PAT 498/598 (Winter 2025)

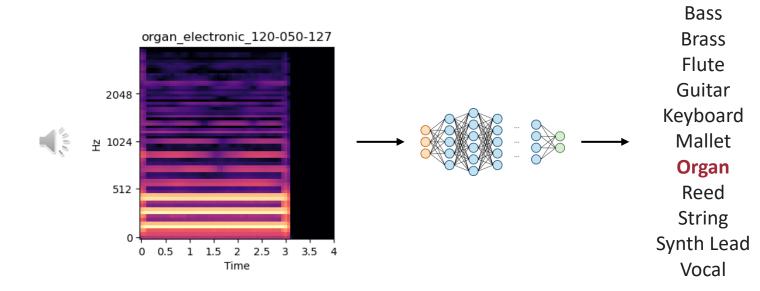
Music & Al

Lecture 10: Convolutional Neural Networks

Instructor: Hao-Wen Dong

Homework 3: Musical Note Classification using CNNs

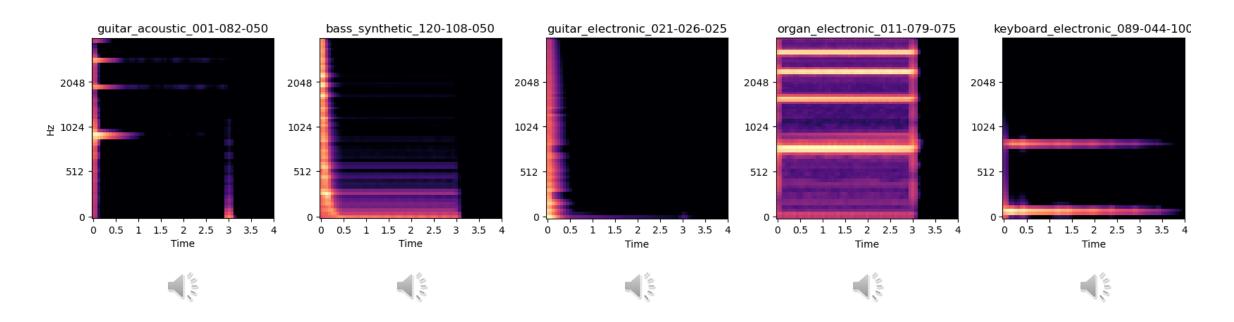
- Train a CNN that can classify audio files into their **instrument families**
 - Input: 64x64 mel spectrogram
 - Output: 11 instrument classes
 - Using the **NSynth** dataset (Engel et al., 2017)



Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Douglas Eck, Karen Simonyan, and Mohammad Norouzi, "<u>Neural Audio Synthesis of Musical Notes with WaveNet</u> <u>Autoencoders</u>," *ICML*, 2017.

NSynth Dataset

- A collection of 305,979 single-shot musical notes (Engel et al., 2017)
 - Produced from 1,006 commercial sample libraries
 - With different **MIDI pitches** (21–108) and **velocities** (25, 50, 75, 100, 127)



Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Douglas Eck, Karen Simonyan, and Mohammad Norouzi, "Neural Audio Synthesis of Musical Notes with WaveNet Autoencoders," ICML, 2017.

Homework 3: Musical Note Classification using CNNs

- Instructions will be released on Gradescope
- Due at **11:59pm ET** on **February 17**
- Late submissions: 1 point deducted per day

(Recap) In-distribution vs Out-of-distribution

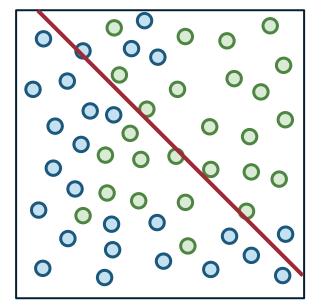
- **Key**: Make the training distribution closer to the target distribution
- First, we need to **define our target distribution**
- Then, we can try to
 - Collect a diverse dataset covering that covers different parts of the target distribution
 - Apply data augmentation to fill the gaps in the distribution

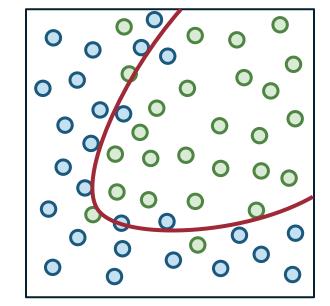
(Recap) Overfitting & Underfitting

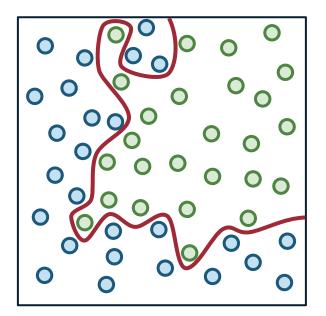
Underfitting

Good fit!

Overfitting







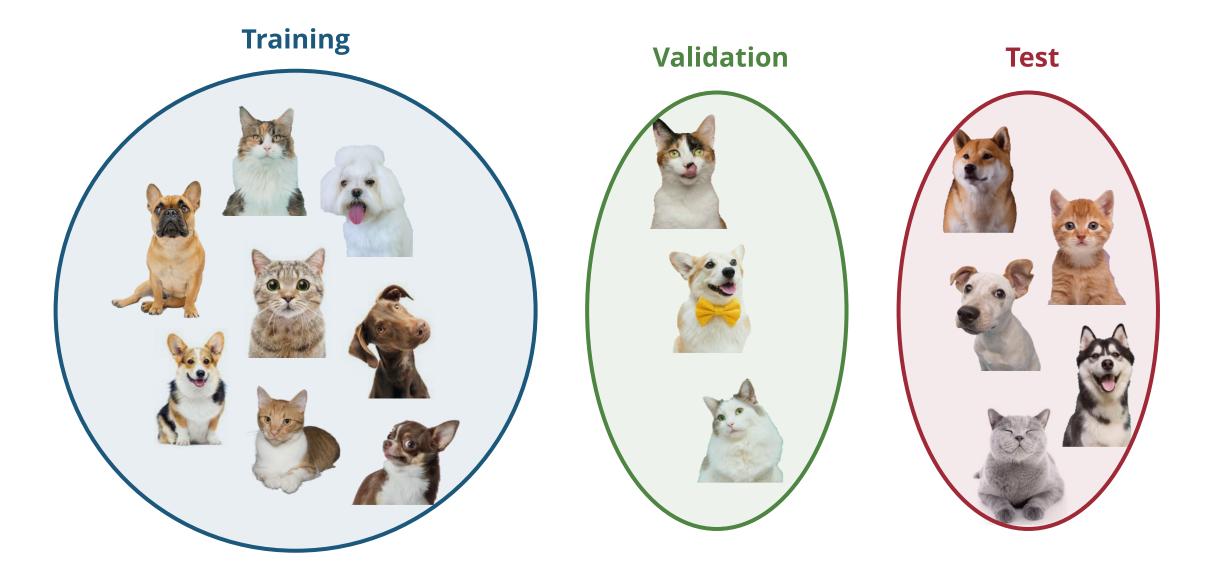
Model too inexpressive

Model too expressive

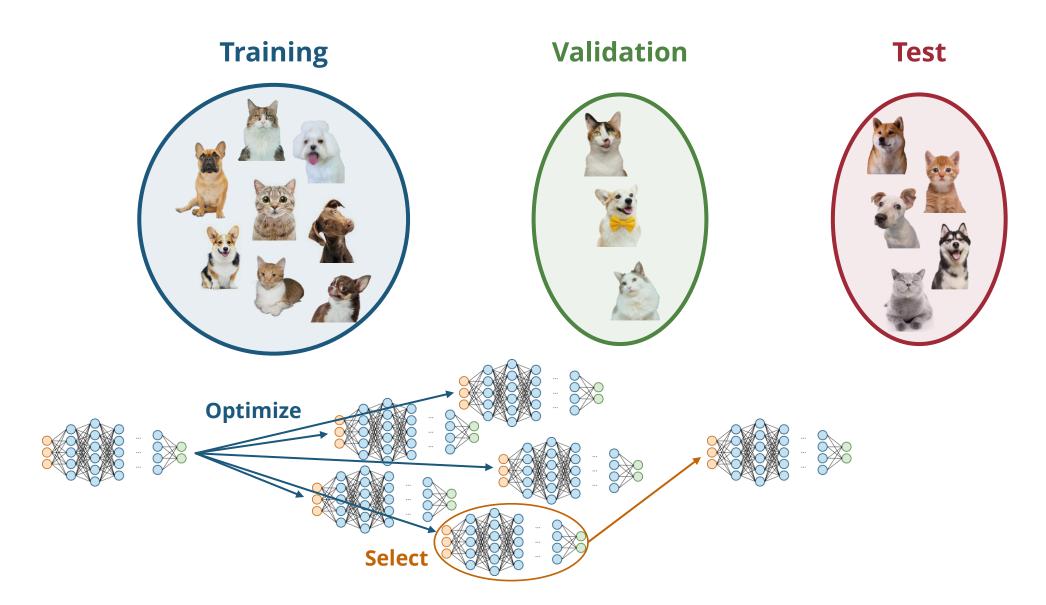
(Recap) Train–Validation–Test Split

(Recap) Train–Validation–Test Split

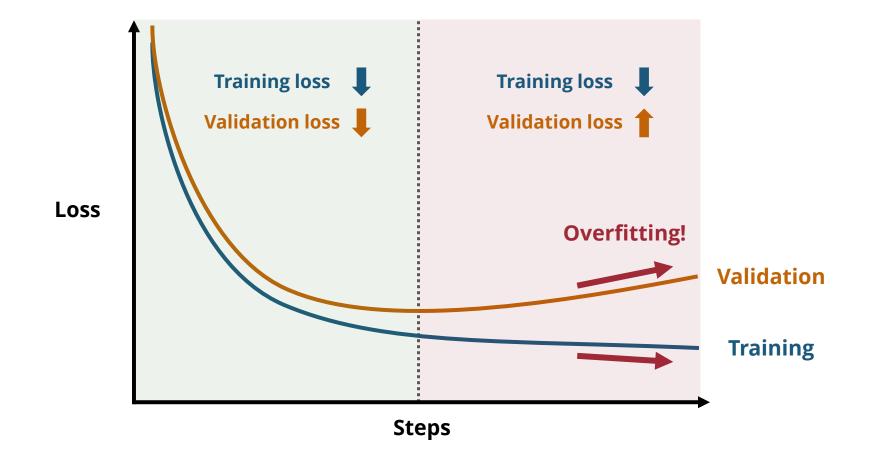
(Recap) Train–Validation–Test Split



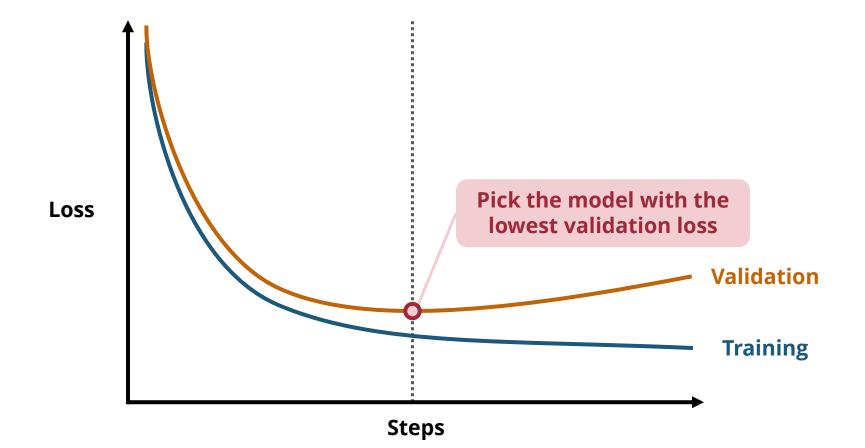
(Recap) Training–Validation–Test Pipeline



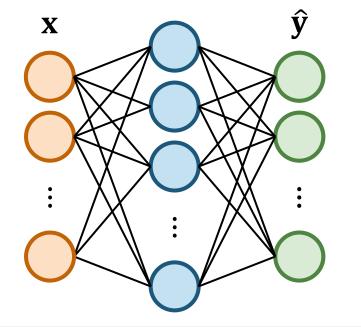
(Recap) Training vs Validation Losses



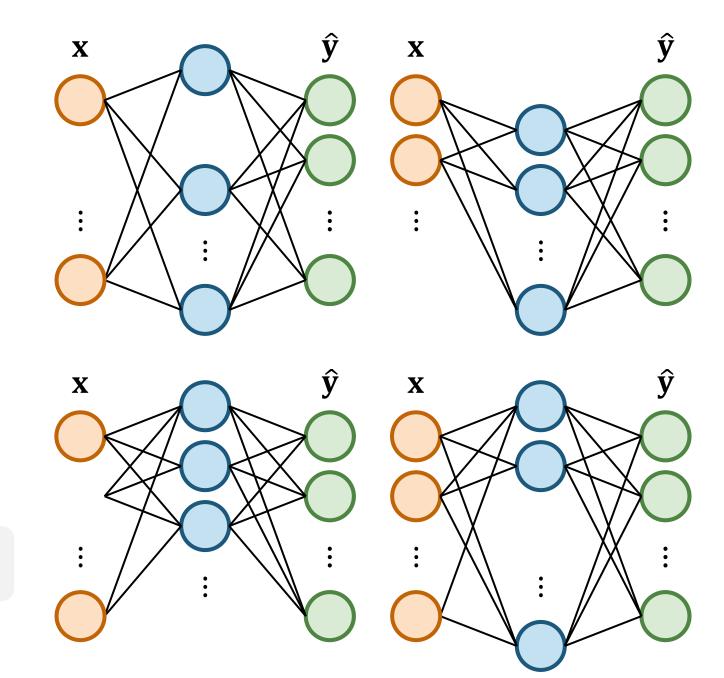
(Recap) Training vs Validation Losses



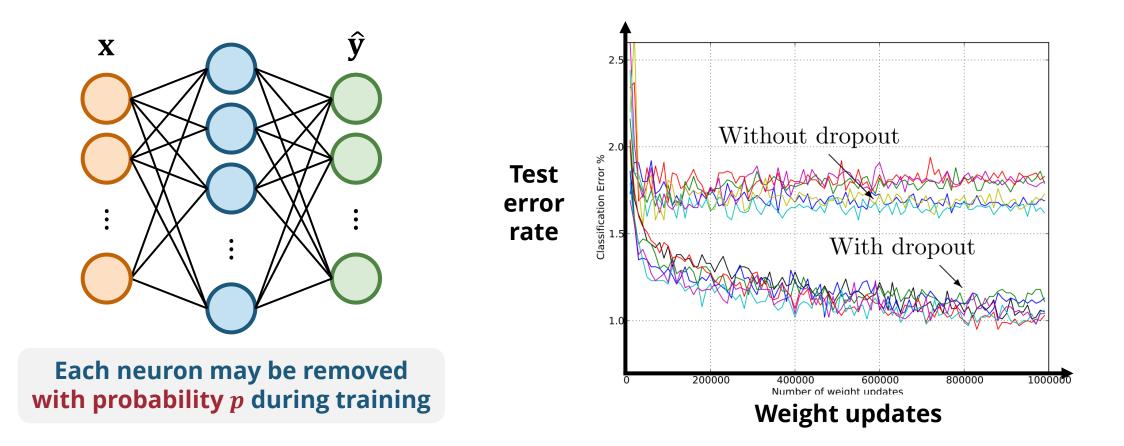
(Recap) Dropout



Each neuron may be removed with probability *p* during training



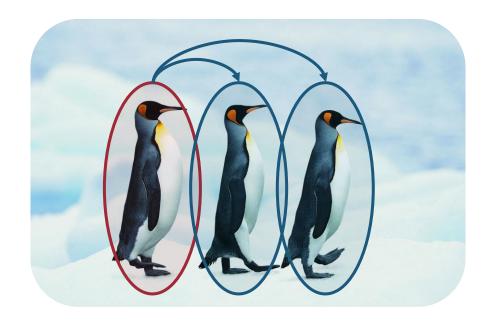
(Recap) Dropout

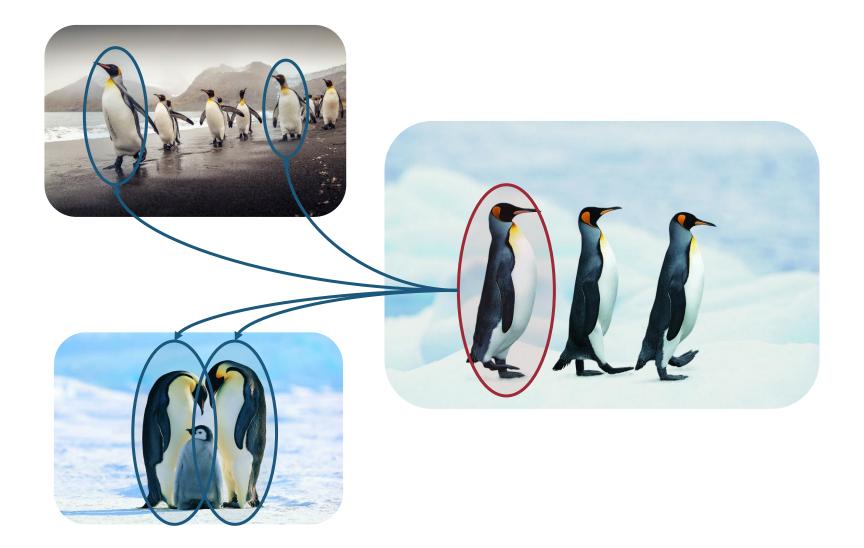


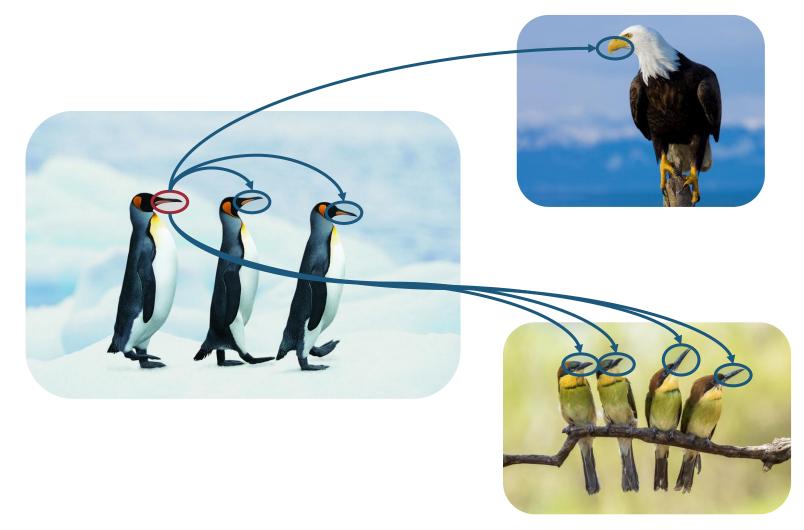
Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs)

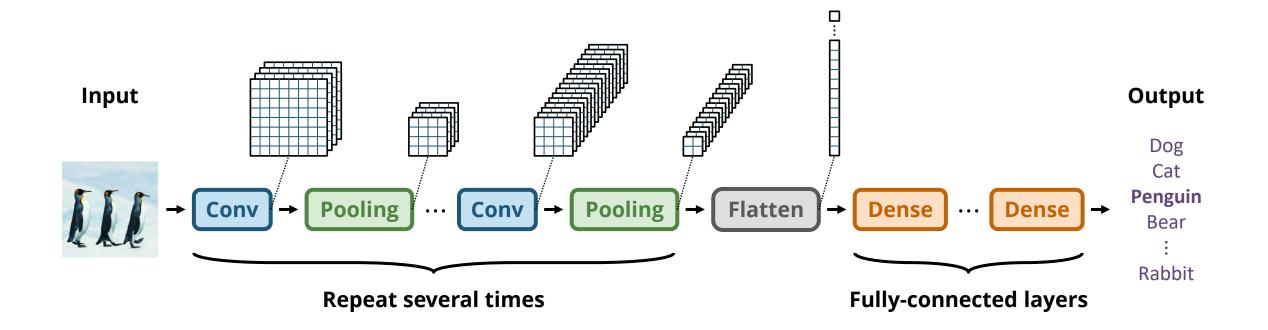
- Intuition: Learn reusable local pattern detector
- Widely used in **computer vision**
- Also used for music and audio
 - Representing music as piano rolls
 - Representing audio as spectrograms

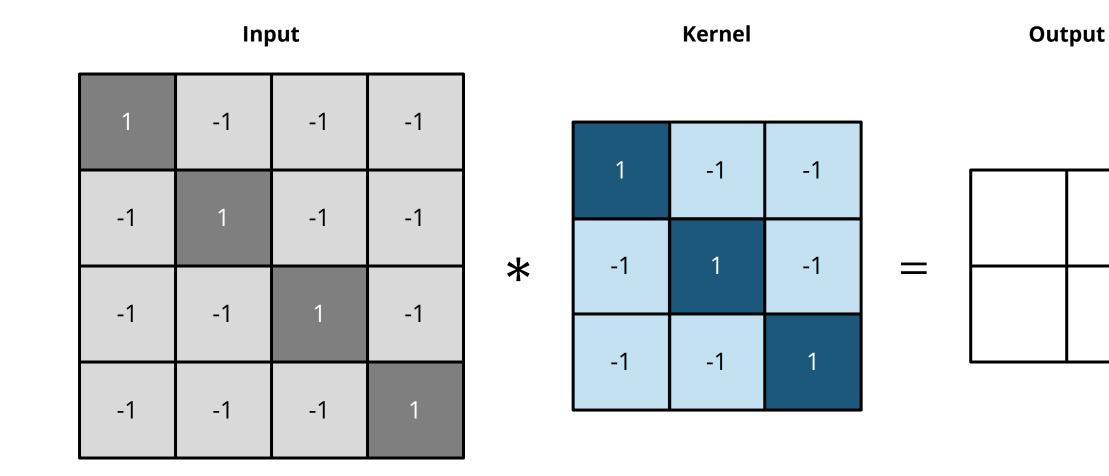


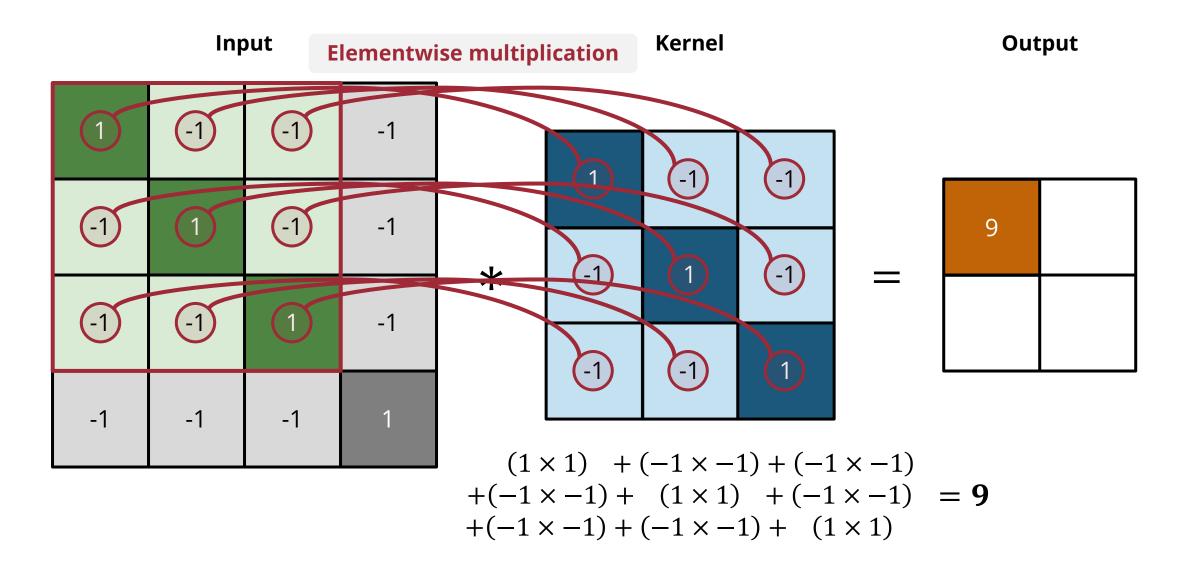


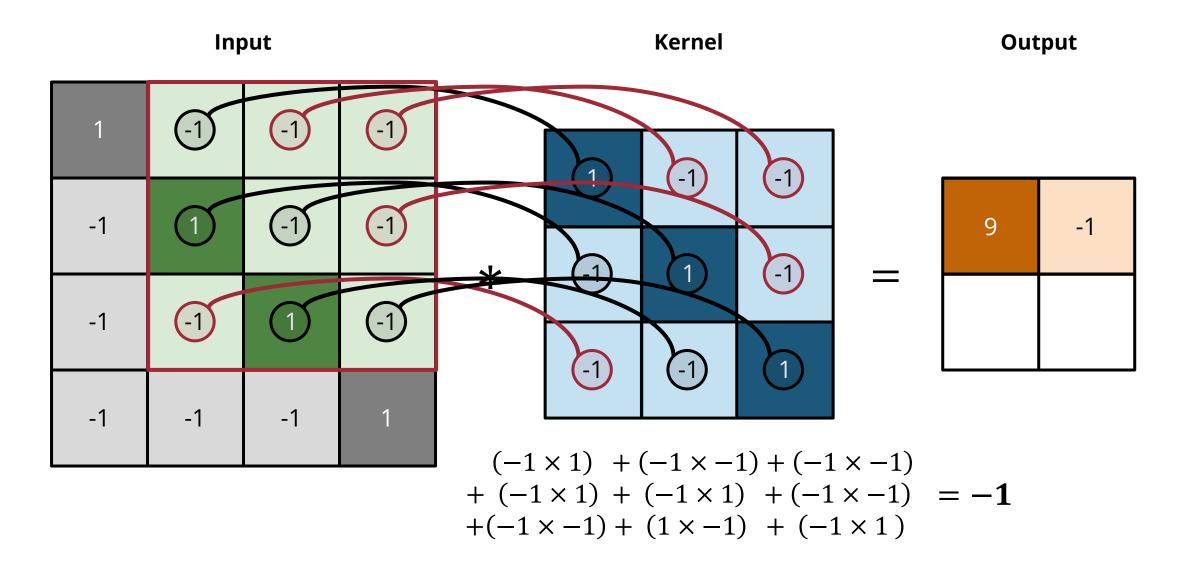


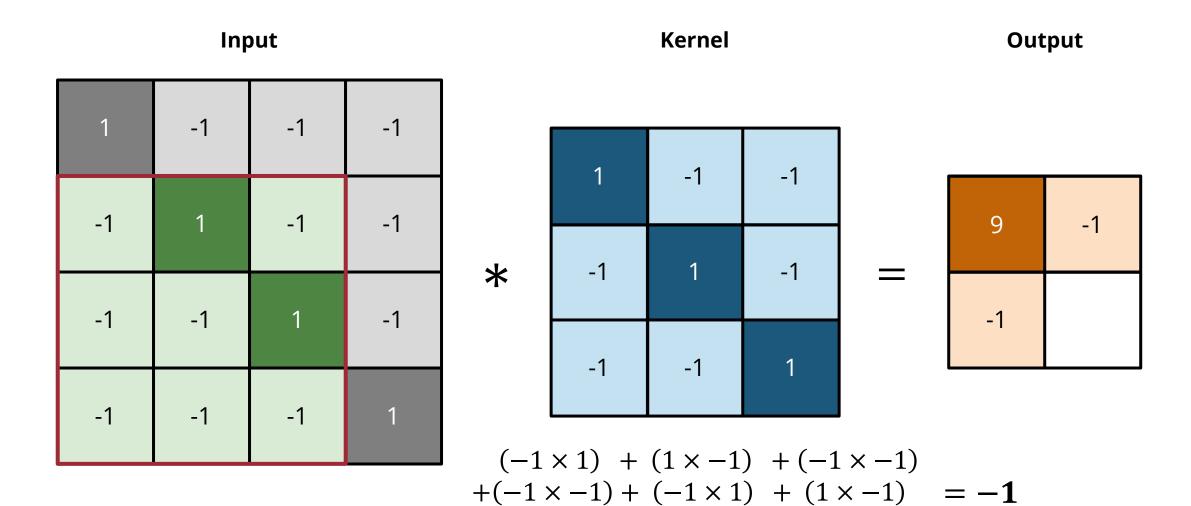
Convolutional Neural Network (CNNs)



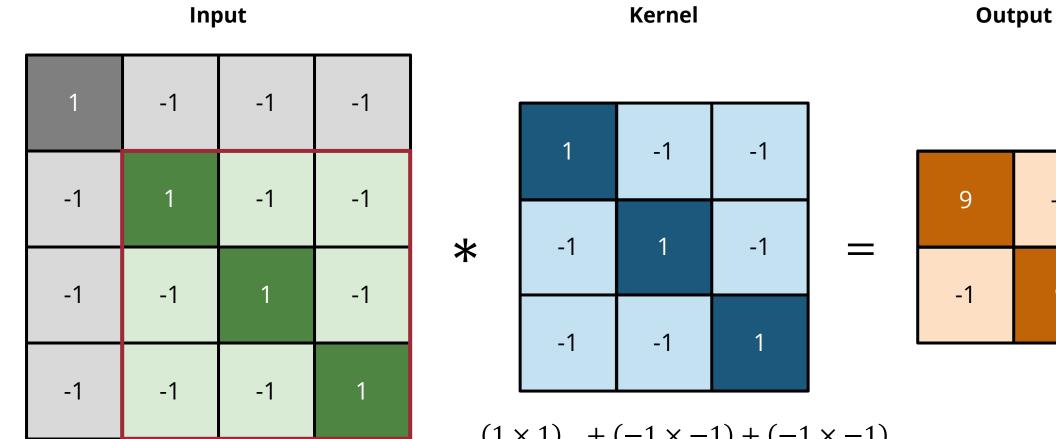






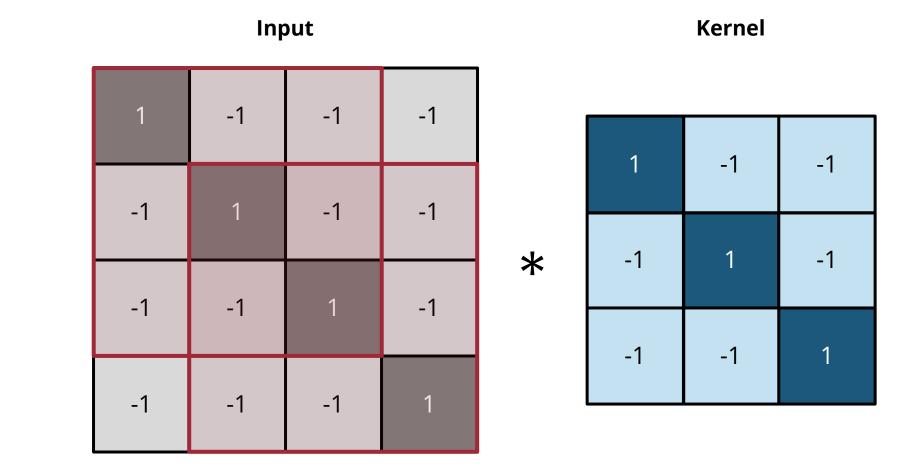


 $+(-1 \times -1) + (-1 \times -1) + (-1 \times 1)$

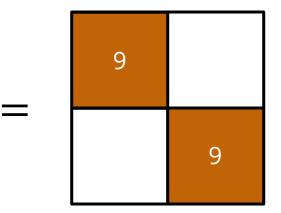


 $(1 \times 1) + (-1 \times -1) + (-1 \times -1) + (-1 \times -1) + (-1 \times -1) + (1 \times 1) + (-1 \times -1) = 9$ +(-1 \times -1) + (-1 \times -1) + (1 \times 1) -1

9



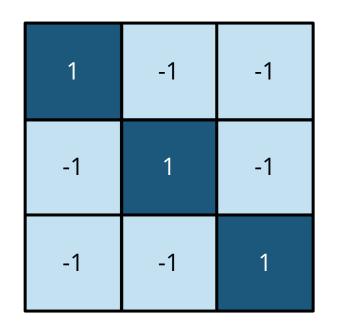
Output



High activation when the local pattern is close to the kernel

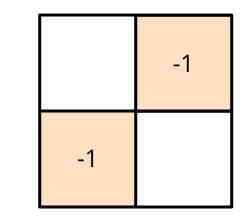
Input -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1

*



Kernel

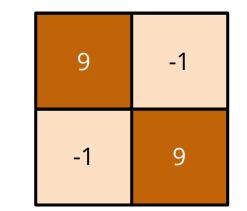
Output



Low activation when the local pattern differs from the kernel

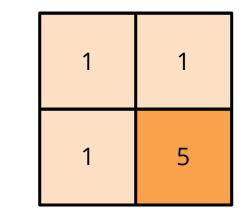
Kernel Input -1 -1 -1 1 1 -1 -1 -1 -1 -1 1 * -1 -1 1 1 -1 -1 -1 -1 -1 1 1 -1 -1 -1

Output

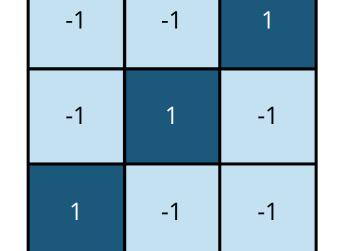


Kernel Input 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 * -1 -1 1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1

Output

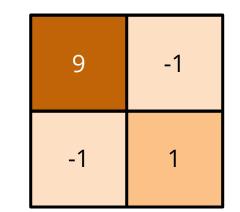


Input 1 -1 -1 -1 -1 -1 -1 1 * -1 -1 1 -1 -1 -1 -1 -1



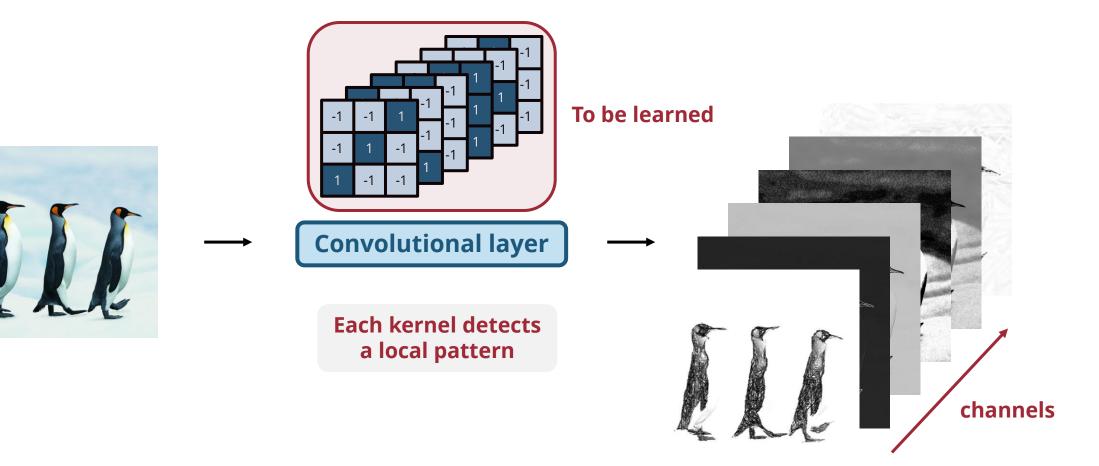
Kernel

Output

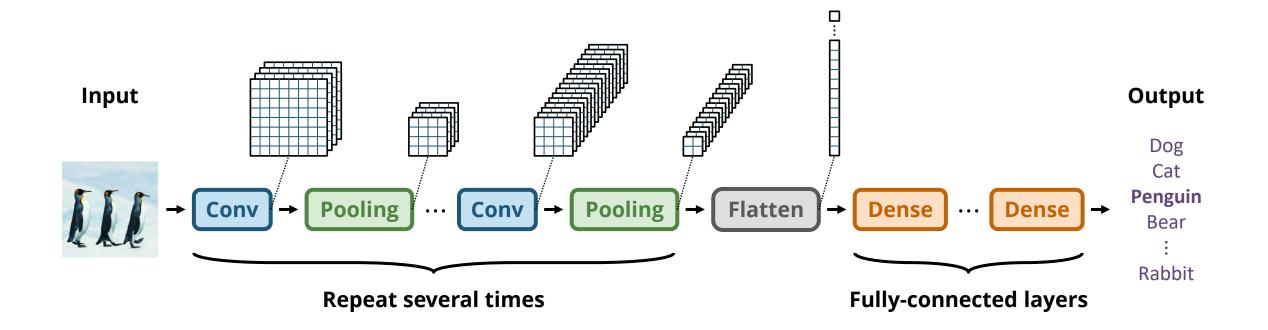


Convolutional Layer

• A convolutional layer consists of many learnable kernels (channels)

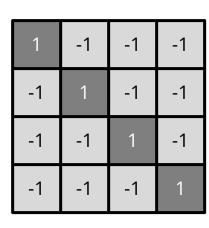


Convolutional Neural Network (CNNs)



Padding

padding="valid"



*

1	-1	-1	
-1	1	-1	
-1	-1	1	

9 -1 -1 9

=

0	0	0	0	0	U
0	1	-1	-1	-1	C
0	-1	1	-1	-1	C
0	-1	-1	1	-1	C
0	-1	-1	-1	1	C

0

0

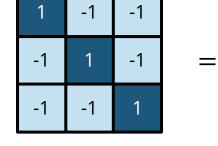
0

0

0

0

*

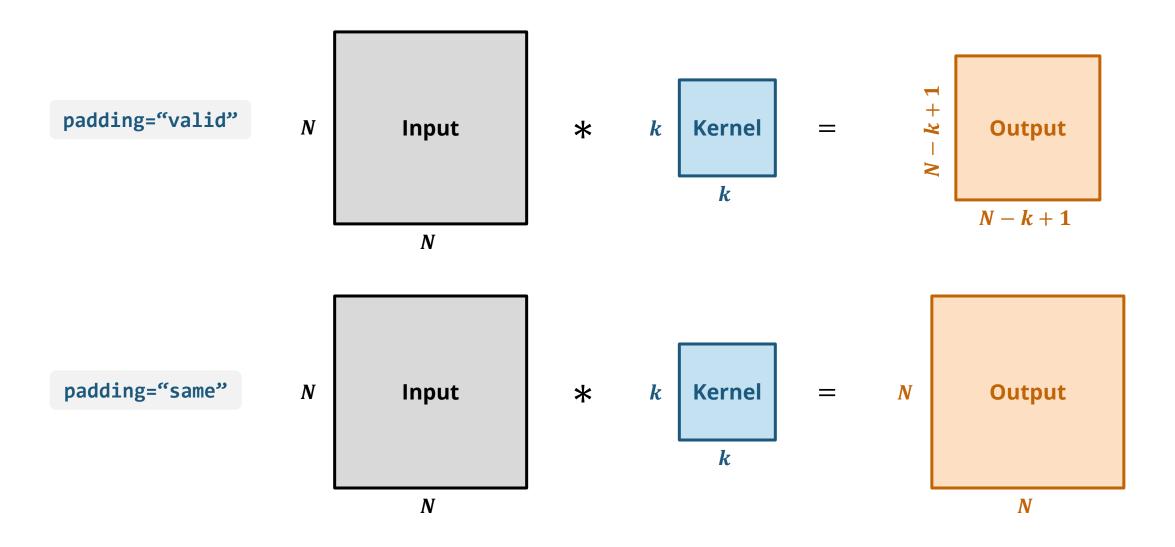


4	-2	0	2
-2	9	-1	0
0	-1	9	-2
2	0	-2	4

Keep the output of the same size as the input

padding="same"

Shapes



Striding

stride=2

		(
	0	0	0	0	0	0
	0	1	1	-1	-1	0
(0	-1	1	-1	-1	0
	0	-1	-1	1	-1	0
	0	-1	-1	-1	1	0
	0	0	0	0	0	0

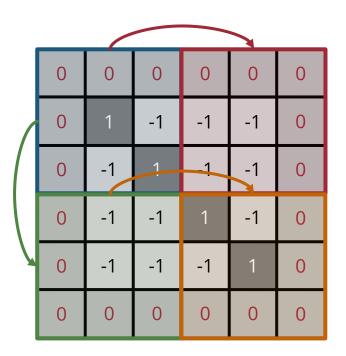
*

1	-1	-1
-1	1	-1
-1	-1	1

=

Striding

stride=3



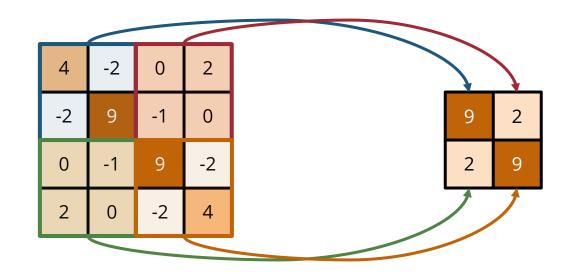
*

1	-1	-1
-1	1	-1
-1	-1	1

=

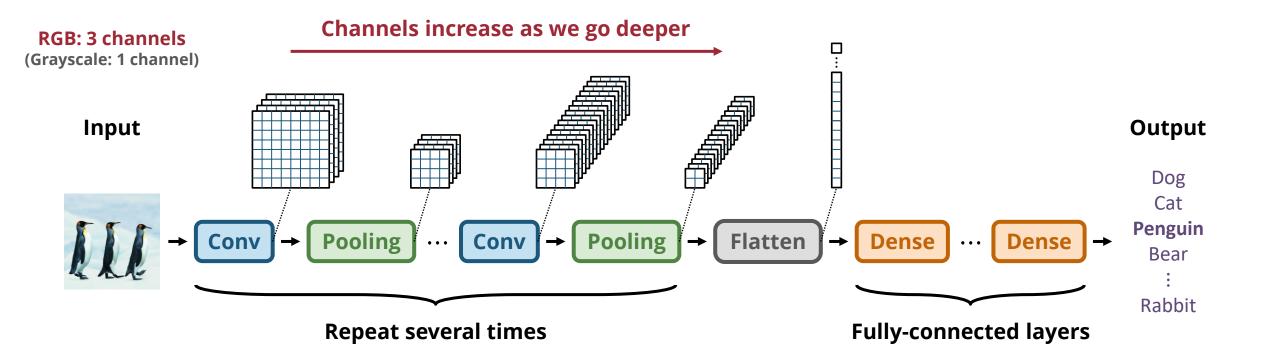
4	2		
2	4		

Max Pooling Layer

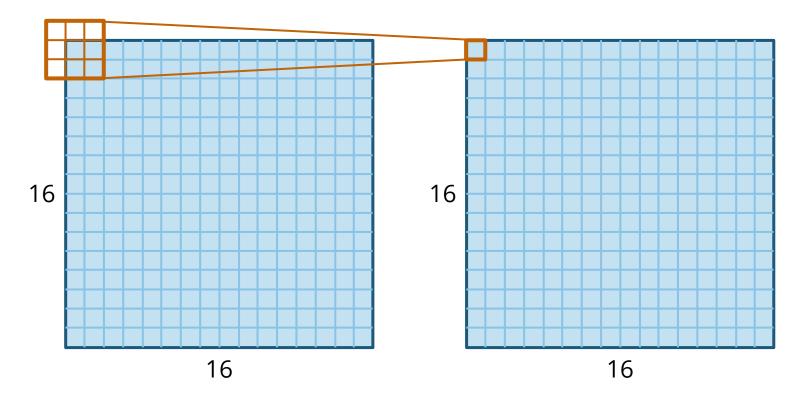


Downsample and keep the strongest activation in each block

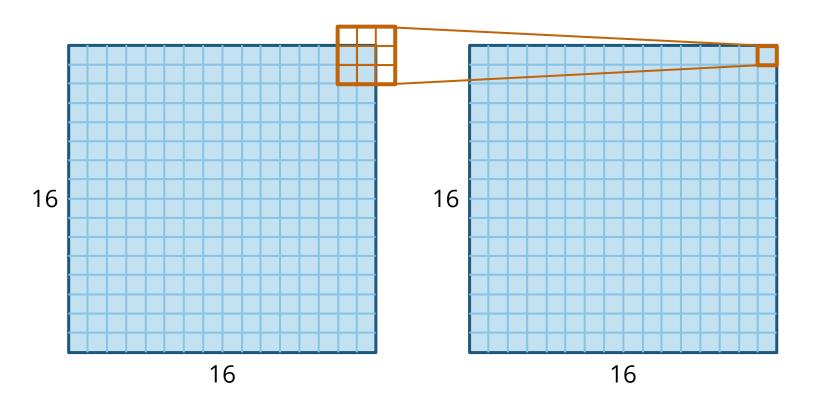
Convolutional Neural Network (CNNs)



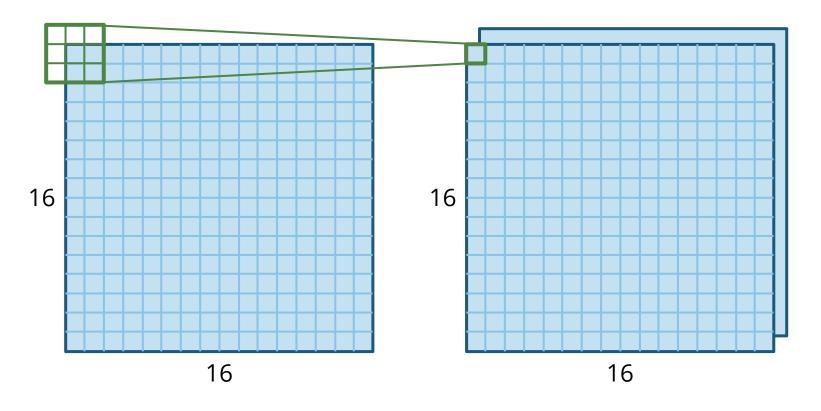
Convolutional layer



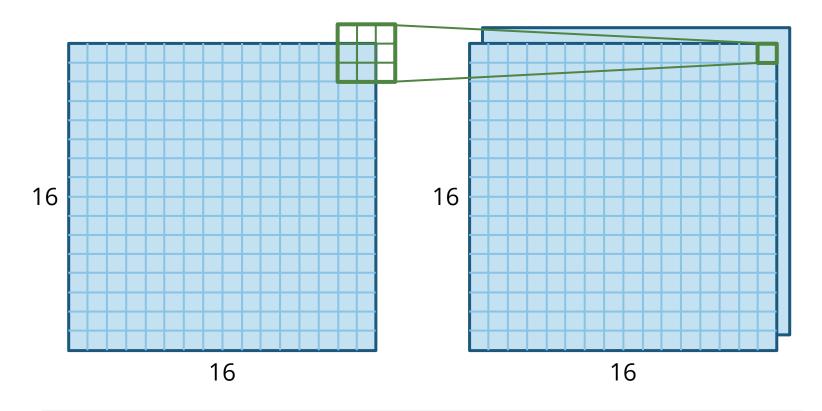
Convolutional layer



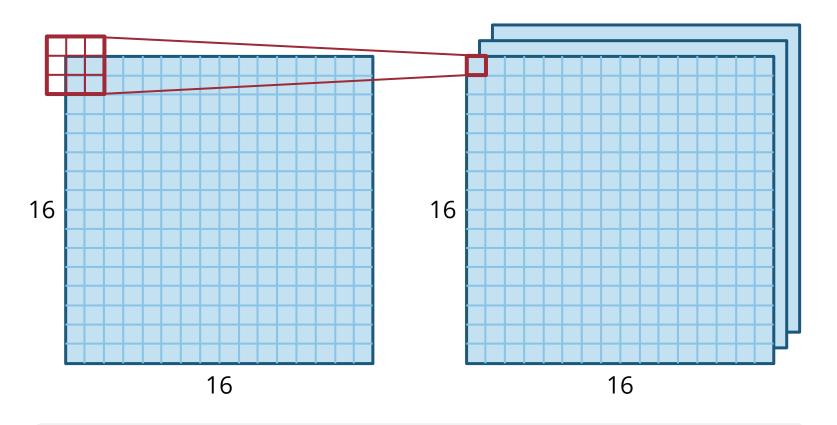
Convolutional layer



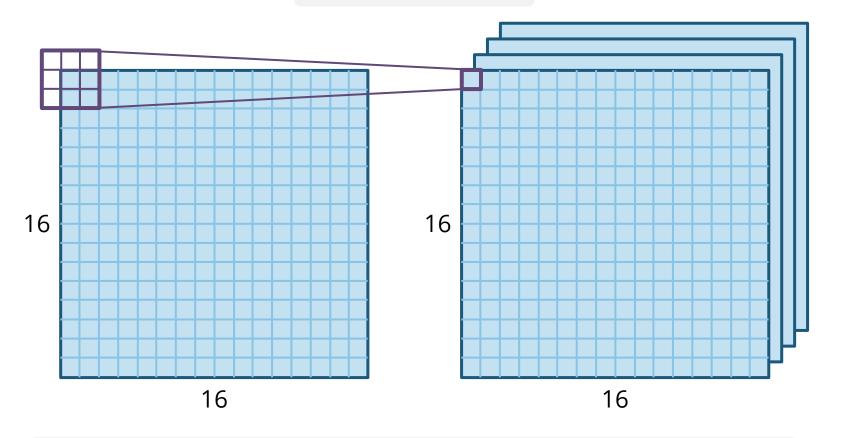
Convolutional layer

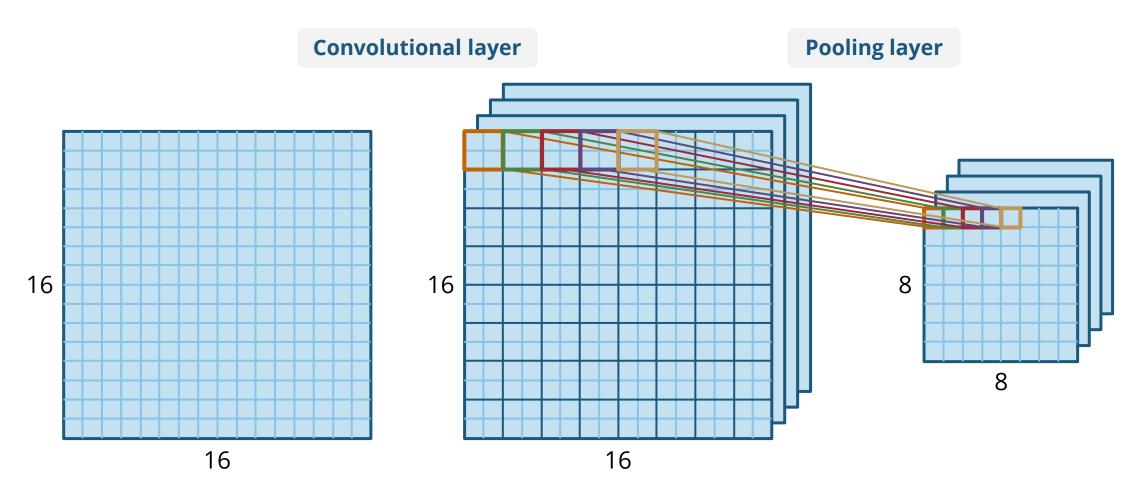


Convolutional layer

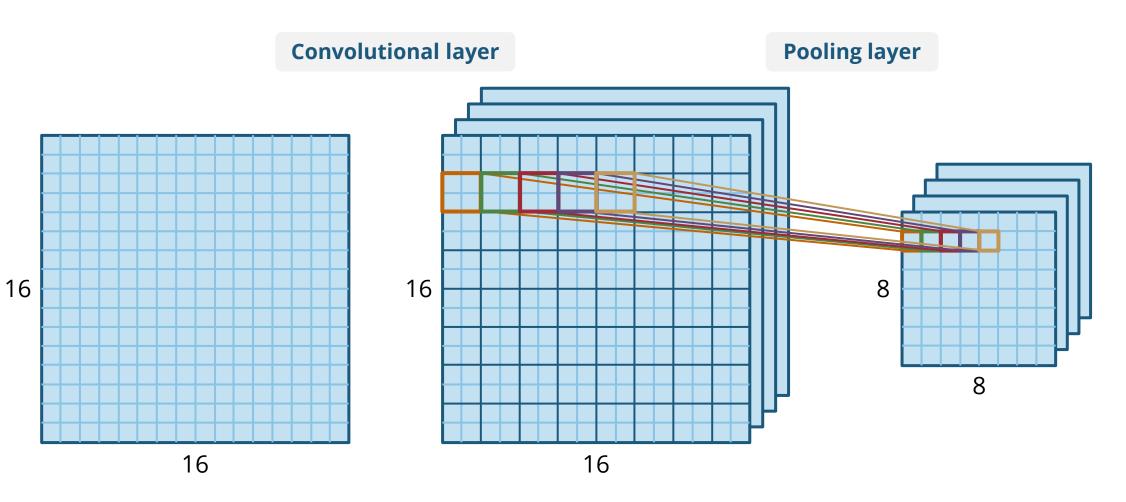


Convolutional layer

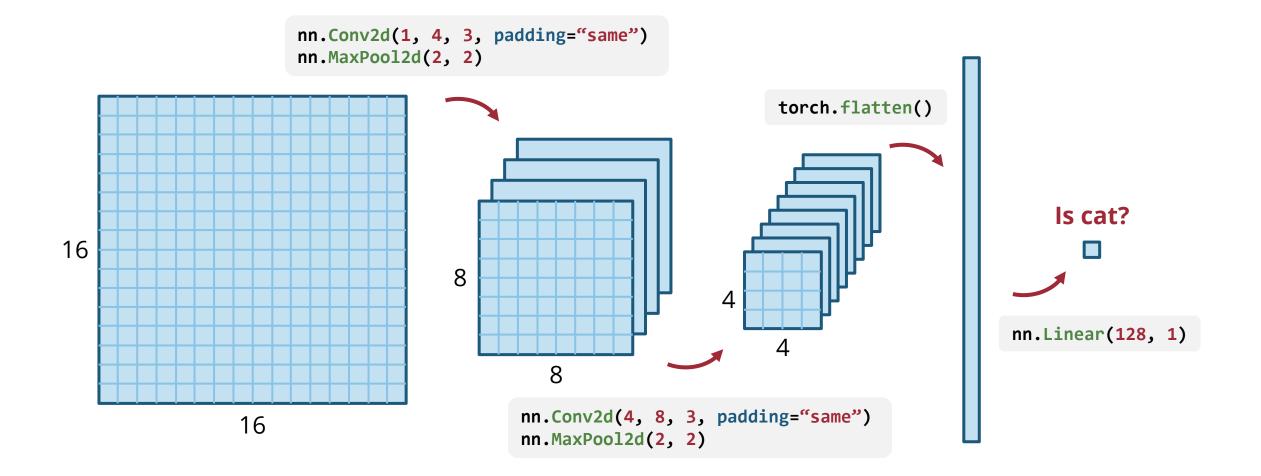


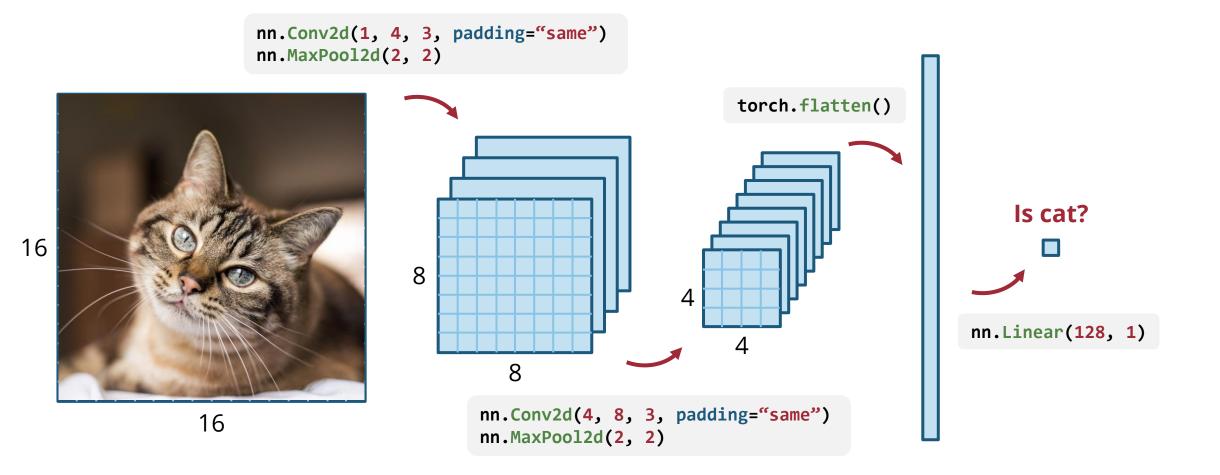


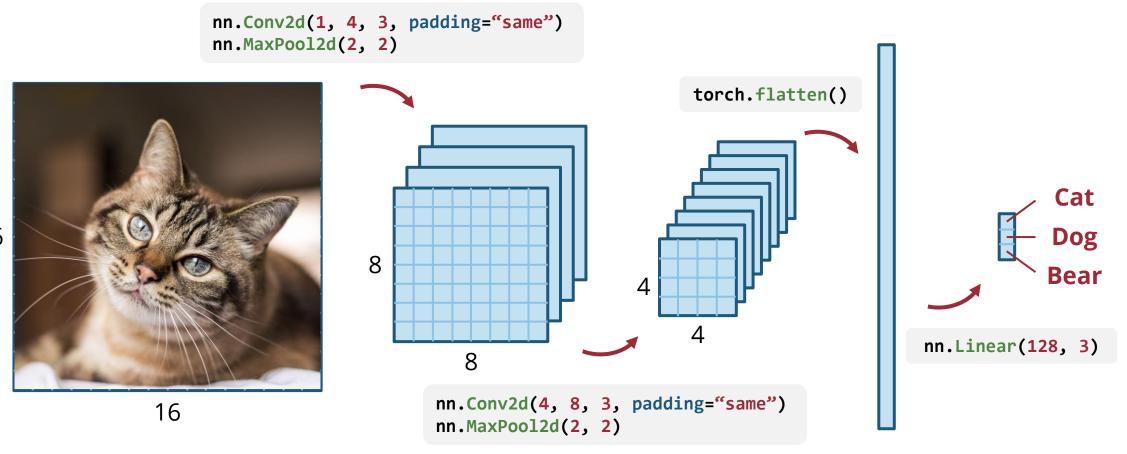
nn.MaxPool2d(kernel_size=2, stride=2)

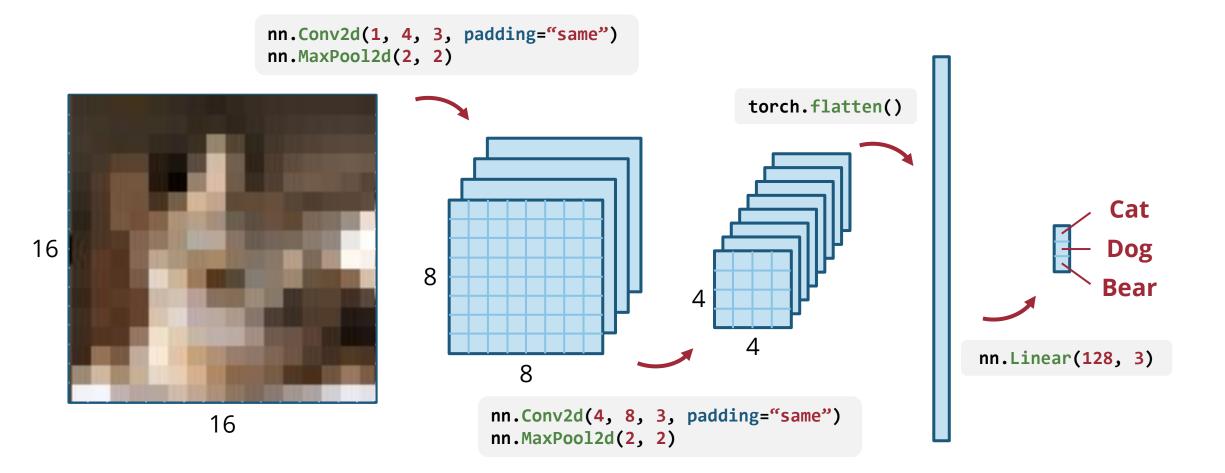


nn.MaxPool2d(kernel_size=2, stride=2)

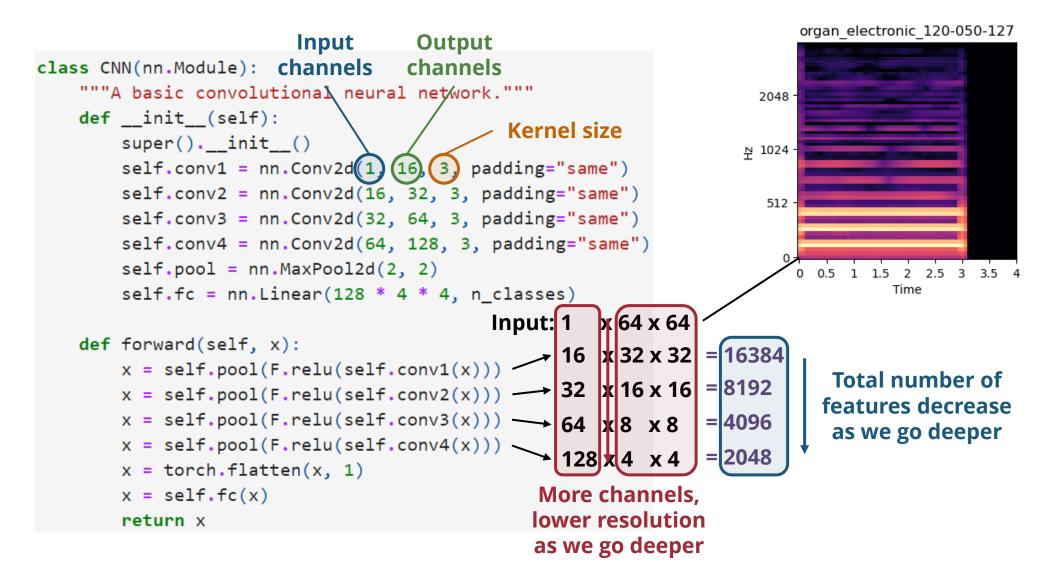








A Real Example



A Real Example

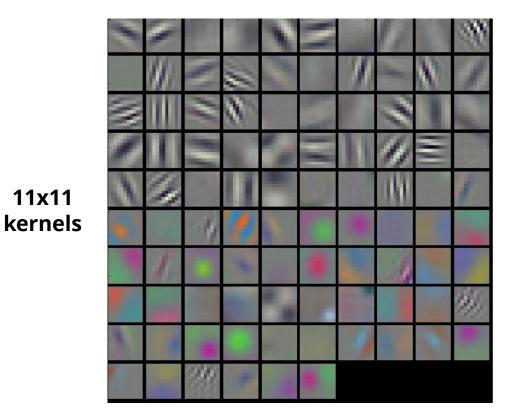
```
Input
                               Output
class CNN(nn.Module): channels
                              channels
   """A basic convolutional neural net/work."""
   def init (self):
                                       Kernel size
      super(). init ()
      self.conv1 = nn.Conv2d(1)(16)(3) padding="same")
      self.conv2 = nn.Conv2d(16, 32, 3, padding="same")
      self.conv3 = nn.Conv2d(32, 64, 3, padding="same")
      self.conv4 = nn.Conv2d(64, 128, 3, padding="same")
      self.pool = nn.MaxPool2d(2, 2)
      self.fc = nn.Linear(128 * 4 * 4, n_classes) How many parameters do
                                               we have in each layer?
   def forward(self, x):
      x = self.pool(F.relu(self.conv1(x))) (3 x 3 x 1 + 1) x 16
                                                              = 160
      = 4640
      x = self.pool(F.relu(self.conv3(x))) (3 x 3 x 32 + 1) x 64
                                                              = 18496
      x = self.pool(F.relu(self.conv4(x))) (3 x 3 x 64 + 1) x 128
                                                              = 73856
      x = torch.flatten(x, 1)
      → (2048 + 1) x 11
                                                              = 22539
      return x
```

Benefits of CNNs

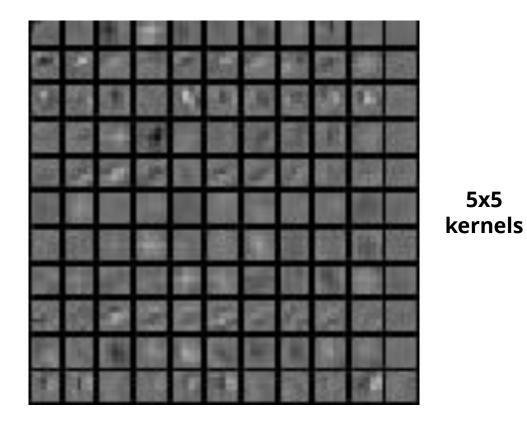
- Learn local patterns
- Invariant to shifts
 - Also called translational invariance
- Reuse the learned filters across
 - Different parts of the image
 - Across different images
- Higher parameter-efficiency against fully-connected neural network

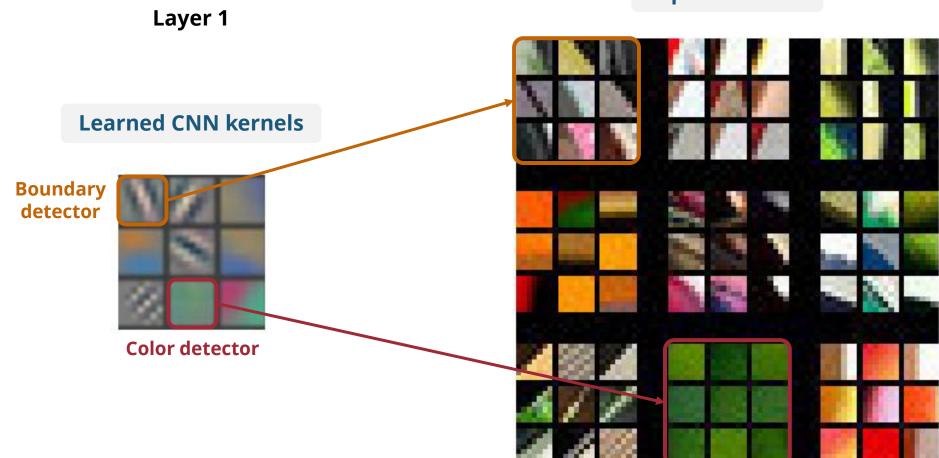
What does a CNN Learn?

1st convolutional layer



2nd convolutional layer

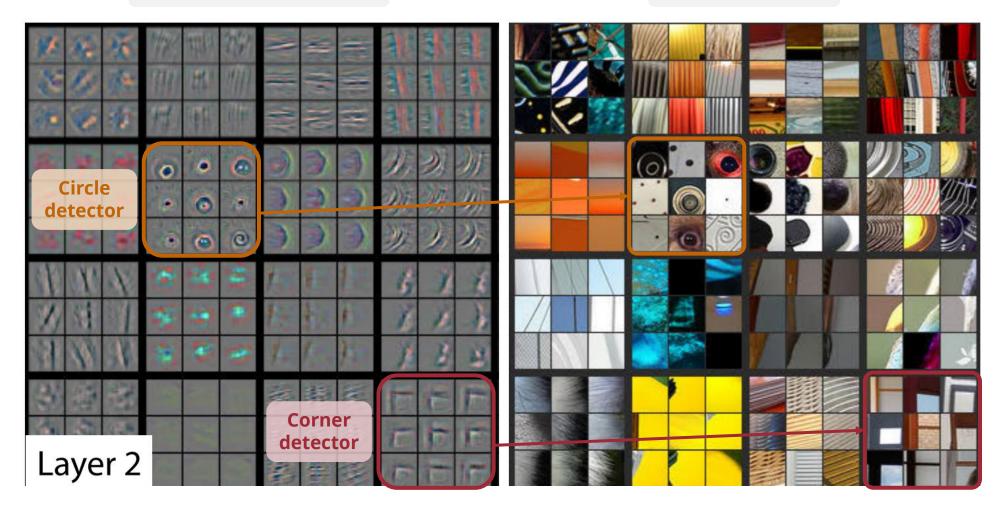




Top activations

Learned CNN kernels

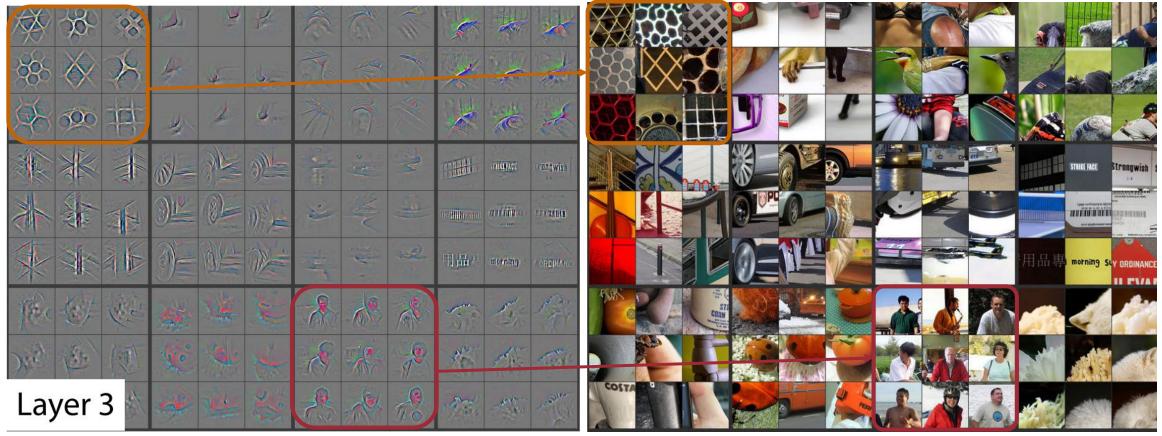
Top activations



Learned CNN kernels

Top activations

Grid detector

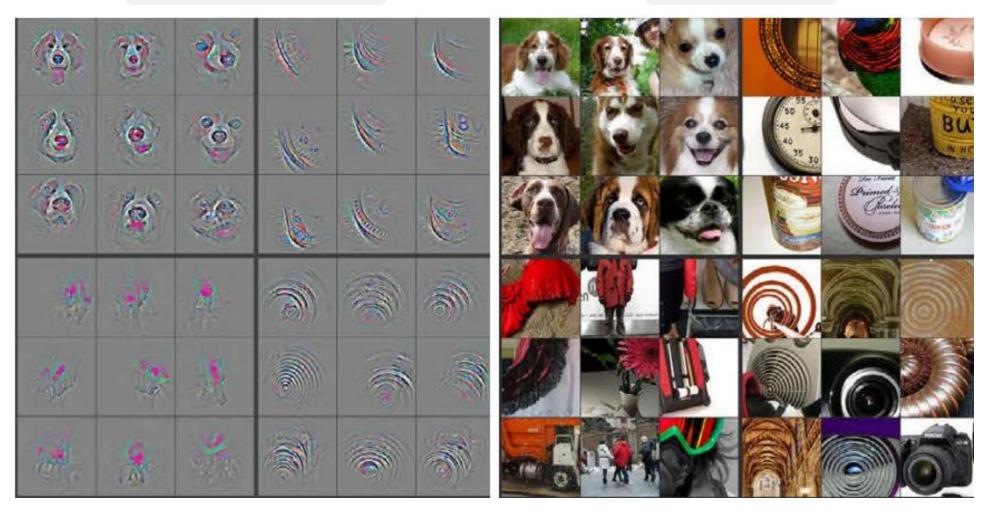


Human detector

Matthew D. Zeiler and Rob Fergus, "Visualizing and Understanding Convolutional Networks," ECCV, 2014.

Learned CNN kernels

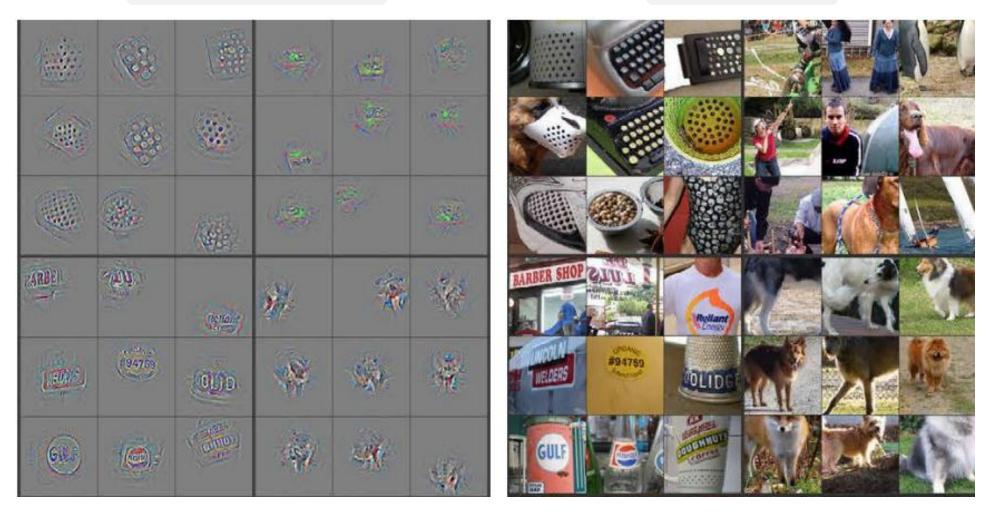
Top activations



Matthew D. Zeiler and Rob Fergus, "Visualizing and Understanding Convolutional Networks," ECCV, 2014.

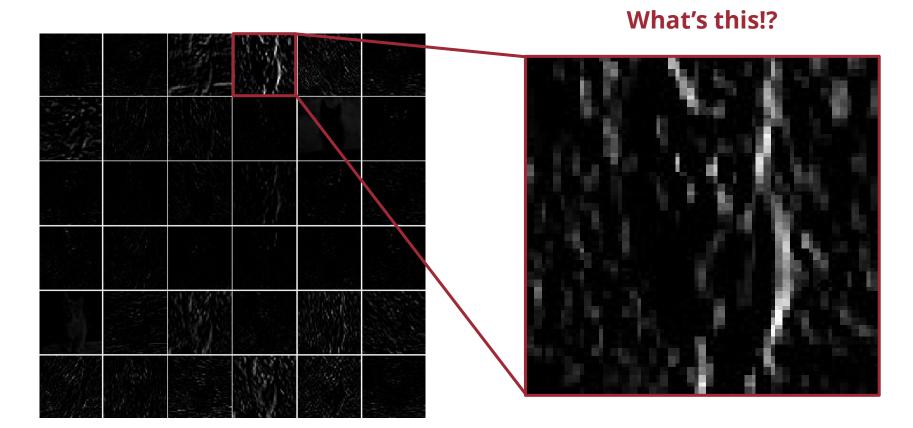
Learned CNN kernels

Top activations



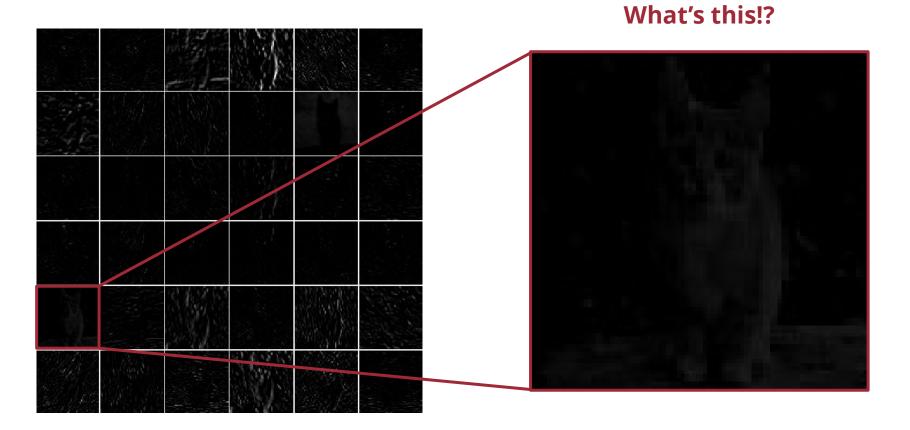
Matthew D. Zeiler and Rob Fergus, "Visualizing and Understanding Convolutional Networks," ECCV, 2014.

1st convolutional layer

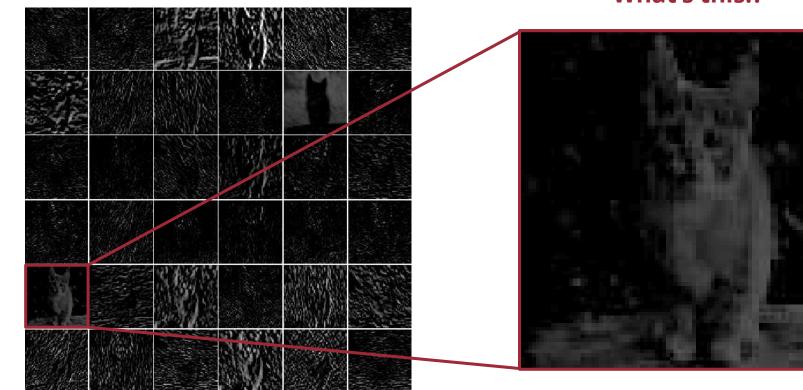


1st convolutional layer What's this!?

1st convolutional layer



1st convolutional layer



What's this!?

Brightness+ Contrast+

1st convolutional layer

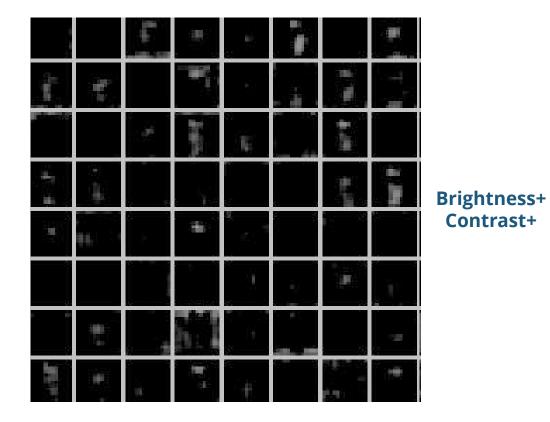
5th convolutional layer

		1 + 1				- 61
	÷		*1		1	
		- 25	1 and	i.	$\frac{1}{2} = \frac{1}{2}$	
					÷.	
	÷.		+			
					1	
100			Ξ.			-

1st convolutional layer

en ann Phàite Phàite		

5th convolutional layer



Brightness+ Contrast+

What does a CNN Learn?

