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• Intuition: Compensate axis that has little progress by comparing the 
current gradients to the previous gradients

(Recap) Gradient-based Adaptive Learning Rate

2towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Large gradients along one 
axis, small along the other

Gradient 
Descent

AdaGrad

Use larger learning rate for the 
axis with smaller gradients

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c


• Intuition:  Maintain the momentum to escape from local minima

(Recap) Momentum

3towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Without 
momentum

With 
momentum

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c
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• Momentum

 Gets you out of spurious local minima

 Allows the model to explore around

• Gradient-based adaption

 Maintains steady improvement

 Allows faster convergence

(Recap) Comparison of Optimizers

medium.com/@LayanSA/complete-guide-to-adam-optimization-1e5f29532c3d

https://medium.com/@LayanSA/complete-guide-to-adam-optimization-1e5f29532c3d


• Intuition:  Estimate the gradient using several random training samples

(Recap) Mini-batch Gradient Descent

5analyticsvidhya.com/blog/2022/07/gradient-descent-and-its-types/

Loss

Epoch Epoch Epoch

batch size = 𝑁 batch size = 1 1 < batch size < 𝑁

https://www.analyticsvidhya.com/blog/2022/07/gradient-descent-and-its-types/


(Recap) Training–Validation–Test Pipeline
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Training TestValidation

Optimize

Select



(Recap) Training vs Validation Losses
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Training

Validation

Steps

Loss

Validation loss 

Training loss 

Validation loss 

Training loss 

Overfitting!



Convolutional Neural Networks (CNNs)
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• Intuition: Learn reusable local pattern detector

• Widely used in computer vision

• Also used for music and audio

 Representing music as piano rolls

 Representing audio as spectrograms

Convolutional Neural Networks (CNNs)
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Reusable Pattern Detectors
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Reusable Pattern Detectors

11



Reusable Pattern Detectors
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Reusable Pattern Detectors
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Convolutional Neural Network (CNNs)
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Conv Pooling PoolingConv⋯ Flatten Dense Dense⋯

Repeat several times Fully-connected layers

Input

Dog
Cat

Penguin
Bear

⋮
Rabbit

Output

⋮



2D Convolution
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2D Convolution

16
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Elementwise multiplication 
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2D Convolution
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2D Convolution
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2D Convolution
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2D Convolution
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-1 -1 1

1 -1 -1

∗ =

KernelInput Output

High activation when 
the local pattern is 
close to the kernel
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2D Convolution
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Low activation when 
the local pattern 

differs from the kernel
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2D Convolution
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2D Convolution
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2D Convolution
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• A convolutional layer consists of many learnable kernels (channels)

Convolutional Layer

25

-1 1 -1

-1 1 -1

-1 1 -1

1 1 1

-1 -1 -1

-1 -1 -1

-1 1 1

-1 1 1

-1 1 1

1 1 -1

1 1 -1

1 1 -1

-1 1 -1

-1 -1 1

1 -1 -1

-1 1 -1

1 -1 -1

-1 -1 1

Convolutional layer

channels

To be learned

Each kernel detects 
a local pattern



Convolutional Neural Network (CNNs)
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Conv Pooling PoolingConv⋯ Flatten Dense Dense⋯

Repeat several times Fully-connected layers

Input

Dog
Cat

Penguin
Bear

⋮
Rabbit

Output

⋮



Padding
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padding=“valid”
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Keep the output of the 
same size as the input



Shapes
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∗ =Input

𝑵
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𝒌

𝒌 Output

𝑵
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𝒌
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padding=“valid”
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𝑵
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𝒌

𝒌 Output𝑵

𝑵



Striding
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∗ =

stride=2



Striding
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Max Pooling Layer
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92

29

Downsample and keep the 
strongest activation in each block



Convolutional Neural Network (CNNs)
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Conv Pooling PoolingConv⋯ Flatten Dense Dense⋯

Repeat several times Fully-connected layers

Input

Dog
Cat

Penguin
Bear

⋮
Rabbit

Output

⋮

Channels increase as we go deeperRGB: 3 channels
(Grayscale: 1 channel)



A Real Example
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Input 
channels

Output 
channels

Kernel size

Input: 1     x 64 x 64

16   x 32 x 32

32   x 16 x 16

64   x 8   x 8

128 x 4   x 4

= 16384

= 8192

= 4096

= 2048

Total number of 
features decrease 
as we go deeper

More channels, 
lower resolution 
as we go deeper



A Real Example
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Input 
channels

Output 
channels

Kernel size

How many parameters do 
we have in each layer?

(3 x 3 x 1 + 1) x 16

(3 x 3 x 16 + 1) x 32

(3 x 3 x 32 + 1) x 64

(3 x 3 x 64 + 1) x 128

(2048 + 1) x 11

= 160

= 4640

= 18496

= 73856

= 22539



• Learn local patterns

• Invariant to shifts

 Also called translational invariance

• Reuse the learned filters across

 Different parts of the image

 Across different images

• Reduce complexity against full-connected neural networks

Benefits of CNNs

35



What does a CNN Learn?
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Learned CNN Kernels in a Trained AlexNet
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1st convolutional layer

11x11 
kernels

2nd convolutional layer

5x5 
kernels

cs231n.github.io/understanding-cnn/

https://cs231n.github.io/understanding-cnn/


Learned CNN Kernels in a Trained AlexNet

38Matthew D. Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks,” ECCV, 2014.

Top activations

Learned CNN kernels

Layer 1

https://arxiv.org/pdf/1311.2901


Learned CNN Kernels in a Trained AlexNet

39Matthew D. Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks,” ECCV, 2014.

https://arxiv.org/pdf/1311.2901


Learned CNN Kernels in a Trained AlexNet

40Matthew D. Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks,” ECCV, 2014.

https://arxiv.org/pdf/1311.2901


Learned CNN Kernels in a Trained AlexNet

41Matthew D. Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks,” ECCV, 2014.

https://arxiv.org/pdf/1311.2901


Learned CNN Kernels in a Trained AlexNet

42Matthew D. Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks,” ECCV, 2014.

https://arxiv.org/pdf/1311.2901


Activations in a Trained AlexNet

43cs231n.github.io/understanding-cnn/

1st convolutional layer

What’s this!?

https://cs231n.github.io/understanding-cnn/


Activations in a Trained AlexNet

44cs231n.github.io/understanding-cnn/

1st convolutional layer 5th convolutional layer

https://cs231n.github.io/understanding-cnn/


What does a CNN Learn?

45cs231n.github.io/understanding-cnn/

https://cs231n.github.io/understanding-cnn/


• Train a CNN that can classify audio files into their instrument families

 Input: 64x64 mel spectrogram

 Output: 11 instrument classes

 Using the NSynth dataset (Engel et al., 2017)

Assignment 2: Musical Note Classification using CNNs

46
Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Douglas Eck, Karen Simonyan, and Mohammad Norouzi, “Neural Audio Synthesis of Musical Notes with WaveNet 
Autoencoders,” ICML, 2017.

Bass
Brass
Flute

Guitar
Keyboard

Mallet
Organ
Reed
String

Synth Lead
Vocal

https://arxiv.org/pdf/1704.01279
https://arxiv.org/pdf/1704.01279


NSynth Dataset

47
Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Douglas Eck, Karen Simonyan, and Mohammad Norouzi, “Neural Audio Synthesis of Musical Notes with WaveNet 
Autoencoders,” ICML, 2017.

• A collection of 305,979 single-shot musical notes (Engel et al., 2017)

 Produced from 1,006 commercial sample libraries

 With different MIDI pitches (21–108) and velocities (25, 50, 75, 100, 127)

https://arxiv.org/pdf/1704.01279
https://arxiv.org/pdf/1704.01279


• Instructions will be released on Gradescope

• Due at 11:59pm ET on October 7

• Late submissions: 3 point deducted per day

Assignment 2: Musical Note Classification using CNNs

48



• Great Lakes is a high-performance computing cluster at U-M

• You will be provided 3000 CPU hours (~400 GPU hours)

• Before you access Great Lakes, you’ll need to first create an HPC login!

• U-M VPN is required to access the web portal off-campus

Great Lakes

49



Neural Style Transfer
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Neural Style Transfer

51Leon A. Gatys, Alexander S. Ecker and Matthias Bethge, “Image Style Transfer Using Convolutional Neural Networks,” CVPR, 2016

https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf


Neural Style Transfer – Examples

52github.com/PJ-Finlay/Neural-Style-Transfer-Images

Content Style Output

+

https://github.com/PJ-Finlay/Neural-Style-Transfer-Images


Neural Style Transfer – Examples

53github.com/PJ-Finlay/Neural-Style-Transfer-Images

Content Style Output

+

https://github.com/PJ-Finlay/Neural-Style-Transfer-Images


Neural Style Transfer – Examples

54github.com/PJ-Finlay/Neural-Style-Transfer-Images

Content Style Output

+

https://github.com/PJ-Finlay/Neural-Style-Transfer-Images


Deep Dream

55



• Adjust the input image so that it 
maximizes the activation of a 
certain neuron

Deep Dream 

56github.com/PJ-Finlay/pytorch-deepdream

https://github.com/PJ-Finlay/pytorch-deepdream


Deep Dream – Examples 

57research.google/blog/inceptionism-going-deeper-into-neural-networks/

https://research.google/blog/inceptionism-going-deeper-into-neural-networks/
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