
Special Topics:
Generative AI for Music and Audio Creation

Lecture 7: CNNs

PAT 498/598 (Fall 2024)

Instructor: Hao-Wen Dong

• Intuition: Compensate axis that has little progress by comparing the
current gradients to the previous gradients

(Recap) Gradient-based Adaptive Learning Rate

2towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Large gradients along one
axis, small along the other

Gradient
Descent

AdaGrad

Use larger learning rate for the
axis with smaller gradients

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

• Intuition: Maintain the momentum to escape from local minima

(Recap) Momentum

3towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Without
momentum

With
momentum

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

4

• Momentum

 Gets you out of spurious local minima

 Allows the model to explore around

• Gradient-based adaption

 Maintains steady improvement

 Allows faster convergence

(Recap) Comparison of Optimizers

medium.com/@LayanSA/complete-guide-to-adam-optimization-1e5f29532c3d

https://medium.com/@LayanSA/complete-guide-to-adam-optimization-1e5f29532c3d

• Intuition: Estimate the gradient using several random training samples

(Recap) Mini-batch Gradient Descent

5analyticsvidhya.com/blog/2022/07/gradient-descent-and-its-types/

Loss

Epoch Epoch Epoch

batch size = 𝑁 batch size = 1 1 < batch size < 𝑁

https://www.analyticsvidhya.com/blog/2022/07/gradient-descent-and-its-types/

(Recap) Training–Validation–Test Pipeline

6

Training TestValidation

Optimize

Select

(Recap) Training vs Validation Losses

7

Training

Validation

Steps

Loss

Validation loss

Training loss

Validation loss

Training loss

Overfitting!

Convolutional Neural Networks (CNNs)

8

• Intuition: Learn reusable local pattern detector

• Widely used in computer vision

• Also used for music and audio

 Representing music as piano rolls

 Representing audio as spectrograms

Convolutional Neural Networks (CNNs)

9

Reusable Pattern Detectors

10

Reusable Pattern Detectors

11

Reusable Pattern Detectors

12

Reusable Pattern Detectors

13

Convolutional Neural Network (CNNs)

14

Conv Pooling PoolingConv⋯ Flatten Dense Dense⋯

Repeat several times Fully-connected layers

Input

Dog
Cat

Penguin
Bear

⋮
Rabbit

Output

⋮

2D Convolution

15

-1 1 -1 -1

-1 -1 1 -1

-1 -1 -1 1

1 -1 -1 -1

-1 1 -1

-1 -1 1

1 -1 -1

∗ =

KernelInput Output

9

2D Convolution

16

-1 1 -1 -1

-1 -1 1 -1

-1 -1 -1 1

1 -1 -1 -1

-1 1 -1

-1 -1 1

1 -1 -1

∗ =

KernelInput Output

1 × 1 + −1 × −1 + −1 × −1
+ −1 × −1 + 1 × 1 + −1 × −1
+ −1 × −1 + −1 × −1 + 1 × 1

= 𝟗

Elementwise multiplication

-19

2D Convolution

17

-1 1 -1 -1

-1 -1 1 -1

-1 -1 -1 1

1 -1 -1 -1

-1 1 -1

-1 -1 1

1 -1 -1

∗ =

KernelInput Output

−1 × 1 + −1 × −1 + −1 × −1
+ −1 × 1 + −1 × 1 + −1 × −1
+ −1 × −1 + 1 × −1 + −1 × 1

= −𝟏

-1

-19

2D Convolution

18

-1 1 -1 -1

-1 -1 1 -1

-1 -1 -1 1

1 -1 -1 -1

-1 1 -1

-1 -1 1

1 -1 -1

∗ =

KernelInput Output

−1 × 1 + 1 × −1 + −1 × −1
+ −1 × −1 + −1 × 1 + 1 × −1
+ −1 × −1 + −1 × −1 + −1 × 1

= −𝟏

9-1

-19

2D Convolution

19

-1 1 -1 -1

-1 -1 1 -1

-1 -1 -1 1

1 -1 -1 -1

-1 1 -1

-1 -1 1

1 -1 -1

∗ =

KernelInput Output

1 × 1 + −1 × −1 + −1 × −1
+ −1 × −1 + 1 × 1 + −1 × −1
+ −1 × −1 + −1 × −1 + 1 × 1

= 𝟗

9

9

2D Convolution

20

-1 1 -1 -1

-1 -1 1 -1

-1 -1 -1 1

1 -1 -1 -1

-1 1 -1

-1 -1 1

1 -1 -1

∗ =

KernelInput Output

High activation when
the local pattern is
close to the kernel

-1

-1

2D Convolution

21

-1 1 -1 -1

-1 -1 1 -1

-1 -1 -1 1

1 -1 -1 -1

-1 1 -1

-1 -1 1

1 -1 -1

∗ =

KernelInput Output

Low activation when
the local pattern

differs from the kernel

9-1

-19

2D Convolution

22

-1 1 -1 -1

-1 -1 1 -1

-1 -1 -1 1

1 -1 -1 -1

-1 1 -1

-1 -1 1

1 -1 -1

∗ =

KernelInput Output

51

11

2D Convolution

23

-1 1 -1 -1

1 -1 -1 -1

-1 -1 -1 -1

-1 -1 1 -1

-1 1 -1

-1 -1 1

1 -1 -1

∗ =

KernelInput Output

1-1

-19

2D Convolution

24

-1 1 -1 -1

1 -1 -1 -1

-1 -1 -1 -1

-1 -1 1 -1

-1 1 -1

1 -1 -1

-1 -1 1

∗ =

KernelInput Output

• A convolutional layer consists of many learnable kernels (channels)

Convolutional Layer

25

-1 1 -1

-1 1 -1

-1 1 -1

1 1 1

-1 -1 -1

-1 -1 -1

-1 1 1

-1 1 1

-1 1 1

1 1 -1

1 1 -1

1 1 -1

-1 1 -1

-1 -1 1

1 -1 -1

-1 1 -1

1 -1 -1

-1 -1 1

Convolutional layer

channels

To be learned

Each kernel detects
a local pattern

Convolutional Neural Network (CNNs)

26

Conv Pooling PoolingConv⋯ Flatten Dense Dense⋯

Repeat several times Fully-connected layers

Input

Dog
Cat

Penguin
Bear

⋮
Rabbit

Output

⋮

Padding

27

-1 1 -1 -1

-1 -1 1 -1

-1 -1 -1 1

1 -1 -1 -1

-1 1 -1

-1 -1 1

1 -1 -1

9-1

-19

∗ =

-1 1 -1 -1

-1 -1 1 -1

-1 -1 -1 1

1 -1 -1 -1

0 0 0 0

0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

-1 1 -1

-1 -1 1

1 -1 -1

-2 9 -1 0

0 -1 9 -2

2 0 -2 4

4 -2 0 2

=∗

padding=“valid”

padding=“same”

Keep the output of the
same size as the input

Shapes

28

∗ =Input

𝑵

𝑵 Kernel

𝒌

𝒌 Output

𝑵
−

𝒌
+

𝟏

𝑵 − 𝒌 + 𝟏

padding=“valid”

padding=“same” ∗ =Input

𝑵

𝑵 Kernel

𝒌

𝒌 Output𝑵

𝑵

Striding

29

-1 1 -1 -1

-1 -1 1 -1

-1 -1 -1 1

1 -1 -1 -1

0 0 0 0

0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

-1 1 -1

-1 -1 1

1 -1 -1

90

04

∗ =

stride=2

Striding

30

-1 1 -1 -1

-1 -1 1 -1

-1 -1 -1 1

1 -1 -1 -1

0 0 0 0

0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

-1 1 -1

-1 -1 1

1 -1 -1

42

24

∗ =

stride=3

Max Pooling Layer

31

-2 9 -1 0

0 -1 9 -2

2 0 -2 4

4 -2 0 2

92

29

Downsample and keep the
strongest activation in each block

Convolutional Neural Network (CNNs)

32

Conv Pooling PoolingConv⋯ Flatten Dense Dense⋯

Repeat several times Fully-connected layers

Input

Dog
Cat

Penguin
Bear

⋮
Rabbit

Output

⋮

Channels increase as we go deeperRGB: 3 channels
(Grayscale: 1 channel)

A Real Example

33

Input
channels

Output
channels

Kernel size

Input: 1 x 64 x 64

16 x 32 x 32

32 x 16 x 16

64 x 8 x 8

128 x 4 x 4

= 16384

= 8192

= 4096

= 2048

Total number of
features decrease
as we go deeper

More channels,
lower resolution
as we go deeper

A Real Example

34

Input
channels

Output
channels

Kernel size

How many parameters do
we have in each layer?

(3 x 3 x 1 + 1) x 16

(3 x 3 x 16 + 1) x 32

(3 x 3 x 32 + 1) x 64

(3 x 3 x 64 + 1) x 128

(2048 + 1) x 11

= 160

= 4640

= 18496

= 73856

= 22539

• Learn local patterns

• Invariant to shifts

 Also called translational invariance

• Reuse the learned filters across

 Different parts of the image

 Across different images

• Reduce complexity against full-connected neural networks

Benefits of CNNs

35

What does a CNN Learn?

36

Learned CNN Kernels in a Trained AlexNet

37

1st convolutional layer

11x11
kernels

2nd convolutional layer

5x5
kernels

cs231n.github.io/understanding-cnn/

https://cs231n.github.io/understanding-cnn/

Learned CNN Kernels in a Trained AlexNet

38Matthew D. Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks,” ECCV, 2014.

Top activations

Learned CNN kernels

Layer 1

https://arxiv.org/pdf/1311.2901

Learned CNN Kernels in a Trained AlexNet

39Matthew D. Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks,” ECCV, 2014.

https://arxiv.org/pdf/1311.2901

Learned CNN Kernels in a Trained AlexNet

40Matthew D. Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks,” ECCV, 2014.

https://arxiv.org/pdf/1311.2901

Learned CNN Kernels in a Trained AlexNet

41Matthew D. Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks,” ECCV, 2014.

https://arxiv.org/pdf/1311.2901

Learned CNN Kernels in a Trained AlexNet

42Matthew D. Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks,” ECCV, 2014.

https://arxiv.org/pdf/1311.2901

Activations in a Trained AlexNet

43cs231n.github.io/understanding-cnn/

1st convolutional layer

What’s this!?

https://cs231n.github.io/understanding-cnn/

Activations in a Trained AlexNet

44cs231n.github.io/understanding-cnn/

1st convolutional layer 5th convolutional layer

https://cs231n.github.io/understanding-cnn/

What does a CNN Learn?

45cs231n.github.io/understanding-cnn/

https://cs231n.github.io/understanding-cnn/

• Train a CNN that can classify audio files into their instrument families

 Input: 64x64 mel spectrogram

 Output: 11 instrument classes

 Using the NSynth dataset (Engel et al., 2017)

Assignment 2: Musical Note Classification using CNNs

46
Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Douglas Eck, Karen Simonyan, and Mohammad Norouzi, “Neural Audio Synthesis of Musical Notes with WaveNet
Autoencoders,” ICML, 2017.

Bass
Brass
Flute

Guitar
Keyboard

Mallet
Organ
Reed
String

Synth Lead
Vocal

https://arxiv.org/pdf/1704.01279
https://arxiv.org/pdf/1704.01279

NSynth Dataset

47
Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Douglas Eck, Karen Simonyan, and Mohammad Norouzi, “Neural Audio Synthesis of Musical Notes with WaveNet
Autoencoders,” ICML, 2017.

• A collection of 305,979 single-shot musical notes (Engel et al., 2017)

 Produced from 1,006 commercial sample libraries

 With different MIDI pitches (21–108) and velocities (25, 50, 75, 100, 127)

https://arxiv.org/pdf/1704.01279
https://arxiv.org/pdf/1704.01279

• Instructions will be released on Gradescope

• Due at 11:59pm ET on October 7

• Late submissions: 3 point deducted per day

Assignment 2: Musical Note Classification using CNNs

48

• Great Lakes is a high-performance computing cluster at U-M

• You will be provided 3000 CPU hours (~400 GPU hours)

• Before you access Great Lakes, you’ll need to first create an HPC login!

• U-M VPN is required to access the web portal off-campus

Great Lakes

49

Neural Style Transfer

50

Neural Style Transfer

51Leon A. Gatys, Alexander S. Ecker and Matthias Bethge, “Image Style Transfer Using Convolutional Neural Networks,” CVPR, 2016

https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf

Neural Style Transfer – Examples

52github.com/PJ-Finlay/Neural-Style-Transfer-Images

Content Style Output

+

https://github.com/PJ-Finlay/Neural-Style-Transfer-Images

Neural Style Transfer – Examples

53github.com/PJ-Finlay/Neural-Style-Transfer-Images

Content Style Output

+

https://github.com/PJ-Finlay/Neural-Style-Transfer-Images

Neural Style Transfer – Examples

54github.com/PJ-Finlay/Neural-Style-Transfer-Images

Content Style Output

+

https://github.com/PJ-Finlay/Neural-Style-Transfer-Images

Deep Dream

55

• Adjust the input image so that it
maximizes the activation of a
certain neuron

Deep Dream

56github.com/PJ-Finlay/pytorch-deepdream

https://github.com/PJ-Finlay/pytorch-deepdream

Deep Dream – Examples

57research.google/blog/inceptionism-going-deeper-into-neural-networks/

https://research.google/blog/inceptionism-going-deeper-into-neural-networks/

	Default Section
	Slide 1: Special Topics: Generative AI for Music and Audio Creation
	Slide 2: (Recap) Gradient-based Adaptive Learning Rate
	Slide 3: (Recap) Momentum
	Slide 4: (Recap) Comparison of Optimizers
	Slide 5: (Recap) Mini-batch Gradient Descent
	Slide 6: (Recap) Training–Validation–Test Pipeline
	Slide 7: (Recap) Training vs Validation Losses
	Slide 8: Convolutional Neural Networks (CNNs)
	Slide 9: Convolutional Neural Networks (CNNs)
	Slide 10: Reusable Pattern Detectors
	Slide 11: Reusable Pattern Detectors
	Slide 12: Reusable Pattern Detectors
	Slide 13: Reusable Pattern Detectors
	Slide 14: Convolutional Neural Network (CNNs)
	Slide 15: 2D Convolution
	Slide 16: 2D Convolution
	Slide 17: 2D Convolution
	Slide 18: 2D Convolution
	Slide 19: 2D Convolution
	Slide 20: 2D Convolution
	Slide 21: 2D Convolution
	Slide 22: 2D Convolution
	Slide 23: 2D Convolution
	Slide 24: 2D Convolution
	Slide 25: Convolutional Layer
	Slide 26: Convolutional Neural Network (CNNs)
	Slide 27: Padding
	Slide 28: Shapes
	Slide 29: Striding
	Slide 30: Striding
	Slide 31: Max Pooling Layer
	Slide 32: Convolutional Neural Network (CNNs)
	Slide 33: A Real Example
	Slide 34: A Real Example
	Slide 35: Benefits of CNNs
	Slide 36: What does a CNN Learn?
	Slide 37: Learned CNN Kernels in a Trained AlexNet
	Slide 38: Learned CNN Kernels in a Trained AlexNet
	Slide 39: Learned CNN Kernels in a Trained AlexNet
	Slide 40: Learned CNN Kernels in a Trained AlexNet
	Slide 41: Learned CNN Kernels in a Trained AlexNet
	Slide 42: Learned CNN Kernels in a Trained AlexNet
	Slide 43: Activations in a Trained AlexNet
	Slide 44: Activations in a Trained AlexNet
	Slide 45: What does a CNN Learn?
	Slide 46: Assignment 2: Musical Note Classification using CNNs
	Slide 47: NSynth Dataset
	Slide 48: Assignment 2: Musical Note Classification using CNNs
	Slide 49: Great Lakes
	Slide 50: Neural Style Transfer
	Slide 51: Neural Style Transfer
	Slide 52: Neural Style Transfer – Examples
	Slide 53: Neural Style Transfer – Examples
	Slide 54: Neural Style Transfer – Examples
	Slide 55: Deep Dream
	Slide 56: Deep Dream
	Slide 57: Deep Dream – Examples

