PAT 498/598 (Fall 2024)

Special Topics: Generative AI for Music and Audio Creation

Lecture 8: RNNs, LSTMs & Transformers

Instructor: Hao-Wen Dong

Assignment 2: Musical Note Classification using CNNs

- Train a CNN that can classify audio files into their **instrument families**
 - Input: 64x64 mel spectrogram
 - Output: 11 instrument classes
 - Using the **NSynth** dataset (Engel et al., 2017)

Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Douglas Eck, Karen Simonyan, and Mohammad Norouzi, "<u>Neural Audio Synthesis of Musical Notes with WaveNet</u> <u>Autoencoders</u>," *ICML*, 2017.

Assignment 2: Musical Note Classification using CNNs

- Instructions will be released on Gradescope
- Due at 11:59pm ET on October 7
- Late submissions: 3 point deducted per day

Great Lakes

- **Great Lakes** is a high-performance computing cluster at U-M
- You will be provided **3000 CPU hours (~400 GPU hours)**
- Before you access Great Lakes, you'll need to first **create an HPC login**!
- U-M VPN is required to access the web portal off-campus

(Recap) Convolutional Neural Network (CNNs)

(Recap) 2D Convolution

Input Kernel -1 -1 -1 1 1 -1 -1 -1 -1 9 -1 * -1 -1 1 -1 -1 1 -1 -1 -1 1 -1 -1 -1

High activation when the local pattern is close to the kernel

9

Output

(Recap) 2D Convolution

Input

*

Kernel

Output

Low activation when the local pattern differs from the kernel

(Recap) Max Pooling Layer

Downsample and keep the strongest activation in each block

(Recap) Learned CNN Kernels in a Trained AlexNet

Layer 1

Learned CNN kernels

Top activations

(Recap) Learned CNN Kernels in a Trained AlexNet

(Recap) Learned CNN Kernels in a Trained AlexNet

Matthew D. Zeiler and Rob Fergus, "Visualizing and Understanding Convolutional Networks," ECCV, 2014.

Language Models

Language Models

Predicting the next word given the past sequence of words

Language Models (Mathematically)

Next word

• A class of machine learning models that learn the next word probability

Language Models – Generation

• How do we generate a new sentence using a trained language model?

A transformer is a	\rightarrow	Model	\rightarrow	deep
A transformer is a <mark>deep</mark>	\rightarrow	Model	\rightarrow	learning
A transformer is a deep learning	\rightarrow	Model	\rightarrow	model
A transformer is a deep learning model	\rightarrow	Model	\rightarrow	introduced
A transformer is a deep learning model introduced	\rightarrow	Model	\rightarrow	in
A transformer is a deep learning model introduced in	\rightarrow	Model	\rightarrow	2017

Recurrent Neural Networks (RNNs)

What is an RNN (Recurrent Neural Network)?

- A type of neural networks that have **loops**
- Widely used for modeling sequences (e.g., in natural language processing)

Vanilla RNNs

- The simplest form of RNNs
- LSTMs and GRUs are also RNNs

(Source: Christopher Olah)

Backpropagation Through Time

• An RNN is essentially a very deep neural network

Vanishing Gradients

An RNN is essentially a very deep neural network

Long Short-Term Memory (LSTMs)

Vanilla RNNs vs LSTMs (Long Short-Term Memory)

Vanilla RNN

- Simplest form of RNNs
- Limited long-term memory

LSTM

- Improved memory module
- Better long-term memory

(Source: Christopher Olah)

Demystifying LSTMs

Demystifying LSTMs

How can LSTMs Help Alleviate Vanishing Gradients?

LSTMs does not completely solve vanishing gradients

Gated Recurrent Units (GRUs)

- A **simplified** version of LSTM
- An LSTM consists of
 - Forget gate
 - Input gate
 - Output gate
- An GRU consists of
 - Reset gate
 - Update gate

Different Types of Recurrent Neural Networks

many to many

Text generation Music generation Sentiment classification Genre classification Name entity recognition Performance rendering Machine translation Music accompaniment Style Transfer

Many-to-Many RNNs

• Inputs and outputs are **aligned sequences**

Sequence-to-Sequence Model (Seq2seq)

- Widely used for machine translation
- Inputs and outputs are unaligned sequences

Variants of RNNs

Deep Recurrent Neural Networks

 $\hat{y}^{<1>} \qquad \hat{y}^{<2>} \qquad \hat{y}^{<T_{y}>}$ $a^{<0>} \rightarrow Same weight matrices$ $x^{<1>} \qquad x^{<2>} \qquad x^{<T_{x}>}$

Bidirectional RNNs

Access to only past information

Access to past and future information

Transformers

What is a Transformer?

• A type of neural network that use the **self-attention mechanism**

(Source: Vaswani et al., 2017; adapted)

Self-attention Mechanism

Transformers learn what to attend to from big data!

Why Attention Mechanism?

(Source: Cheng et al., 2016)

(Source: Bahdanau et al., 2015)

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio, "<u>Neural Machine Translation by Jointly Learning to Align and Translate</u>," *ICLR*, 2015. Jianpeng Cheng, Li Dong, and Mirella Lapata, "<u>Long Short-Term Memory-Networks for Machine Reading</u>," *EMNLP*, 2016.

What does a Transformer Learn?

(Each color represents an attention head)

(Source: Huang et al., 2018)

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Ian Simon, Curtis Hawthorne, Andrew M. Dai, Matthew D. Hoffman, Monica Dinculescu, and Douglas Eck, "<u>Music Transformer: Generating Music with Long-Term Structure</u>," *Magenta Blog*, December 13, 2018.

What does a Transformer Learn?

(Each color represents an attention head)

(Source: Huang et al., 2018)

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Ian Simon, Curtis Hawthorne, Andrew M. Dai, Matthew D. Hoffman, Monica Dinculescu, and Douglas Eck, "<u>Music Transformer: Generating Music with Long-Term Structure</u>," *Magenta Blog*, December 13, 2018.

Word Embedding

- Goal: Learn to represent words as vectors
- Intuition: Synonyms should have close embeddings
- Antonyms should be far apart?
 - Not quite, antonyms usually fall in the same "topic"
 - For example, happy and sad are antonyms, but they are both emotions

⁽Source: Vaswani et al., 2017; adapted)

Word Embedding

 A word embedding layer is functionally equivalent to one-hot encoded words followed by a dense layer → But way faster!

Positional Encoding

- Intuition: A word could have different meanings at different positions
- Provides **positional information** to the model

(Source: Vaswani et al., 2017; adapted)

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin, "<u>Attention Is All You Need</u>," *NeurIPS*, 2017. erdem.pl/2021/05/understanding-positional-encoding-in-transformers

Seq2seq vs Transformers

Seq2seq

Transformers

Efficient Transformers

- The memory requirement for self-attention grows quadratically!
- There are many efficient transformer variants
 - Transformer-XL
 - Linear Transformer
 - Performer
 - Longformer
 - Reformer
 - Swin Transformer
 - ... just to name a few

Vision Transformer (ViT)

(Source: Dosovitskiy et al., 2021)

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby, "<u>An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale</u>," *ICLR*, 2021.

Audio Spectrogram Transformer (AST)

(Source: Gong et al., 2021)