
Music & AI

Lecture 10: Convolutional Neural Networks

PAT 498/598 (Winter 2025)

Instructor: Hao-Wen Dong



• Train a CNN that can classify audio files into their instrument families

 Input:  64x64 mel spectrogram

 Output:  11 instrument classes

 Using the NSynth dataset (Engel et al., 2017)

Homework 3: Musical Note Classification using CNNs

2
Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Douglas Eck, Karen Simonyan, and Mohammad Norouzi, “Neural Audio Synthesis of Musical Notes with WaveNet 
Autoencoders,” ICML, 2017.
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NSynth Dataset

3
Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Douglas Eck, Karen Simonyan, and Mohammad Norouzi, “Neural Audio Synthesis of Musical Notes with WaveNet 
Autoencoders,” ICML, 2017.

• A collection of 305,979 single-shot musical notes (Engel et al., 2017)

 Produced from 1,006 commercial sample libraries

 With different MIDI pitches (21–108) and velocities (25, 50, 75, 100, 127)

https://arxiv.org/pdf/1704.01279
https://arxiv.org/pdf/1704.01279


• Instructions will be released on Gradescope

• Due at 11:59pm ET on February 17

• Late submissions: 1 point deducted per day

Homework 3: Musical Note Classification using CNNs
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• Key: Make the training distribution closer to the target distribution

• First, we need to define our target distribution

• Then, we can try to

 Collect a diverse dataset covering that covers different parts of the target distribution

 Apply data augmentation to fill the gaps in the distribution

(Recap) In-distribution vs Out-of-distribution
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(Recap) Overfitting & Underfitting
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Underfitting Good fit! Overfitting

Model too inexpressive Model too expressive



(Recap) Train–Validation–Test Split
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(Recap) Train–Validation–Test Split
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Training
Test



(Recap) Train–Validation–Test Split

9

Training
TestValidation



(Recap) Training–Validation–Test Pipeline
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Training TestValidation

Optimize

Select



(Recap) Training vs Validation Losses
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Overfitting!



(Recap) Training vs Validation Losses
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Validation

Steps

Loss Pick the model with the 
lowest validation loss



(Recap) Dropout
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(Recap) Dropout
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Test
error 
rate

Weight updates

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” JMLR, 2014.
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Each neuron may be removed 
with probability 𝒑 during training

https://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf


Convolutional Neural Networks (CNNs)
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• Intuition: Learn reusable local pattern detector

• Widely used in computer vision

• Also used for music and audio

 Representing music as piano rolls

 Representing audio as spectrograms

Convolutional Neural Networks (CNNs)
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Reusable Pattern Detectors
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Reusable Pattern Detectors
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Reusable Pattern Detectors
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Reusable Pattern Detectors
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Convolutional Neural Network (CNNs)
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Conv Pooling PoolingConv⋯ Flatten Dense Dense⋯

Repeat several times Fully-connected layers

Input
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⋮
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Output

⋮



2D Convolution
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2D Convolution
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2D Convolution
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2D Convolution
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2D Convolution
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2D Convolution
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2D Convolution
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2D Convolution
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2D Convolution
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2D Convolution
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• A convolutional layer consists of many learnable kernels (channels)

Convolutional Layer
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Convolutional Neural Network (CNNs)
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Conv Pooling PoolingConv⋯ Flatten Dense Dense⋯

Repeat several times Fully-connected layers
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Padding
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Shapes
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Striding
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Striding
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Max Pooling Layer
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Downsample and keep the 
strongest activation in each block



Convolutional Neural Network (CNNs)
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Conv Pooling PoolingConv⋯ Flatten Dense Dense⋯

Repeat several times Fully-connected layers

Input

Dog
Cat

Penguin
Bear

⋮
Rabbit

Output

⋮

Channels increase as we go deeperRGB: 3 channels
(Grayscale: 1 channel)



A Toy Example
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16

Convolutional layer

nn.Conv2d(in_channels=1, out_channels=4, kernel_size=3, padding=“same”)



A Toy Example
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Convolutional layer

nn.Conv2d(in_channels=1, out_channels=4, kernel_size=3, padding=“same”)



A Toy Example
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Convolutional layer

nn.Conv2d(in_channels=1, out_channels=4, kernel_size=3, padding=“same”)



A Toy Example
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Convolutional layer

nn.Conv2d(in_channels=1, out_channels=4, kernel_size=3, padding=“same”)



A Toy Example
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Convolutional layer

nn.Conv2d(in_channels=1, out_channels=4, kernel_size=3, padding=“same”)



A Toy Example
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Convolutional layer

nn.Conv2d(in_channels=1, out_channels=4, kernel_size=3, padding=“same”)



A Toy Example
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Pooling layerConvolutional layer

nn.MaxPool2d(kernel_size=2, stride=2)



A Toy Example
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8
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Pooling layerConvolutional layer

nn.MaxPool2d(kernel_size=2, stride=2)



A Toy Example
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16
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8
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nn.Conv2d(4, 8, 3, padding=“same”)
nn.MaxPool2d(2, 2)

torch.flatten()

nn.Conv2d(1, 4, 3, padding=“same”)
nn.MaxPool2d(2, 2)

nn.Linear(128, 1)

Is cat?



A Toy Example
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8
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nn.Conv2d(4, 8, 3, padding=“same”)
nn.MaxPool2d(2, 2)

torch.flatten()

nn.Conv2d(1, 4, 3, padding=“same”)
nn.MaxPool2d(2, 2)

nn.Linear(128, 1)

Is cat?



A Toy Example
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nn.Conv2d(4, 8, 3, padding=“same”)
nn.MaxPool2d(2, 2)

torch.flatten()

nn.Conv2d(1, 4, 3, padding=“same”)
nn.MaxPool2d(2, 2)

nn.Linear(128, 3)

Cat

Dog

Bear



A Toy Example

51

16

16

4

4

8
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nn.Conv2d(4, 8, 3, padding=“same”)
nn.MaxPool2d(2, 2)

torch.flatten()

nn.Conv2d(1, 4, 3, padding=“same”)
nn.MaxPool2d(2, 2)

nn.Linear(128, 3)

Cat

Dog

Bear



A Real Example
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Input 
channels

Output 
channels

Kernel size

Input: 1     x 64 x 64

16   x 32 x 32

32   x 16 x 16

64   x 8   x 8

128 x 4   x 4

= 16384

= 8192

= 4096

= 2048

Total number of 
features decrease 
as we go deeper

More channels, 
lower resolution 
as we go deeper



A Real Example
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Input 
channels

Output 
channels

Kernel size

How many parameters do 
we have in each layer?

(3 x 3 x 1 + 1) x 16

(3 x 3 x 16 + 1) x 32

(3 x 3 x 32 + 1) x 64

(3 x 3 x 64 + 1) x 128

(2048 + 1) x 11

= 160

= 4640

= 18496

= 73856

= 22539



• Learn local patterns

• Invariant to shifts

 Also called translational invariance

• Reuse the learned filters across

 Different parts of the image

 Across different images

• Higher parameter-efficiency against fully-connected neural network

Benefits of CNNs
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What does a CNN Learn?
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Learned CNN Kernels in a Trained AlexNet

56

1st convolutional layer

11x11 
kernels

2nd convolutional layer

5x5 
kernels

cs231n.github.io/understanding-cnn/

https://cs231n.github.io/understanding-cnn/


Learned CNN Kernels in a Trained AlexNet

57Matthew D. Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks,” ECCV, 2014.

Top activations

Learned CNN kernels

Layer 1

Boundary 
detector

Color detector

https://arxiv.org/pdf/1311.2901


Learned CNN Kernels in a Trained AlexNet

58Matthew D. Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks,” ECCV, 2014.

Circle 
detector

Corner 
detector

Learned CNN kernels Top activations

https://arxiv.org/pdf/1311.2901


Learned CNN Kernels in a Trained AlexNet

59Matthew D. Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks,” ECCV, 2014.

Grid detector

Human detector

Learned CNN kernels Top activations

https://arxiv.org/pdf/1311.2901


Learned CNN Kernels in a Trained AlexNet

60Matthew D. Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks,” ECCV, 2014.

Learned CNN kernels Top activations

https://arxiv.org/pdf/1311.2901


Learned CNN Kernels in a Trained AlexNet

61Matthew D. Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks,” ECCV, 2014.

Learned CNN kernels Top activations

https://arxiv.org/pdf/1311.2901


Activations in a Trained AlexNet

62cs231n.github.io/understanding-cnn/

1st convolutional layer

What’s this!?

https://cs231n.github.io/understanding-cnn/


Activations in a Trained AlexNet

63cs231n.github.io/understanding-cnn/

1st convolutional layer

What’s this!?

https://cs231n.github.io/understanding-cnn/


Activations in a Trained AlexNet

64cs231n.github.io/understanding-cnn/

1st convolutional layer

What’s this!?

https://cs231n.github.io/understanding-cnn/


Activations in a Trained AlexNet

65cs231n.github.io/understanding-cnn/

1st convolutional layer

What’s this!?

Brightness+
Contrast+

https://cs231n.github.io/understanding-cnn/


Activations in a Trained AlexNet

66cs231n.github.io/understanding-cnn/

1st convolutional layer 5th convolutional layer

https://cs231n.github.io/understanding-cnn/


Activations in a Trained AlexNet

67cs231n.github.io/understanding-cnn/

1st convolutional layer 5th convolutional layer

Brightness+
Contrast+

Brightness+
Contrast+

https://cs231n.github.io/understanding-cnn/


What does a CNN Learn?

68cs231n.github.io/understanding-cnn/

https://cs231n.github.io/understanding-cnn/
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