PAT 498/598 (Fall 2024)

Special Topics: Generative AI for Music and Audio Creation

Lecture 7: CNNs

Instructor: Hao-Wen Dong

(Recap) Gradient-based Adaptive Learning Rate

• Intuition: Compensate axis that has little progress by comparing the current gradients to the previous gradients

(Recap) Momentum

• Intuition: Maintain the momentum to escape from local minima

(Recap) Comparison of Optimizers

Momentum

- Gets you out of spurious local minima
- Allows the model to explore around

Gradient-based adaption

- Maintains steady improvement
- Allows faster convergence

(Recap) Mini-batch Gradient Descent

Intuition: Estimate the gradient using several random training samples

(Recap) Training–Validation–Test Pipeline

(Recap) Training vs Validation Losses

Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs)

- Intuition: Learn reusable local pattern detector
- Widely used in **computer vision**
- Also used for music and audio
 - Representing music as piano rolls
 - Representing audio as spectrograms

Convolutional Neural Network (CNNs)

 $(-1 \times 1) + (1 \times -1) + (-1 \times -1)$ $+(-1 \times -1) + (-1 \times 1) + (1 \times -1) = -1$ $+(-1 \times -1) + (-1 \times -1) + (-1 \times 1)$

 $(1 \times 1) + (-1 \times -1) + (-1 \times -1) + (-1 \times -1) + (-1 \times -1) + (1 \times 1) + (-1 \times -1) = 9$ +(-1 \times -1) + (-1 \times -1) + (1 \times 1) -1

9

Output

High activation when the local pattern is close to the kernel

-1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1

Input

*

Kernel

Output

Low activation when the local pattern differs from the kernel

Kernel Input -1 -1 -1 1 1 -1 -1 -1 -1 -1 1 * -1 -1 1 1 -1 -1 -1 -1 -1 1 1 -1 -1 -1

Kernel Input 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 * -1 -1 1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1

1 1 1 5

Input 1 -1 -1 -1 -1 -1 -1 1 * -1 -1 1 -1 -1 -1 -1 -1

Kernel

Output

Convolutional Layer

• A convolutional layer consists of many learnable kernels (channels)

Convolutional Neural Network (CNNs)

Padding

padding="valid"

*

0

0

0

0

0

0

1	-1	-1	
-1	1	-1	
-1	-1	1	

9 -1 -1 9

=

0	0	0	0	0	
0	1	-1	-1	-1	
0	-1	1	-1	-1	
0	-1	-1	1	-1	
0	-1	-1	-1	1	

0

0

0

0

0

*

4	-2	0	2
-2	9	-1	0
0	-1	9	-2
2	0	-2	4

Keep the output of the same size as the input

padding="same"

Shapes

Striding

stride=2

0	0	0	0	0	0		
0	1	1	-1	-1	0		
0	-1	1	-1	-1	0		
0	-1	-1	1	-1	0		
0	-1	-1	-1	1	0		
0	0	0	0	0	0		

*

1	-1	-1
-1	1	-1
-1	-1	1

=

Striding

stride=3

*

1	-1	-1
-1	1	-1
-1	-1	1

=

4	2
2	4

Max Pooling Layer

Downsample and keep the strongest activation in each block

Convolutional Neural Network (CNNs)

A Real Example

A Real Example

```
Input
                               Output
class CNN(nn.Module): channels
                              channels
   """A basic convolutional neural net/work."""
   def init (self):
                                       Kernel size
      super(). init ()
      self.conv1 = nn.Conv2d(1)(16)(3) padding="same")
      self.conv2 = nn.Conv2d(16, 32, 3, padding="same")
      self.conv3 = nn.Conv2d(32, 64, 3, padding="same")
      self.conv4 = nn.Conv2d(64, 128, 3, padding="same")
      self.pool = nn.MaxPool2d(2, 2)
      self.fc = nn.Linear(128 * 4 * 4, n_classes) How many parameters do
                                               we have in each layer?
   def forward(self, x):
      x = self.pool(F.relu(self.conv1(x))) (3 x 3 x 1 + 1) x 16
                                                              = 160
      = 4640
      x = self.pool(F.relu(self.conv3(x))) (3 x 3 x 32 + 1) x 64
                                                              = 18496
      x = self.pool(F.relu(self.conv4(x))) (3 x 3 x 64 + 1) x 128
                                                              = 73856
      x = torch.flatten(x, 1)
      → (2048 + 1) x 11
                                                              = 22539
      return x
```

Benefits of CNNs

- Learn local patterns
- Invariant to shifts
 - Also called translational invariance
- Reuse the learned filters across
 - Different parts of the image
 - Across different images
- **Reduce complexity** against full-connected neural networks

What does a CNN Learn?

1st convolutional layer

2nd convolutional layer

Layer 1

Learned CNN kernels

Top activations

Matthew D. Zeiler and Rob Fergus, "Visualizing and Understanding Convolutional Networks," ECCV, 2014.

Matthew D. Zeiler and Rob Fergus, "Visualizing and Understanding Convolutional Networks," ECCV, 2014.

Activations in a Trained AlexNet

1st convolutional layer

Activations in a Trained AlexNet

1st convolutional layer

1			

5th convolutional layer

		1			-		. ўР. ————————————————————————————————————
10	1		- 14 ° 1			1	
			la la compañía de la comp	16		$\frac{1}{2}$	
1.1							Ref. P
	1.5		*				
						37	
							12
	+		, ii				-

What does a CNN Learn?

Assignment 2: Musical Note Classification using CNNs

- Train a CNN that can classify audio files into their **instrument families**
 - Input: 64x64 mel spectrogram
 - Output: 11 instrument classes
 - Using the **NSynth** dataset (Engel et al., 2017)

Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Douglas Eck, Karen Simonyan, and Mohammad Norouzi, "<u>Neural Audio Synthesis of Musical Notes with WaveNet</u> <u>Autoencoders</u>," *ICML*, 2017.

NSynth Dataset

- A collection of 305,979 single-shot musical notes (Engel et al., 2017)
 - Produced from 1,006 commercial sample libraries
 - With different **MIDI pitches** (21–108) and **velocities** (25, 50, 75, 100, 127)

Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Douglas Eck, Karen Simonyan, and Mohammad Norouzi, "<u>Neural Audio Synthesis of Musical Notes with WaveNet</u> <u>Autoencoders</u>," *ICML*, 2017.

Assignment 2: Musical Note Classification using CNNs

- Instructions will be released on Gradescope
- Due at 11:59pm ET on October 7
- Late submissions: 3 point deducted per day

Great Lakes

- **Great Lakes** is a high-performance computing cluster at U-M
- You will be provided **3000 CPU hours (~400 GPU hours)**
- Before you access Great Lakes, you'll need to first **create an HPC login**!
- U-M VPN is required to access the web portal off-campus

Neural Style Transfer

Neural Style Transfer

Neural Style Transfer – Examples

+

Content

Style

Neural Style Transfer – Examples

+

Content

Style

Neural Style Transfer – Examples

+

Content

Style

Deep Dream

Deep Dream

 Adjust the input image so that it maximizes the activation of a certain neuron

Deep Dream – Examples

