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Assignment 2: Musical Note Classification using CNNs

 Train a CNN that can classify audio files into their instrument families
 Input: 64x64 mel spectrogram
- Output: 11 instrument classes
- Using the NSynth dataset (Engel et al., 2017)
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Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Douglas Eck, Karen Simonyan, and Mohammad Norouzi, “Neural Audio Synthesis of Musical Notes with WaveNet
Autoencoders,” ICML, 2017.



https://arxiv.org/pdf/1704.01279
https://arxiv.org/pdf/1704.01279

Assignment 2: Musical Note Classification using CNNs

* Instructions will be released on Gradescope
* Due at 11:59pm ET on October 7

* Late submissions: 3 point deducted per day




Great Lakes

» Great Lakes is a high-performance computing cluster at U-M
* You will be provided 3000 CPU hours (~400 GPU hours)
- Before you access Great Lakes, you'll need to first create an HPC login!

« U-M VPN is required to access the web portal off-campus




(Recap) Convolutional Neural Network (CNNSs)
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" (Recap) 2D Convolution

Input Kernel Output

High activation when
the local pattern is
close to the kernel




(Recap) 2D Convolution

Input Kernel Output

Low activation when
the local pattern
differs from the kernel




- (Recap) Max Pooling Layer
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Downsample and keep the
strongest activation in each block



(Recap) Learned CNN Kernels in a Trained AlexNet

Top activations

Layer 1

Learned CNN kernels

Matthew D. Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks,” ECCV, 2014.



https://arxiv.org/pdf/1311.2901

\ (Recap) Learned CNN Kernels in a Trained AlexNet

Matthew D. Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks,” ECCV, 2014.
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https://arxiv.org/pdf/1311.2901

(Recap) Learned CNN Kernels in a Trained AlexNet
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Matthew D. Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks,” ECCV, 2014.
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https://arxiv.org/pdf/1311.2901

Language Models
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Language

Models
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Language Models (Mathematically)

* A class of machine learning models that learn the next word probability

P( electrical | A transformeris a) I

P( character | A transformerisa)

P( X | X1, X2, ey Xj—1 ) P( gene |Atransformerisa)
. J

Next word Previous words

P( model |Atransformerisa)
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Language Models - Generation

* How do we generate a new sentence using a trained language model?

A transformer is a

A transformer is a deep

A transformer is a deep learning

A transformer is a deep learning model

A transformer is a deep learning model introduced

A transformer is a deep learning model introduced in

Model

Model

Model

Model

Model

Model

deep
learning
model
introduced
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2017
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Recurrent Neural Networks (RNNSs)
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What is an RNN (Recurrent Neural Network)?

* A type of neural networks that have loops

« Widely used for modeling sequences (e.g., in natural language processing)
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colah.github.io/posts/2015-08-Understanding-LSTMs/
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Vanilla RNNs

* The simplest form of RNNs
« LSTMs and GRUs are also RNNs
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Backpropagation Through Time

* An RNN is essentially a very deep neural network

éé

Whht 1+W.X't+b

ht = Wh(Whht—Z + Wxxt_l +b ) + VVxxt + +b

ht = Wh(VVxxt_l + Wh( Wth + VVxxl +b - ) +b ) + VVxxt + +b

colah.github.io/posts/2015-08-Understanding-LSTMs/
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Vanishing Gradients

* An RNN is essentially a very deep neural network

Gradients vanishes quickly
when we backpropagate in time

All the layers share the
same weight matrix

-

e

ht == Whht—l + [/Vxxt + b

Can still train the model
without deeper gradients

Why bother?

ht = Wh(Whht—Z + Wxxt_l +b ) + VVxxt + +b

ht = Wh(Wxxt_l + Wh( Wth + vaxl +b - ) + b ) + Wxxt + +b

colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long Short-Term Memory (LSTMs)
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Vanilla RNNs vs LSTMs (Long Short-Term Memory)

Vanilla RNN LSTM
« Simplest form of RNNSs * Improved memory module
* Limited long-term memory - Better long-term memory
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(Source: Christopher Olah) (Source: Christopher Olah)

colah.github.io/posts/2015-08-Understanding-LSTMs/
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Demystifying LSTMS

=

» }— Long-term memory module
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Input (Source: Christopher Olah)
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colah.github.io/posts/2015-08-Understanding-LSTMs/ 23



https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Demystifying LSTMS
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How can LSTMs Help Alleviate Vanishing Gradients?

LSTMs does not completely solve vanishing gradients
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Gated Recurrent Units (GRUS)

* A simplified version of LSTM

 An LSTM consists of
- Forget gate
- Input gate
- Output gate

 An GRU consists of

- Reset gate
- Update gate




LSTMs vs GRUSs
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Different Types of Recurrent Neural Networks

one to many many to one many to many many to many

Machine translation
Music accompaniment
Style Transfer

Text generation Sentiment classification Name entity recognition
Music generation Genre classification Performance rendering

(Source: CS231n)

cs231n.github.io/rnn/
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https://cs231n.github.io/rnn/

Many-to-Many RNNSs

* Inputs and outputs are aligned sequences
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Sequence-to-Sequence Model (Seg2seq)

» Widely used for machine translation

* Inputs and outputs are unalighed sequences
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llya Sutskever, Oriol Vinyals, and Quoc V. Le, “Sequence to Sequence Learning with Neural Networks,” NeurlPS, 2014.
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https://arxiv.org/pdf/1409.3215

Variants of RNNs
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\ Deep Recurrent Neural Networks

‘ ‘

a<%> Same weight matrices

stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

~A<1> ~<2> ~t>
y

Same weight matrices

Same weight matrices

32


https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

‘ Bidirectional RNNs

§<1> ,g<2> ,g<Ty>
f f f
#0000
f ! f
93<1> $<2> .’L‘<Tx>

Access to only past information

stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
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Access to past and future information
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Transformers
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What is a Transformer? Outp

Probabilities
[ Softmax
A type of neural network that use e )
the self-attention mechanism ((Asgarom)—
FgrevSSrd
|
L Add & Norm Je~ | Nx

aske
Multi-Head
Attentio

Self-attention —

\_ —
@ Positional
Encoding
Output
Embedding
Outputs

(shifted right)

(Source: Vaswani et al., 2017; adapted)

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and lllia Polosukhin, “Attention Is All You Need,” NeurlPS, 2017.

35


https://arxiv.org/abs/1706.03762

Self-attention Mechanism

A transformer is a

electricaldevicet// \\ fictioncharacter'

deep learning modelt family of genes'

—  — . — —

Uniform attention A transformer is a ?
Variable attention A transformer is a ?

Transformers learn what to attend to from big data!
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Why Attention Mechanism?

The FBI is chasing a criminal on the run .

™he FBI is chasing a criminal on the run .

The BBI is chasing a criminal on the run .
The FBI # chasing a criminal on the run .
The FBI is chasing acriminal on the run .

The FBI 18 chasing a criminal on the run.
The FBI is chasing a criminal on the run.

The FBI # chasing a criminal em the run.

The FBI is chasing a criminal on the run

The BBI is chasing @ criminal em the run.

(Source: Cheng et al., 2016)
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<end>

(Source: Bahdanau et al., 2015)

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio, “Neural Machine Translation by Jointly Learning to Align and Translate,” ICLR, 2015.

Jianpeng Cheng, Li Dong, and Mirella Lapata, “Long Short-Term Memory-Networks for Machine Reading,” EMNLP, 2016.
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https://arxiv.org/pdf/1601.06733

‘ Demystifying Transformers

A transformer is

ql k| v ql k]| v K
ST N
query key value
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Demystifying Transformers

A transformer is a ?

Attention

0.1 0.5 0.2 0.2 (Sumsto 1)
score
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Demystifying Transformers

Attention
score

A transformer is

I L |

0.1 0.5 0.2

Weighted sum by attention

0.2

Prediction
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Demystifying Transformers

query
key

value

Attention
score

A transformer is a
k k k k| |v
0.1 0.5 0.2 0.2

Prediction
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What does a Transformer Learn?

(Each color represents an attention head)

First chord

(Source: Huang et al., 2018)

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, lan Simon, Curtis Hawthorne, Andrew M. Dai, Matthew D. Hoffman, Monica Dinculescu, and Douglas
Eck, “Music Transformer: Generating Music with Long-Term Structure,” Magenta Blog, December 13, 2018.
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https://magenta.tensorflow.org/music-transformer

What does a Transformer Learn?

(Each color represents an attention head)
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(Source: Huang et al., 2018)

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, lan Simon, Curtis Hawthorne, Andrew M. Dai, Matthew D. Hoffman, Monica Dinculescu, and Douglas
Eck, “Music Transformer: Generating Music with Long-Term Structure,” Magenta Blog, December 13, 2018.



https://magenta.tensorflow.org/music-transformer

Word Embedding

» Goal: Learn to represent words as vectors
* Intuition: Synonyms should have close embeddings

* Antonyms should be far apart?
- Not quite, antonyms usually fall in the same “topic”

- For example, happy and sad are antonyms, but they are both
emotions

joyful

pasta happy

ramen

/ —Q Sad
sushi

Output

Probabilities

[ Softmax |}

(

Linear

([ Add & Norm ]«\

Feed
Forward

—

Masked
Multi-Head
Attention

\

—tr

_JJ

[ Add & Norm Je~ | Nx

+

Output
Embedding

T

Outputs

(shifted right)

Positional
Encoding

(Source: Vaswani et al., 2017; adapted)

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and lllia Polosukhin, “Attention Is All You Need,” NeurlIPS, 2017. 44



https://arxiv.org/abs/1706.03762

Word Embedding

- A word embedding layer is functionally equivalent to one-hot encoded
words followed by a dense layer > But way faster!

ramen makes happy
} }
& Embedding layer A
R —
ramen — ()
S —
\_ 5 J
} }

ramen makes happy
| | |
cat 0 ) o 0
ramen 1 1 0 0
happy E 0 : 0 H1
| | |
( Dense layer )
| | |
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Positional Encoding prfbilﬁﬁfées

|  Softmax )

| Linear |}

Intuition: A word could have different meanings
at different positions

f
[ Add & Norm Je~

Feed
Forward

Provides positional information to the model  —
[ Add & Norm Je~ | Nx

Masked
Multi-Head
Attention

tr

- —)
Added to the Positional)

word embedding % Encoding

Output
Embedding

5
i -050 T

Outputs
(shifted right)

Position

Embedding Dimension (Source: Vaswani et al., 2017; adapted)

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and lllia Polosukhin, “Attention Is All You Need,” NeurlPS, 2017.
erdem.pl/2021/05/understanding-positional-encoding-in-transformers
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Seq2seq vs Transformers

Seqg2seq

I Efo rmation (::) (:or:g) (hiHe) (\Sri)
ottleneck y . 2 <€0S>
[ R I
I s I s B e B
o
| love you o

Transformers
( transformer i a \
I
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key %
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Attentiof
score
\

ey
D

Large GPU memory required

Prediction

47



Efficient Transformers

 The memory requirement for self-attention grows quadratically!

* There are many efficient transformer variants

Transformer-XL

Linear Transformer

Performer

Longformer

Reformer

Swin Transformer

... just to name a few

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler, “Efficient Transformers: A Survey,” arXiv preprint arXiv:2009:06732, 2022.

Charformer
(Tay et al, 2021)

3 TokenLearner
Perceiver (Ryoo et al, 2021)
(Jaegle et al, 2021)

Transformer-XL
(Dai et al., 2019)

Nystromformer
{Xiong et al, 2019)

Memory/ Memo
Recurrence . Y
, Downsampling Compressed
Compressive

Transformer,
(Rae et al, 2018)

Performer \
{(Choroman: ski et al, 2020)

Low-Rank Transformer
(Winata et al_, 2020)

Set Transformer
(Lee et al, 2019)

Clusterformer
(Wang et al, 2020)

Routing

Transformer
(Roy et al., 2020)

Funnel Poolingformer
Transformer — (Zhenaetal.2021)
(Dai et al., 2020)

ETC Big Bird

{Ainslie et al, 2020) (Zaheer et al., 2020)

Reformer
(Kitaev et al , 2020)

Longformer Swin

(Beltagy etal.2020)  Transformer
(Liu et al, 2020)

Clustered Attention
(Vyas et al., 2020)

Linformer Low Rank / Long Short
(Wang et al., 2020k) Kernels

Tay et al, 2020b)
Transformer

(zhu et al, 2021)

Fixed/Factorized/ ‘
Random Patterns

Adaptive
Sparse

Random Feature Attention

) CC-Net GShard Transformer
(PEnaiet sL202) Blockwise Transformer (Huang et al, 2018) (Lepikhin et al, 2020) {Ganeis etal 22019
(Qiuet al, 2019)
Linear Sparse GLaM
ERETTr Sparse_Transformer p (D etal, 2021)
(Katharopoalos et al, 2020) Image Transformer {Child etal, 2015} Switch
(Parmar et al, 2018) Transformer Product Key
Axial Transformer Esksataliany Memory

(Ho et al, 2019) (Lample et al., 2019)

Scaling Transformer
(Jaszczur et al., 2021)

(Source: Tay et al., 2022)
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https://arxiv.org/pdf/2009.06732

Vision Transformer (ViT)

Vision Transformer (ViT)

MLP
Head

Transformer Encoder

e - ) Q) @) ) )6 6) @ﬁ

* Extra learnable
[class] embedding Linear Projection of Flattened Patches

Representing an image as
a sequence of patches

(Source: Dosovitskiy et al., 2021)

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain
Gelly, Jakob Uszkoreit, and Neil Houlsby, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale,” /ICLR, 2021. 49



https://arxiv.org/pdf/2010.11929

- Audio Spectrogram Transformer (AST)

>

Linear

— Output

Transformer Encoder

Proj| | Pl [Pg| | Pra| | Prag| | Pisi| | Pra1] | Proa| | Prsy
+ + + + + + + + +
Ercusi| | Em| | Ew2g| | Ei| | Ewat| | Eisi| | Ewal| | Eina| | Eisy

(Source: Gong et al., 2021)

Yuan Gong, Yu-An Chung, and James Glass, “AST: Audio Spectrogram Transformer,” INTERSPEECH, 2021.

B i Split with Overlap . . d'é

Representing audio
as a sequence of
spectrogram patches
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