
Special Topics:
Generative AI for Music and Audio Creation

Lecture 6: Optimization

PAT 498/598 (Fall 2024)

Instructor: Hao-Wen Dong



• Please listen to the ten finalists of AI Song Contest 2024 and read the 
about pages by clicking the cover arts

• Vote for your favorites

• Answer the following questions (in 10-20 sentences each)

 Which is your favorite song? What did they do well? What can
be improved?

 What is one dimension that most finalists didn't look into or
didn't do well on?

 What tasks are easy for current AI? What are difficult?

Assignment 1: AI Song Contest
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aisongcontest.com/
the-2024-finalists

https://www.aisongcontest.com/the-2024-finalists
https://www.aisongcontest.com/the-2024-finalists
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Assignment 1: AI Song Contest

• Instructions will be released on Gradescope

• Due at 11:59pm ET on September 20

• Late submissions: 3 point deducted per day
aisongcontest.com/

the-2024-finalists

https://www.aisongcontest.com/the-2024-finalists
https://www.aisongcontest.com/the-2024-finalists


(Recap) Common Loss Functions for Regression
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• Logistic regression approaches classification like regression

(Recap) Binary Cross Entropy for Binary Classification
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(Recap) Cross Entropy for Multiclass Classification
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(Recap) Cross Entropy for Multiclass Classification
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𝐿( ො𝑦, 𝑦) = −𝑦 log ො𝑦 + 1 − 𝑦  log 1 − ො𝑦

Binary Cross Entropy Cross Entropy
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Only one of them will be one! Only one of them will be one!

Log likelihood



(Recap) Training a Neural Network
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Build a neural network
(which defines a set of functions)

Define the objective 
(i.e., what is good for a function)

Find the optimal parameters
(which leads to the best function)

ො𝐲 = 𝑓𝜽(𝐱)
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𝜽∗ = arg min
𝜽

𝐿 𝜽



(Recap) Gradient Descent – Pseudocode

• Pick an initial weight vector 𝑤0 and learning rate 𝜂

• Repeat until convergence:  𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡
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𝑤0

slope = ∇𝑓 𝑤𝑡 > 0

𝑤1

adjustment = −𝜂∇𝑓 𝑤𝑡 < 0

𝑤2𝑤3



(Recap) Forward Pass & Backward Pass
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Optimization
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Training a Neural Network
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Build a neural network
(which defines a set of functions)

Define the objective 
(i.e., what is good for a function)

Find the optimal parameters
(which leads to the best function)
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Gradient Descent Finds a Local Minimum
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Gradient Descent Finds a Local Minimum

14substance3d.adobe.com/community-assets/assets/9fe77d4279e12fe2fbd90b8f7ca18146a565f7ee

Local minima

https://substance3d.adobe.com/community-assets/assets/9fe77d4279e12fe2fbd90b8f7ca18146a565f7ee


Local Minima in Complex Loss Landscape
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Global minimum

Local minima
Solution 1

Use an optimizer with 
adaptive learning rate

Solution 2
Use a stochastic 

optimizer

Solution 3
Make the loss 

landscape smoother

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein, “Visualizing the Loss Landscape of Neural Nets,” NeurIPS, 2018.

https://arxiv.org/pdf/1712.09913


Local Minima in Complex Loss Landscape
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Global minimum

Local minima
Solution 1

Use an optimizer with 
adaptive learning rate

Solution 2
Use a stochastic 

optimizer

Solution 3
Make the loss 

landscape smoother

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein, “Visualizing the Loss Landscape of Neural Nets,” NeurIPS, 2018.

https://arxiv.org/pdf/1712.09913


Smaller learning rate Larger learning rate

Learning Rate in Gradient Descent
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𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡

Slow convergence Low precision



• We want different learning rates as the training evolves

 At the beginning, a large learning rate helps us quickly approach the target

 At the end, a smaller learning rate helps us get a better precision

Learning Rate Decay
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• Intuition:  Reduce the learning rate when we get closer to the target

Learning Rate Decay

19towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Learning rate

Epoch

But how do we choose 
the initial value?

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c


• Key:  Adjust the learning rate dynamically based on training dynamics

Adaptive Learning Rate
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• Intuition: Compensate axis that has little progress by comparing the 
current gradients to the previous gradients

Gradient-based Adaptive Learning Rate

21towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Large gradients along one 
axis, small along the other

Gradient 
Descent

AdaGrad

Use larger learning rate for the 
axis with smaller gradients

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c


• Intuition:  Maintain the momentum to escape from local minima

Momentum

22towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Without 
momentum

With 
momentum

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c


Comparison of Optimizers

23analyticsvidhya.com/blog/2021/10/a-comprehensive-guide-on-deep-learning-optimizers/

Momentum-based

Gradient-based

Can we combine them?

https://www.analyticsvidhya.com/blog/2021/10/a-comprehensive-guide-on-deep-learning-optimizers/


• Combine the idea of adaptive learning rate and momentum

• Work empirically well in complex neural network

• The go-to choice for most cases

Adam Optimizer

24
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• Momentum

 Gets you out of spurious local minima

 Allows the model to explore around

• Gradient-based adaption

 Maintains steady improvement

 Allows faster convergence

Comparison of Optimizers

medium.com/@LayanSA/complete-guide-to-adam-optimization-1e5f29532c3d

https://medium.com/@LayanSA/complete-guide-to-adam-optimization-1e5f29532c3d


Local Minima in Complex Loss Landscape
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Global minimum

Solution 1
Use an optimizer with 
adaptive learning rate

Solution 2
Use a stochastic 

optimizer

Solution 3
Make the loss 

landscape smoother

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein, “Visualizing the Loss Landscape of Neural Nets,” NeurIPS, 2018.

Local minima

https://arxiv.org/pdf/1712.09913


• How to aggregate the gradients obtained from different training samples?

• Batch gradient descent computes the mean gradients over the whole 
training set

Batch Gradient Descent
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Stochastic Gradient Descent (SGD)

• Intuition:  Estimate the gradient using one random training sample

• Benefits

 Speed up the computation of the gradient

 Add some randomness to the gradient descent algorithm

28

Gradient descent

analyticsvidhya.com/blog/2022/07/gradient-descent-and-its-types/

Stochastic gradient descent

Help escape spurious local minima

N computations → 1 computation

N N N N N 1
1

1

1
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1
1
1
1

1 16 gradient 
computations

5N gradient 
computations

https://www.analyticsvidhya.com/blog/2022/07/gradient-descent-and-its-types/


• Gradient estimate using one single sample can be unreliable

Stochastic Gradient Descent is Noisy and Unstable

29towardsdatascience.com/deep-learning-optimizers-436171c9e23f

Loss

Epoch Epoch

How about we use more samples to estimate the gradient?

https://towardsdatascience.com/deep-learning-optimizers-436171c9e23f


• Intuition:  Estimate the gradient using several random training samples

Mini-batch Gradient Descent

30analyticsvidhya.com/blog/2022/07/gradient-descent-and-its-types/

Loss

Epoch Epoch Epoch

batch size = 𝑁 batch size = 1 1 < batch size < 𝑁

https://www.analyticsvidhya.com/blog/2022/07/gradient-descent-and-its-types/


• An epoch is a full run of the whole dataset

• Steps per epoch depends on the batch size

Effects of Batch Size

31

# 𝐬𝐭𝐞𝐩𝐬 =
# 𝐭𝐫𝐚𝐢𝐧𝐢𝐧𝐠 𝐬𝐚𝐦𝐩𝐥𝐞𝐬

𝐛𝐚𝐭𝐜𝐡 𝐬𝐢𝐳𝐞

medium.com/deep-learning-experiments/effect-of-batch-size-on-neural-net-training-c5ae8516e57

Loss

Epoch

Went through 4 times 
more weight updates

https://medium.com/deep-learning-experiments/effect-of-batch-size-on-neural-net-training-c5ae8516e57


Local Minima in Complex Loss Landscape
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Global minimum

Solution 1
Use an optimizer with 
adaptive learning rate

Solution 2
Use a stochastic 

optimizer

Solution 3
Make the loss 

landscape smoother

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein, “Visualizing the Loss Landscape of Neural Nets,” NeurIPS, 2018.

Local minima

https://arxiv.org/pdf/1712.09913


Skip Connections

33Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein, “Visualizing the Loss Landscape of Neural Nets,” NeurIPS, 2018.

Without skip connections

With skip connections

https://arxiv.org/pdf/1712.09913


Training–Validation–Test 

34



In-distribution vs Out-of-distribution

35

Test

Training



In-distribution vs Out-of-distribution

36

Test Training



In-distribution vs Out-of-distribution

37

Training



• Key: Make the training distribution closer to the target distribution

• First, we need to define our target distribution

• Then, we can try to

 Collect a diverse dataset covering that covers different parts of the target distribution

 Apply data augmentation to fill the gaps in the distribution

In-distribution vs Out-of-distribution

38



• What do we really want?

 Good performance on the training samples

 Good performance on unseen samples in the target distribution

 Good performance on out-of-distribution samples

In-distribution vs Out-of-distribution

39

We already have their answers

Yep, we can do this!

Hopefully, but not guaranteed

How to achieve good performance on 
unseen samples in the target distribution



Overfitting & Underfitting

40scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html

Underfitting Good fit! Overfitting

Model too inexpressive Model too expressive

https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html


Overfitting & Underfitting

41

Underfitting Good fit! Overfitting

Model too inexpressive Model too expressive



• Goal: Good performance on unseen samples in the target distribution

Train–Test Split

42



• Goal: Good performance on unseen samples in the target distribution

Train–Test Split

43

Training Test



• We create a test set because we want to estimate the performance 
when the model is applied to an interested distribution

Test Set is an Estimation of the Test Distribution

44



Train–Validation–Test Split

45

Training
Test



Train–Validation–Test Split
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Training
TestValidation



Training–Validation–Test Pipeline
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Training TestValidation

Optimize

Select



Training vs Validation Losses
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Training

Validation

Steps

Loss

Validation loss 

Training loss 

Validation loss 

Training loss 

Overfitting!



Training vs Validation Losses

49

Training

Validation

Steps

Loss Pick the model with the 
lowest validation loss



Training vs Validation Losses
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Training

Validation

Steps

Loss

Unrepresentative 
validation samples

Possible solutions

• Increase the size and diversity 
of the validation set

• Apply cross validation



Training vs Validation Losses
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Training

Validation

Steps

Loss
Underfitting!

Possible solutions

• Train it for more steps!
• Increase the learning rate



Training vs Validation Losses
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Training

Validation

Steps

Loss

Possible solutions

• Reduce the model size
• Apply dropout
• Add a regularizer

Overfitting!



• Keys

 Never train or select your model on test samples!

 Don’t over-select your model on the validation set

• What’s the best ratio?

 Most common: 8:1:1 or 9:0.5:0.5

 For smaller dataset, you might even want 6:2:2

Train–Validation–Test Split

53



Validation Set

54Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar, “Do ImageNet Classifiers Generalize to ImageNet?,” ICML, 2019.

https://arxiv.org/pdf/1902.10811


Validation Set

55Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar, “Do ImageNet Classifiers Generalize to ImageNet?,” ICML, 2019.

https://arxiv.org/pdf/1902.10811


Overcoming Overfitting

56



Early Stopping

57

Training

Validation

Steps

Loss

Stop early!



Early Stopping

58

Training

Validation

Steps

Loss

What if?



Dropout
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Dropout

60

Error 
rate

Weight updates

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” JMLR, 2014.

𝐱

⋮
⋮

ො𝐲

⋮⋮

Each neuron may be removed 
with probability 𝒑 during training

https://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf


• A regularization term can help alleviate overfitting

 L1 regularization (LASSO)

𝐿′ = 𝐿 + 𝜆 𝑤1 + 𝑤2 + ⋯ + |𝑤𝐾|

 L2 regularization (ridge regression)

𝐿′ = 𝐿 + 𝜆 𝑤1
2 + 𝑤2

2 + ⋯ + 𝑤𝐾
2

Regularization Term

61

Both L1 and L2 regularization encourage smaller weights
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