
Music & AI

Lecture 10: Convolutional Neural Networks

PAT 498/598 (Winter 2025)

Instructor: Hao-Wen Dong

• Train a CNN that can classify audio files into their instrument families

 Input: 64x64 mel spectrogram

 Output: 11 instrument classes

 Using the NSynth dataset (Engel et al., 2017)

Homework 3: Musical Note Classification using CNNs

2
Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Douglas Eck, Karen Simonyan, and Mohammad Norouzi, “Neural Audio Synthesis of Musical Notes with WaveNet
Autoencoders,” ICML, 2017.

Bass
Brass
Flute

Guitar
Keyboard

Mallet
Organ
Reed
String

Synth Lead
Vocal

https://arxiv.org/pdf/1704.01279
https://arxiv.org/pdf/1704.01279

NSynth Dataset

3
Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Douglas Eck, Karen Simonyan, and Mohammad Norouzi, “Neural Audio Synthesis of Musical Notes with WaveNet
Autoencoders,” ICML, 2017.

• A collection of 305,979 single-shot musical notes (Engel et al., 2017)

 Produced from 1,006 commercial sample libraries

 With different MIDI pitches (21–108) and velocities (25, 50, 75, 100, 127)

https://arxiv.org/pdf/1704.01279
https://arxiv.org/pdf/1704.01279

• Instructions will be released on Gradescope

• Due at 11:59pm ET on February 17

• Late submissions: 1 point deducted per day

Homework 3: Musical Note Classification using CNNs

4

• Key: Make the training distribution closer to the target distribution

• First, we need to define our target distribution

• Then, we can try to

 Collect a diverse dataset covering that covers different parts of the target distribution

 Apply data augmentation to fill the gaps in the distribution

(Recap) In-distribution vs Out-of-distribution

5

(Recap) Overfitting & Underfitting

6

Underfitting Good fit! Overfitting

Model too inexpressive Model too expressive

(Recap) Train–Validation–Test Split

7

(Recap) Train–Validation–Test Split

8

Training
Test

(Recap) Train–Validation–Test Split

9

Training
TestValidation

(Recap) Training–Validation–Test Pipeline

10

Training TestValidation

Optimize

Select

(Recap) Training vs Validation Losses

11

Training

Validation

Steps

Loss

Validation loss

Training loss

Validation loss

Training loss

Overfitting!

(Recap) Training vs Validation Losses

12

Training

Validation

Steps

Loss Pick the model with the
lowest validation loss

(Recap) Dropout

13

𝐱

⋮
⋮

ො𝐲

⋮⋮

Each neuron may be removed
with probability 𝒑 during training

𝐱

⋮
⋮

ො𝐲

⋮⋮

𝐱

⋮
⋮

ො𝐲

⋮⋮

𝐱

⋮
⋮

ො𝐲

⋮⋮

𝐱

⋮
⋮

ො𝐲

⋮⋮

Dropout rate

(Recap) Dropout

14

Test
error
rate

Weight updates

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” JMLR, 2014.

𝐱

⋮
⋮

ො𝐲

⋮⋮

Each neuron may be removed
with probability 𝒑 during training

https://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

Convolutional Neural Networks (CNNs)

15

• Intuition: Learn reusable local pattern detector

• Widely used in computer vision

• Also used for music and audio

 Representing music as piano rolls

 Representing audio as spectrograms

Convolutional Neural Networks (CNNs)

16

Reusable Pattern Detectors

17

Reusable Pattern Detectors

18

Reusable Pattern Detectors

19

Reusable Pattern Detectors

20

Convolutional Neural Network (CNNs)

21

Conv Pooling PoolingConv⋯ Flatten Dense Dense⋯

Repeat several times Fully-connected layers

Input

Dog
Cat

Penguin
Bear

⋮
Rabbit

Output

⋮

2D Convolution

22

-1 1 -1 -1

-1 -1 1 -1

-1 -1 -1 1

1 -1 -1 -1

-1 1 -1

-1 -1 1

1 -1 -1

∗ =

KernelInput Output

9

2D Convolution

23

-1 1 -1 -1

-1 -1 1 -1

-1 -1 -1 1

1 -1 -1 -1

-1 1 -1

-1 -1 1

1 -1 -1

∗ =

KernelInput Output

1 × 1 + −1 × −1 + −1 × −1
+ −1 × −1 + 1 × 1 + −1 × −1
+ −1 × −1 + −1 × −1 + 1 × 1

= 𝟗

Elementwise multiplication

-19

2D Convolution

24

-1 1 -1 -1

-1 -1 1 -1

-1 -1 -1 1

1 -1 -1 -1

-1 1 -1

-1 -1 1

1 -1 -1

∗ =

KernelInput Output

−1 × 1 + −1 × −1 + −1 × −1
+ −1 × 1 + −1 × 1 + −1 × −1
+ −1 × −1 + 1 × −1 + −1 × 1

= −𝟏

-1

-19

2D Convolution

25

-1 1 -1 -1

-1 -1 1 -1

-1 -1 -1 1

1 -1 -1 -1

-1 1 -1

-1 -1 1

1 -1 -1

∗ =

KernelInput Output

−1 × 1 + 1 × −1 + −1 × −1
+ −1 × −1 + −1 × 1 + 1 × −1
+ −1 × −1 + −1 × −1 + −1 × 1

= −𝟏

9-1

-19

2D Convolution

26

-1 1 -1 -1

-1 -1 1 -1

-1 -1 -1 1

1 -1 -1 -1

-1 1 -1

-1 -1 1

1 -1 -1

∗ =

KernelInput Output

1 × 1 + −1 × −1 + −1 × −1
+ −1 × −1 + 1 × 1 + −1 × −1
+ −1 × −1 + −1 × −1 + 1 × 1

= 𝟗

9

9

2D Convolution

27

-1 1 -1 -1

-1 -1 1 -1

-1 -1 -1 1

1 -1 -1 -1

-1 1 -1

-1 -1 1

1 -1 -1

∗ =

KernelInput Output

High activation when
the local pattern is
close to the kernel

-1

-1

2D Convolution

28

-1 1 -1 -1

-1 -1 1 -1

-1 -1 -1 1

1 -1 -1 -1

-1 1 -1

-1 -1 1

1 -1 -1

∗ =

KernelInput Output

Low activation when
the local pattern

differs from the kernel

9-1

-19

2D Convolution

29

-1 1 -1 -1

-1 -1 1 -1

-1 -1 -1 1

1 -1 -1 -1

-1 1 -1

-1 -1 1

1 -1 -1

∗ =

KernelInput Output

51

11

2D Convolution

30

-1 1 -1 -1

1 -1 -1 -1

-1 -1 -1 -1

-1 -1 1 -1

-1 1 -1

-1 -1 1

1 -1 -1

∗ =

KernelInput Output

1-1

-19

2D Convolution

31

-1 1 -1 -1

1 -1 -1 -1

-1 -1 -1 -1

-1 -1 1 -1

-1 1 -1

1 -1 -1

-1 -1 1

∗ =

KernelInput Output

• A convolutional layer consists of many learnable kernels (channels)

Convolutional Layer

32

-1 1 -1

-1 1 -1

-1 1 -1

1 1 1

-1 -1 -1

-1 -1 -1

-1 1 1

-1 1 1

-1 1 1

1 1 -1

1 1 -1

1 1 -1

-1 1 -1

-1 -1 1

1 -1 -1

-1 1 -1

1 -1 -1

-1 -1 1

Convolutional layer

channels

To be learned

Each kernel detects
a local pattern

Convolutional Neural Network (CNNs)

33

Conv Pooling PoolingConv⋯ Flatten Dense Dense⋯

Repeat several times Fully-connected layers

Input

Dog
Cat

Penguin
Bear

⋮
Rabbit

Output

⋮

Padding

34

-1 1 -1 -1

-1 -1 1 -1

-1 -1 -1 1

1 -1 -1 -1

-1 1 -1

-1 -1 1

1 -1 -1

9-1

-19

∗ =

-1 1 -1 -1

-1 -1 1 -1

-1 -1 -1 1

1 -1 -1 -1

0 0 0 0

0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

-1 1 -1

-1 -1 1

1 -1 -1

-2 9 -1 0

0 -1 9 -2

2 0 -2 4

4 -2 0 2

=∗

padding=“valid”

padding=“same”

Keep the output of the
same size as the input

Shapes

35

∗ =Input

𝑵

𝑵 Kernel

𝒌

𝒌 Output

𝑵
−

𝒌
+

𝟏

𝑵 − 𝒌 + 𝟏

padding=“valid”

padding=“same” ∗ =Input

𝑵

𝑵 Kernel

𝒌

𝒌 Output𝑵

𝑵

Striding

36

-1 1 -1 -1

-1 -1 1 -1

-1 -1 -1 1

1 -1 -1 -1

0 0 0 0

0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

-1 1 -1

-1 -1 1

1 -1 -1

90

04

∗ =

stride=2

Striding

37

-1 1 -1 -1

-1 -1 1 -1

-1 -1 -1 1

1 -1 -1 -1

0 0 0 0

0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

-1 1 -1

-1 -1 1

1 -1 -1

42

24

∗ =

stride=3

Max Pooling Layer

38

-2 9 -1 0

0 -1 9 -2

2 0 -2 4

4 -2 0 2

92

29

Downsample and keep the
strongest activation in each block

Convolutional Neural Network (CNNs)

39

Conv Pooling PoolingConv⋯ Flatten Dense Dense⋯

Repeat several times Fully-connected layers

Input

Dog
Cat

Penguin
Bear

⋮
Rabbit

Output

⋮

Channels increase as we go deeperRGB: 3 channels
(Grayscale: 1 channel)

A Toy Example

40

16

16

16

16

Convolutional layer

nn.Conv2d(in_channels=1, out_channels=4, kernel_size=3, padding=“same”)

A Toy Example

41

16

16

16

16

Convolutional layer

nn.Conv2d(in_channels=1, out_channels=4, kernel_size=3, padding=“same”)

A Toy Example

42

16

16

16

16

Convolutional layer

nn.Conv2d(in_channels=1, out_channels=4, kernel_size=3, padding=“same”)

A Toy Example

43

16

16

16

16

Convolutional layer

nn.Conv2d(in_channels=1, out_channels=4, kernel_size=3, padding=“same”)

A Toy Example

44

16

16

16

16

Convolutional layer

nn.Conv2d(in_channels=1, out_channels=4, kernel_size=3, padding=“same”)

A Toy Example

45

16

16

16

16

Convolutional layer

nn.Conv2d(in_channels=1, out_channels=4, kernel_size=3, padding=“same”)

A Toy Example

46

16

16

16

16

8

8

Pooling layerConvolutional layer

nn.MaxPool2d(kernel_size=2, stride=2)

A Toy Example

47

16

16

16

16

8

8

Pooling layerConvolutional layer

nn.MaxPool2d(kernel_size=2, stride=2)

A Toy Example

48

16

16

4

4

8

8

nn.Conv2d(4, 8, 3, padding=“same”)
nn.MaxPool2d(2, 2)

torch.flatten()

nn.Conv2d(1, 4, 3, padding=“same”)
nn.MaxPool2d(2, 2)

nn.Linear(128, 1)

Is cat?

A Toy Example

49

16

16

4

4

8

8

nn.Conv2d(4, 8, 3, padding=“same”)
nn.MaxPool2d(2, 2)

torch.flatten()

nn.Conv2d(1, 4, 3, padding=“same”)
nn.MaxPool2d(2, 2)

nn.Linear(128, 1)

Is cat?

A Toy Example

50

16

16

4

4

8

8

nn.Conv2d(4, 8, 3, padding=“same”)
nn.MaxPool2d(2, 2)

torch.flatten()

nn.Conv2d(1, 4, 3, padding=“same”)
nn.MaxPool2d(2, 2)

nn.Linear(128, 3)

Cat

Dog

Bear

A Toy Example

51

16

16

4

4

8

8

nn.Conv2d(4, 8, 3, padding=“same”)
nn.MaxPool2d(2, 2)

torch.flatten()

nn.Conv2d(1, 4, 3, padding=“same”)
nn.MaxPool2d(2, 2)

nn.Linear(128, 3)

Cat

Dog

Bear

A Real Example

52

Input
channels

Output
channels

Kernel size

Input: 1 x 64 x 64

16 x 32 x 32

32 x 16 x 16

64 x 8 x 8

128 x 4 x 4

= 16384

= 8192

= 4096

= 2048

Total number of
features decrease
as we go deeper

More channels,
lower resolution
as we go deeper

A Real Example

53

Input
channels

Output
channels

Kernel size

How many parameters do
we have in each layer?

(3 x 3 x 1 + 1) x 16

(3 x 3 x 16 + 1) x 32

(3 x 3 x 32 + 1) x 64

(3 x 3 x 64 + 1) x 128

(2048 + 1) x 11

= 160

= 4640

= 18496

= 73856

= 22539

• Learn local patterns

• Invariant to shifts

 Also called translational invariance

• Reuse the learned filters across

 Different parts of the image

 Across different images

• Higher parameter-efficiency against fully-connected neural network

Benefits of CNNs

54

What does a CNN Learn?

55

Learned CNN Kernels in a Trained AlexNet

56

1st convolutional layer

11x11
kernels

2nd convolutional layer

5x5
kernels

cs231n.github.io/understanding-cnn/

https://cs231n.github.io/understanding-cnn/

Learned CNN Kernels in a Trained AlexNet

57Matthew D. Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks,” ECCV, 2014.

Top activations

Learned CNN kernels

Layer 1

Boundary
detector

Color detector

https://arxiv.org/pdf/1311.2901

Learned CNN Kernels in a Trained AlexNet

58Matthew D. Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks,” ECCV, 2014.

Circle
detector

Corner
detector

Learned CNN kernels Top activations

https://arxiv.org/pdf/1311.2901

Learned CNN Kernels in a Trained AlexNet

59Matthew D. Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks,” ECCV, 2014.

Grid detector

Human detector

Learned CNN kernels Top activations

https://arxiv.org/pdf/1311.2901

Learned CNN Kernels in a Trained AlexNet

60Matthew D. Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks,” ECCV, 2014.

Learned CNN kernels Top activations

https://arxiv.org/pdf/1311.2901

Learned CNN Kernels in a Trained AlexNet

61Matthew D. Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks,” ECCV, 2014.

Learned CNN kernels Top activations

https://arxiv.org/pdf/1311.2901

Activations in a Trained AlexNet

62cs231n.github.io/understanding-cnn/

1st convolutional layer

What’s this!?

https://cs231n.github.io/understanding-cnn/

Activations in a Trained AlexNet

63cs231n.github.io/understanding-cnn/

1st convolutional layer

What’s this!?

https://cs231n.github.io/understanding-cnn/

Activations in a Trained AlexNet

64cs231n.github.io/understanding-cnn/

1st convolutional layer

What’s this!?

https://cs231n.github.io/understanding-cnn/

Activations in a Trained AlexNet

65cs231n.github.io/understanding-cnn/

1st convolutional layer

What’s this!?

Brightness+
Contrast+

https://cs231n.github.io/understanding-cnn/

Activations in a Trained AlexNet

66cs231n.github.io/understanding-cnn/

1st convolutional layer 5th convolutional layer

https://cs231n.github.io/understanding-cnn/

Activations in a Trained AlexNet

67cs231n.github.io/understanding-cnn/

1st convolutional layer 5th convolutional layer

Brightness+
Contrast+

Brightness+
Contrast+

https://cs231n.github.io/understanding-cnn/

What does a CNN Learn?

68cs231n.github.io/understanding-cnn/

https://cs231n.github.io/understanding-cnn/

	Slide 1: Music & AI
	Slide 2: Homework 3: Musical Note Classification using CNNs
	Slide 3: NSynth Dataset
	Slide 4: Homework 3: Musical Note Classification using CNNs
	Slide 5: (Recap) In-distribution vs Out-of-distribution
	Slide 6: (Recap) Overfitting & Underfitting
	Slide 7: (Recap) Train–Validation–Test Split
	Slide 8: (Recap) Train–Validation–Test Split
	Slide 9: (Recap) Train–Validation–Test Split
	Slide 10: (Recap) Training–Validation–Test Pipeline
	Slide 11: (Recap) Training vs Validation Losses
	Slide 12: (Recap) Training vs Validation Losses
	Slide 13: (Recap) Dropout
	Slide 14: (Recap) Dropout
	Slide 15: Convolutional Neural Networks (CNNs)
	Slide 16: Convolutional Neural Networks (CNNs)
	Slide 17: Reusable Pattern Detectors
	Slide 18: Reusable Pattern Detectors
	Slide 19: Reusable Pattern Detectors
	Slide 20: Reusable Pattern Detectors
	Slide 21: Convolutional Neural Network (CNNs)
	Slide 22: 2D Convolution
	Slide 23: 2D Convolution
	Slide 24: 2D Convolution
	Slide 25: 2D Convolution
	Slide 26: 2D Convolution
	Slide 27: 2D Convolution
	Slide 28: 2D Convolution
	Slide 29: 2D Convolution
	Slide 30: 2D Convolution
	Slide 31: 2D Convolution
	Slide 32: Convolutional Layer
	Slide 33: Convolutional Neural Network (CNNs)
	Slide 34: Padding
	Slide 35: Shapes
	Slide 36: Striding
	Slide 37: Striding
	Slide 38: Max Pooling Layer
	Slide 39: Convolutional Neural Network (CNNs)
	Slide 40: A Toy Example
	Slide 41: A Toy Example
	Slide 42: A Toy Example
	Slide 43: A Toy Example
	Slide 44: A Toy Example
	Slide 45: A Toy Example
	Slide 46: A Toy Example
	Slide 47: A Toy Example
	Slide 48: A Toy Example
	Slide 49: A Toy Example
	Slide 50: A Toy Example
	Slide 51: A Toy Example
	Slide 52: A Real Example
	Slide 53: A Real Example
	Slide 54: Benefits of CNNs
	Slide 55: What does a CNN Learn?
	Slide 56: Learned CNN Kernels in a Trained AlexNet
	Slide 57: Learned CNN Kernels in a Trained AlexNet
	Slide 58: Learned CNN Kernels in a Trained AlexNet
	Slide 59: Learned CNN Kernels in a Trained AlexNet
	Slide 60: Learned CNN Kernels in a Trained AlexNet
	Slide 61: Learned CNN Kernels in a Trained AlexNet
	Slide 62: Activations in a Trained AlexNet
	Slide 63: Activations in a Trained AlexNet
	Slide 64: Activations in a Trained AlexNet
	Slide 65: Activations in a Trained AlexNet
	Slide 66: Activations in a Trained AlexNet
	Slide 67: Activations in a Trained AlexNet
	Slide 68: What does a CNN Learn?

