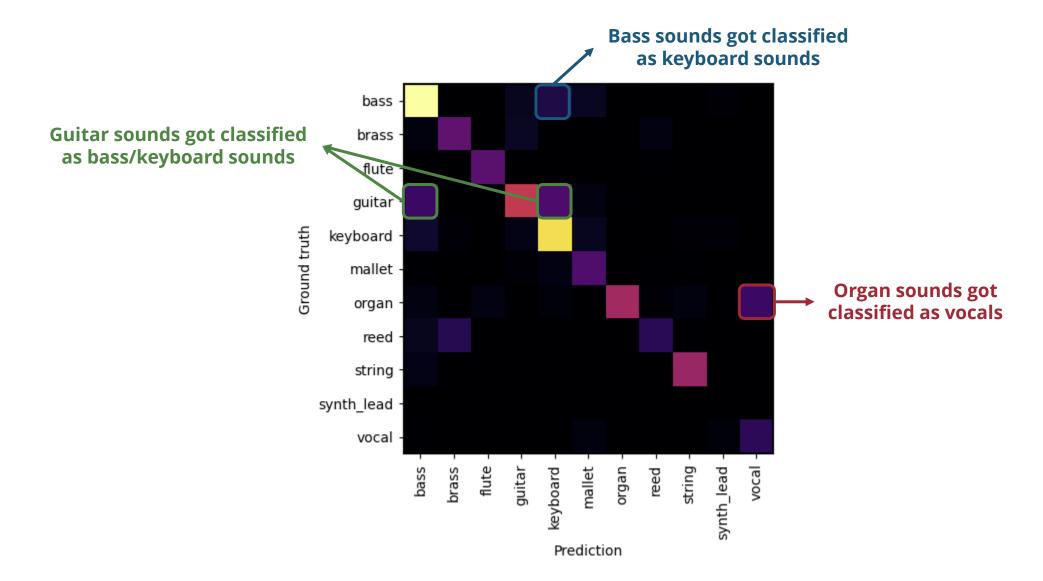
$$F_{1} = \frac{2}{\frac{1}{Precision} + \frac{1}{Recall}}$$
$$= \frac{2 \cdot Precision \cdot Recall}{Precision + Recall}$$

Confusion Matrix for Binary Classification



Prediction

Confusion Matrix for Multiclass Classification



Optional Reading

 Minz Won, Janne Spijkervet, and Keunwoo Choi, "<u>Music Classification:</u> <u>Beyond Supervised Learning, Towards Real-world Applications</u>," *Tutorials of ISMIR*, 2021.

Open Source Music Classification Models

- github.com/minzwon/sota-music-tagging-models
- github.com/jordipons/musicnn