PAT 498/598 (Fall 2024)

Special Topics: Generative AI for Music and Audio Creation

Lecture 6: Optimization

Instructor: Hao-Wen Dong

Assignment 1: Al Song Contest

- Please listen to the ten finalists of AI Song Contest 2024 and read the about pages by clicking the cover arts
- Vote for your favorites
- Answer the following questions (in 10-20 sentences each)
 - Which is your favorite song? What did they do well? What can be improved?
 - What is one dimension that most finalists didn't look into or didn't do well on?
 - What tasks are easy for current AI? What are difficult?

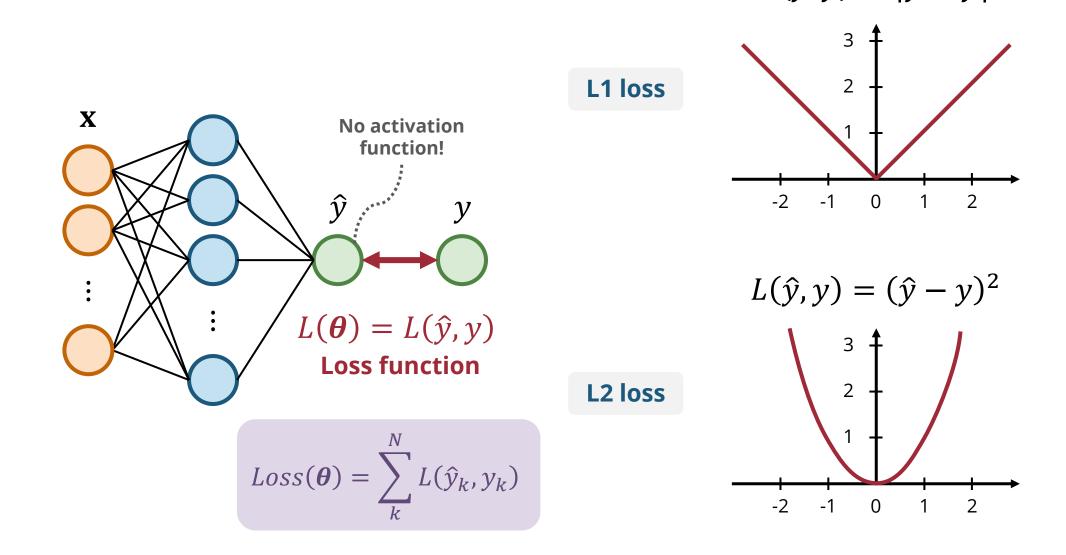
aisongcontest.com/ the-2024-finalists

Assignment 1: Al Song Contest

- Instructions will be released on Gradescope
- Due at 11:59pm ET on September 20
- Late submissions: 3 point deducted per day

aisongcontest.com/ the-2024-finalists

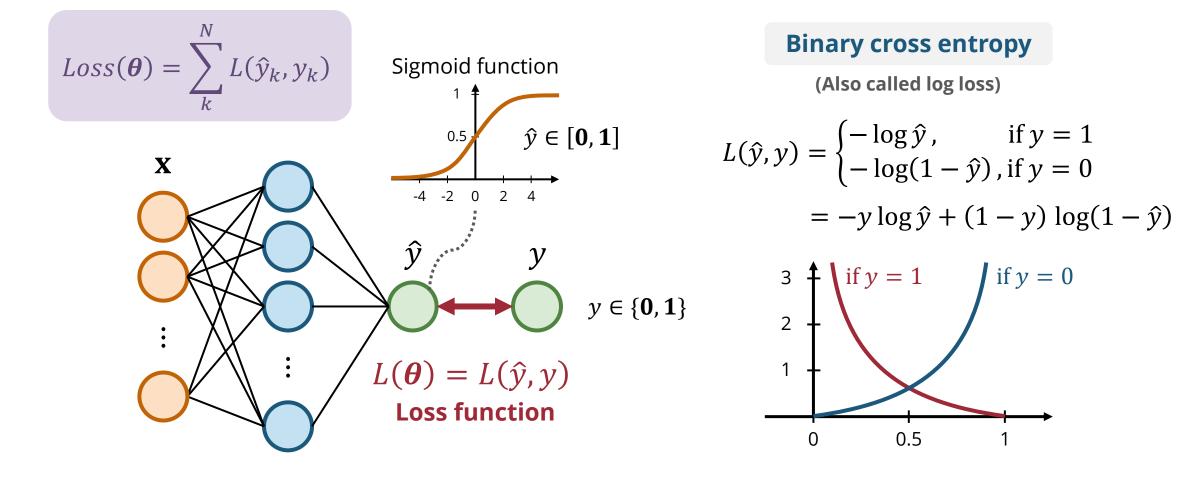
(Recap) Common Loss Functions for Regression



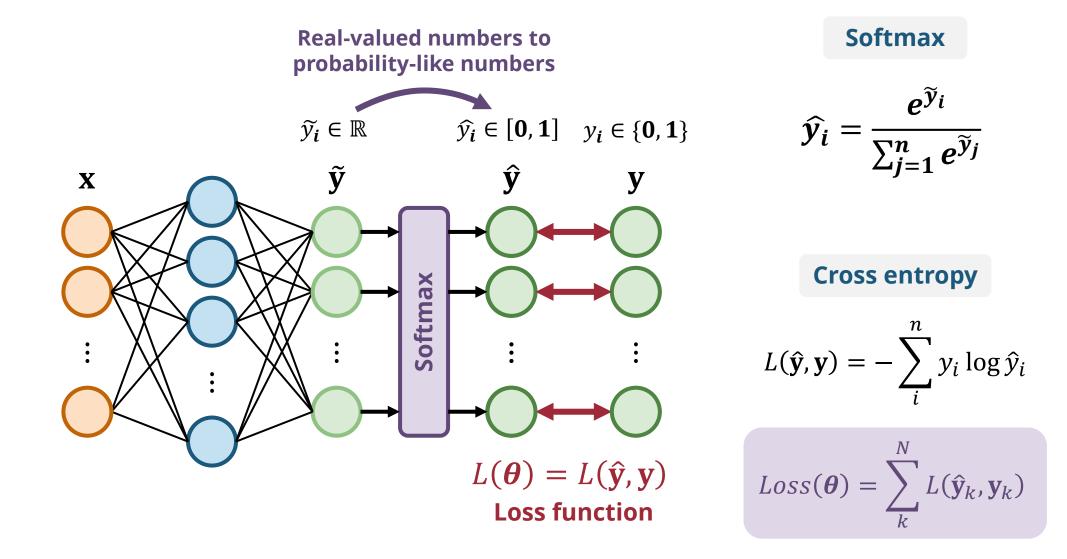
 $L(\hat{y}, y) = |\hat{y} - y|$

(Recap) Binary Cross Entropy for Binary Classification

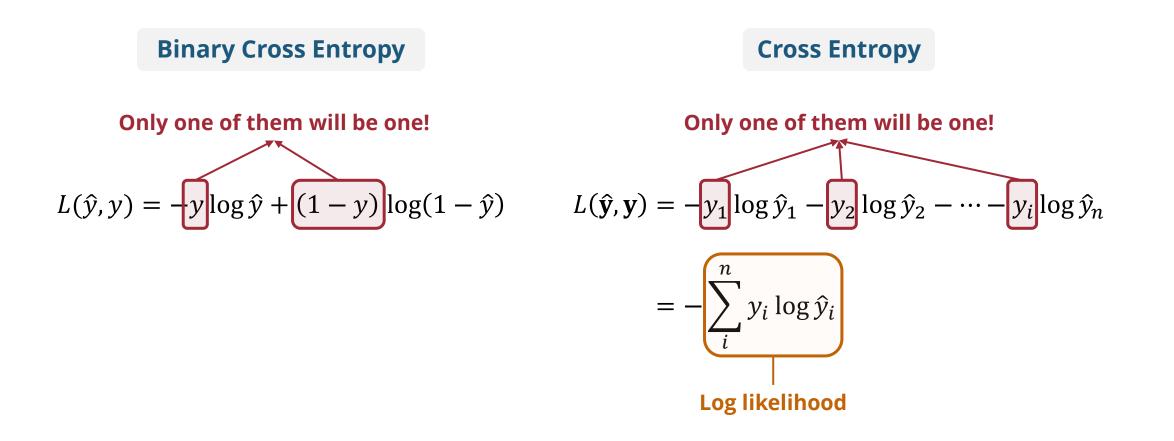
• Logistic regression approaches classification like regression



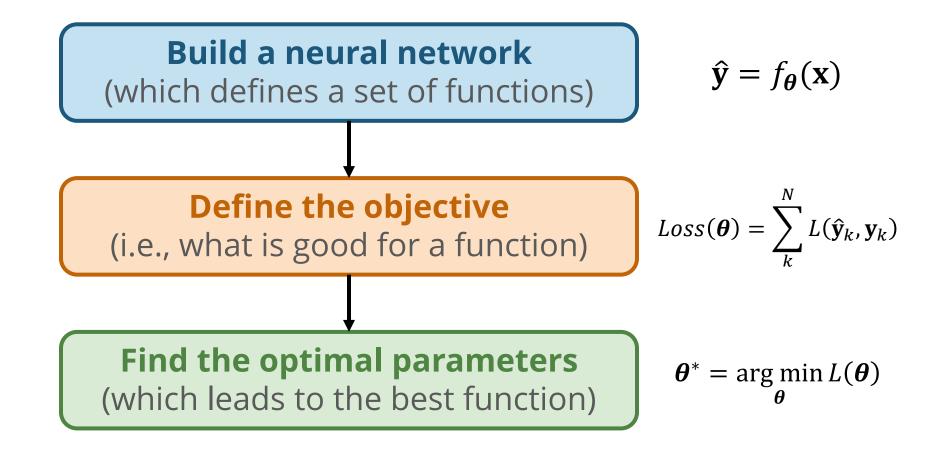
(Recap) Cross Entropy for Multiclass Classification



(Recap) Cross Entropy for Multiclass Classification

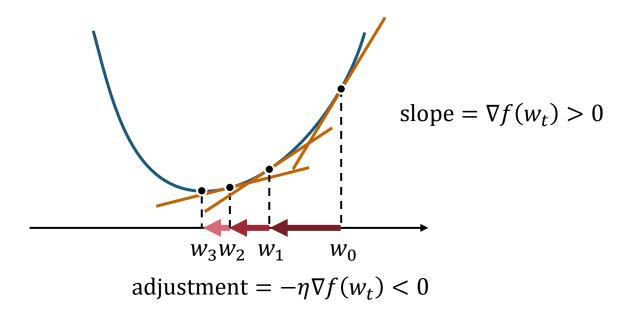


(Recap) Training a Neural Network

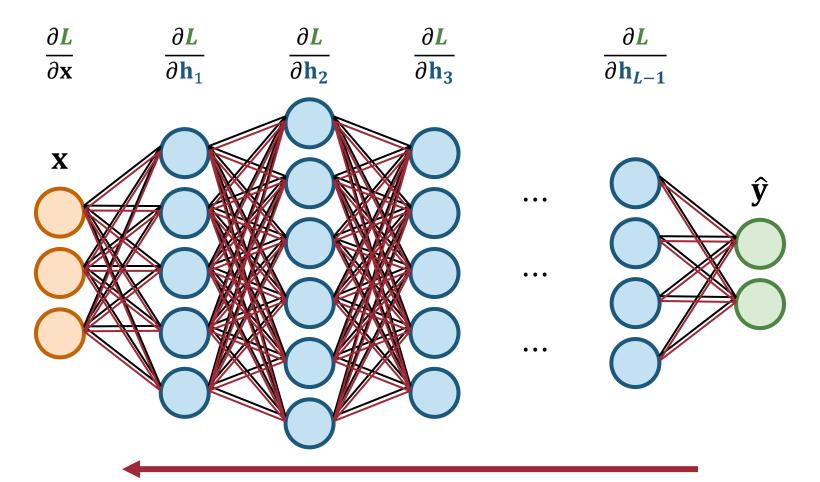


(Recap) Gradient Descent – Pseudocode

- Pick an initial weight vector w_0 and learning rate η
- Repeat until convergence: $w_{t+1} = w_t \eta \nabla f(w_t)$



(Recap) Forward Pass & Backward Pass

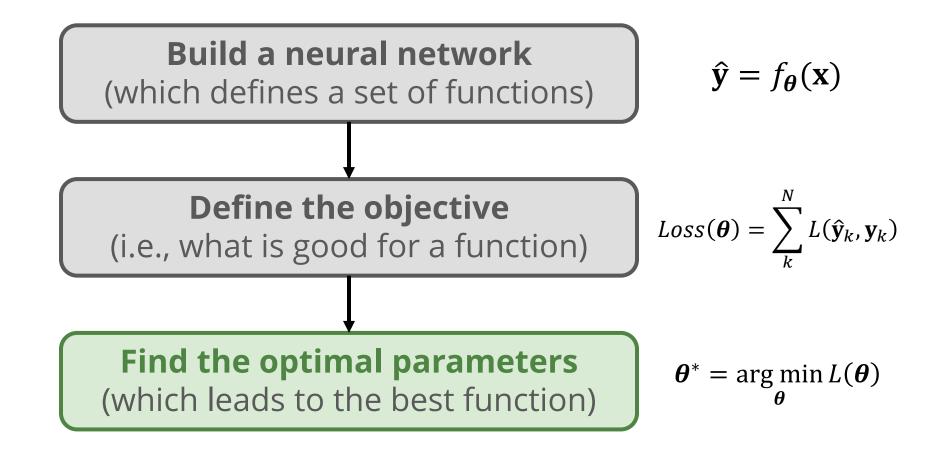


Backward pass

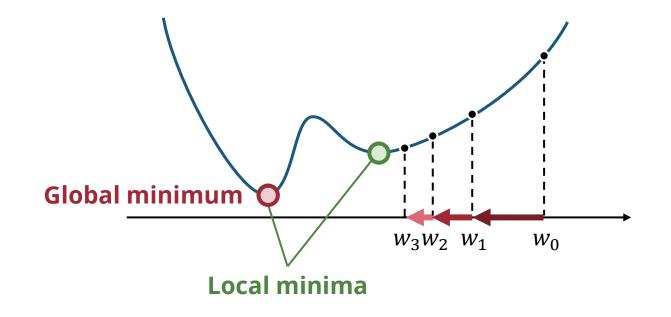
loss.backward()

Optimization

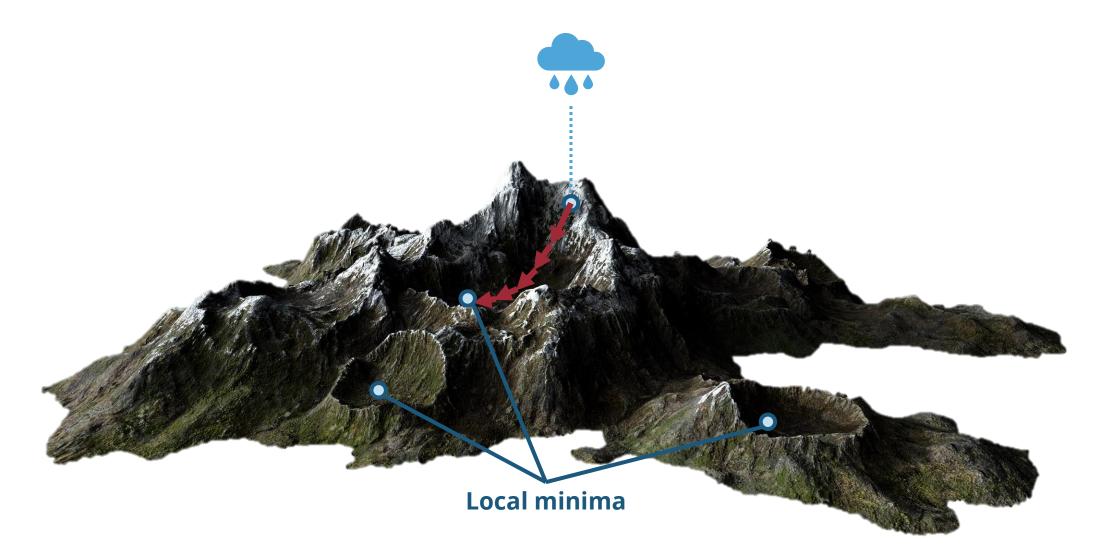
Training a Neural Network



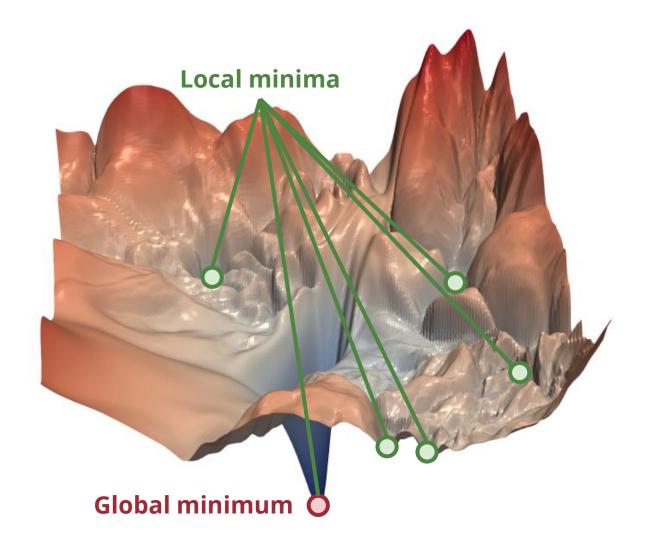
Gradient Descent Finds a Local Minimum



Gradient Descent Finds a Local Minimum



Local Minima in Complex Loss Landscape

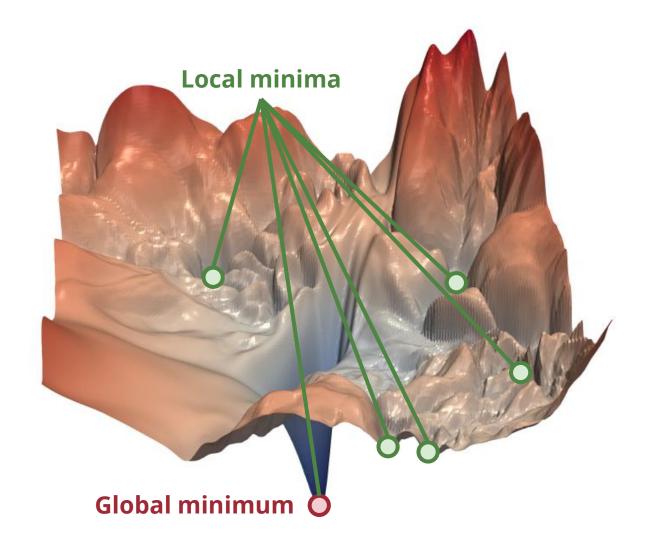


Solution 1 Use an optimizer with adaptive learning rate

> Solution 2 Use a stochastic optimizer

Solution 3 Make the loss landscape smoother

Local Minima in Complex Loss Landscape

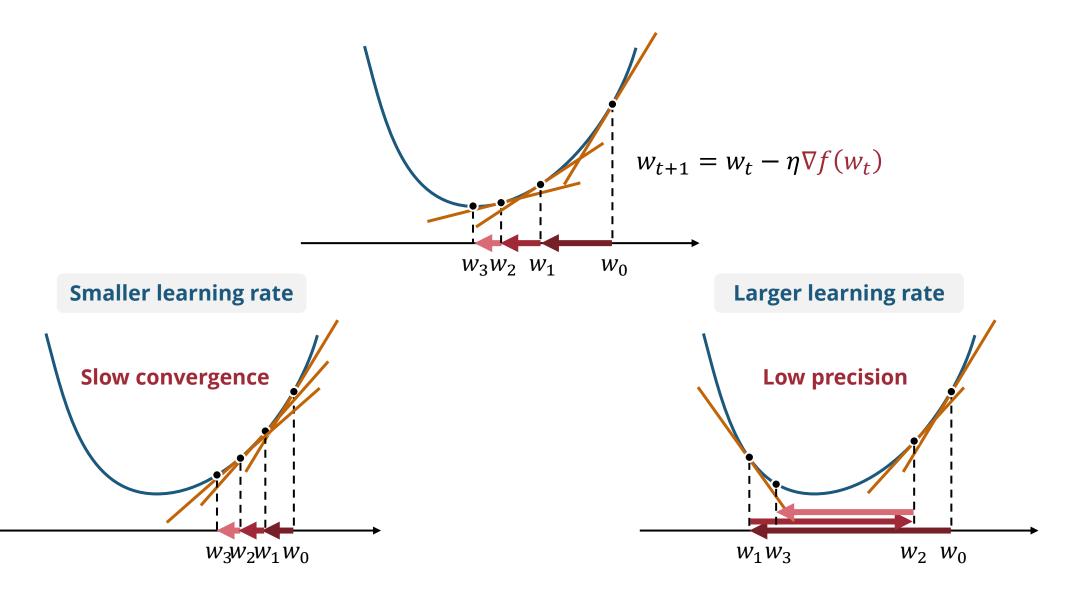


Solution 1 Use an optimizer with adaptive learning rate

> Solution 2 Use a stochastic optimizer

Solution 3 Make the loss landscape smoother

Learning Rate in Gradient Descent

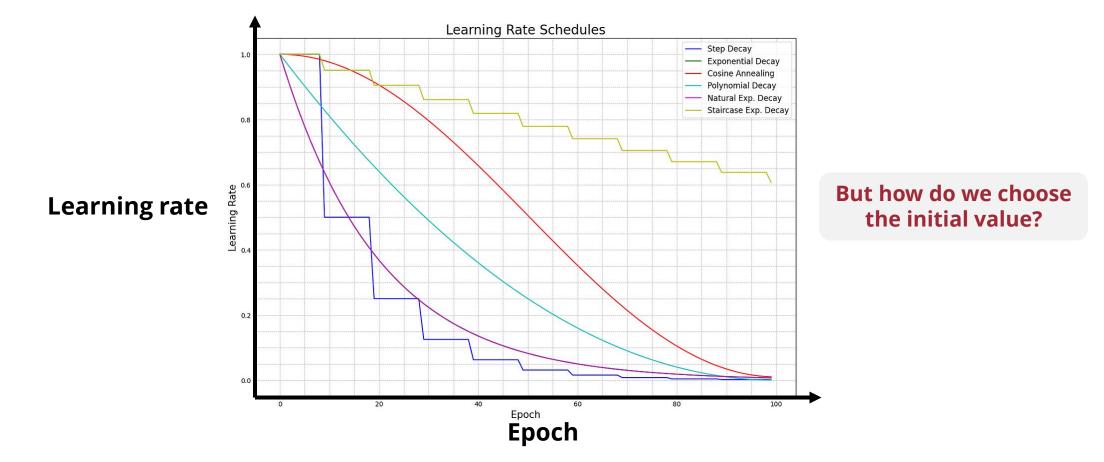


Learning Rate Decay

- We want different learning rates as the training evolves
 - At the beginning, a large learning rate helps us quickly approach the target
 - At the end, a **smaller learning rate** helps us **get a better precision**

Learning Rate Decay

• Intuition: Reduce the learning rate when we get closer to the target

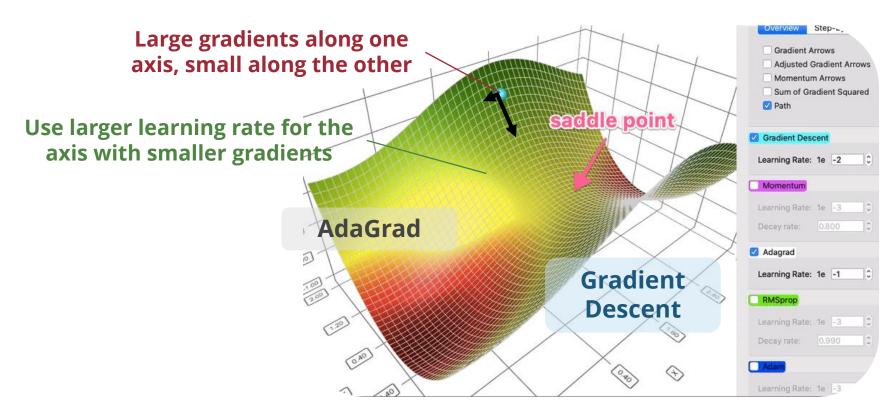


Adaptive Learning Rate

• Key: Adjust the learning rate *dynamically* based on training dynamics

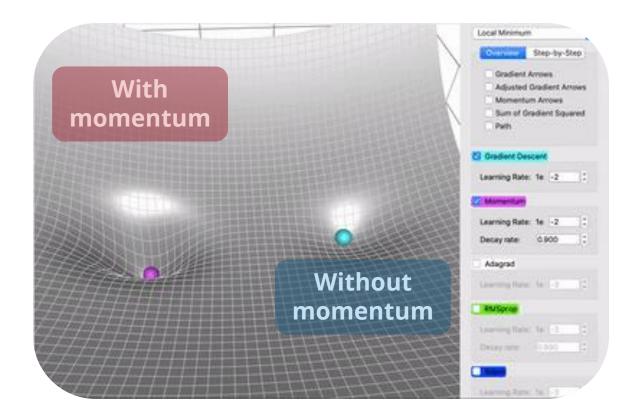
Gradient-based Adaptive Learning Rate

• Intuition: Compensate axis that has little progress by comparing the current gradients to the previous gradients

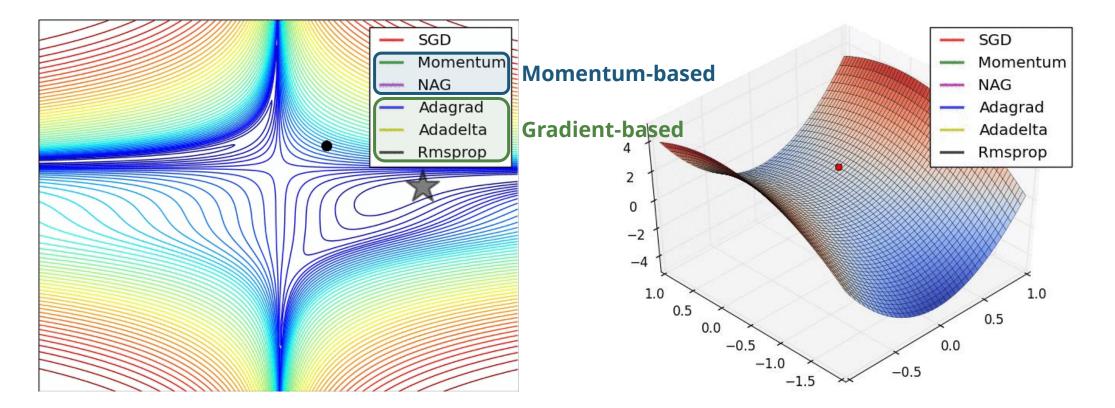


Momentum

• Intuition: Maintain the momentum to escape from local minima



Comparison of Optimizers



Can we combine them?

Adam Optimizer

- Combine the idea of adaptive learning rate and momentum
- Work **empirically well** in complex neural network
- The go-to choice for most cases

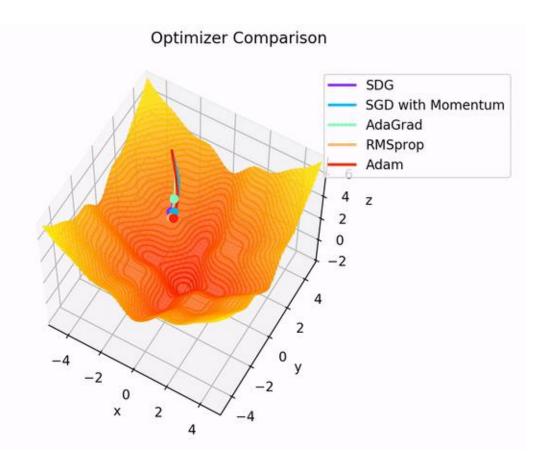
Comparison of Optimizers

Momentum

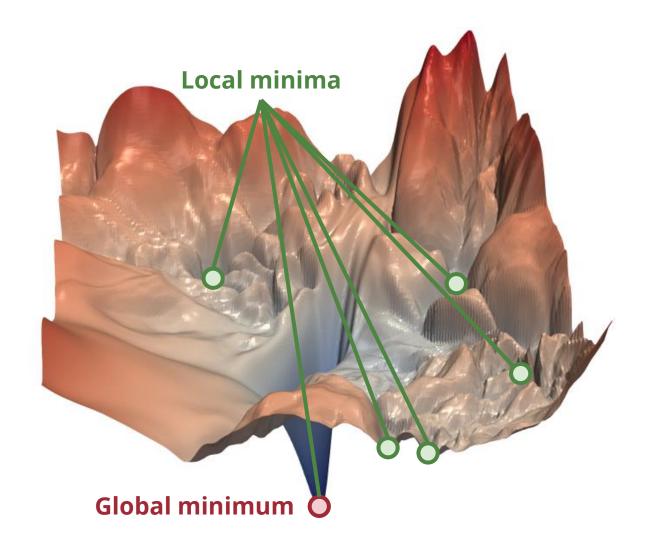
- Gets you out of spurious local minima
- Allows the model to explore around

Gradient-based adaption

- Maintains steady improvement
- Allows faster convergence



Local Minima in Complex Loss Landscape



Solution 1 Use an optimizer with adaptive learning rate

> Solution 2 Use a stochastic optimizer

Solution 3 Make the loss landscape smoother

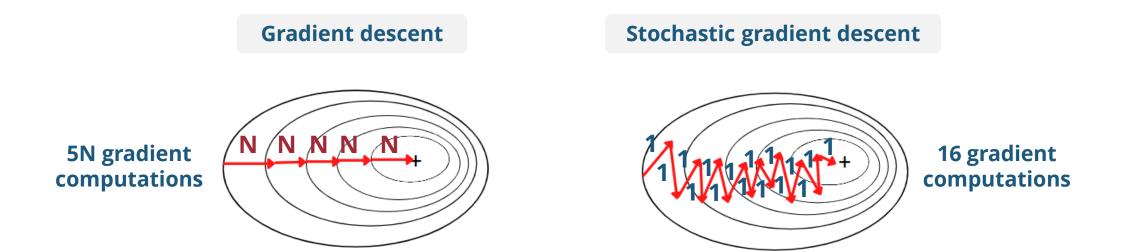
Batch Gradient Descent

- How to aggregate the gradients obtained from different training samples?
- Batch gradient descent computes the mean gradients over the whole training set

$$MSE \ loss \qquad Loss(\boldsymbol{\theta}) = \sum_{k}^{N} L(\hat{\mathbf{y}}, \mathbf{y}) = \frac{1}{n} \sum_{k}^{N} \sum_{i}^{n} \left(\hat{y}_{i}^{(k)} - y_{i}^{(k)} \right)^{2}$$
$$Binary \ cross \ entropy \qquad Loss(\boldsymbol{\theta}) = \sum_{k}^{N} L(\hat{y}, y) = \sum_{k}^{N} -y \log \hat{y} + (1 - y) \log(1 - \hat{y})$$
$$Cross \ entropy \qquad Loss(\boldsymbol{\theta}) = \sum_{k}^{N} L(\hat{\mathbf{y}}, \mathbf{y}) = -\sum_{k}^{N} \sum_{i}^{n} y_{i} \log \hat{y}_{i}$$

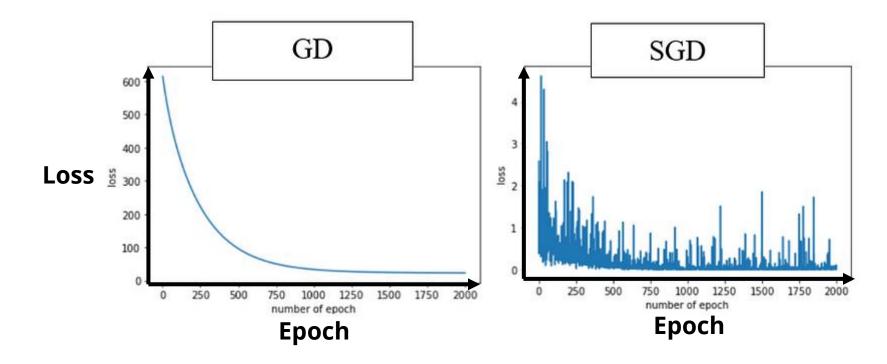
Stochastic Gradient Descent (SGD)

- Intuition: Estimate the gradient using one random training sample
- Benefits
 - Speed up the computation of the gradient N computations → 1 computation
 - Add some **randomness** to the gradient descent algorithm Help escape spurious local minima



Stochastic Gradient Descent is Noisy and Unstable

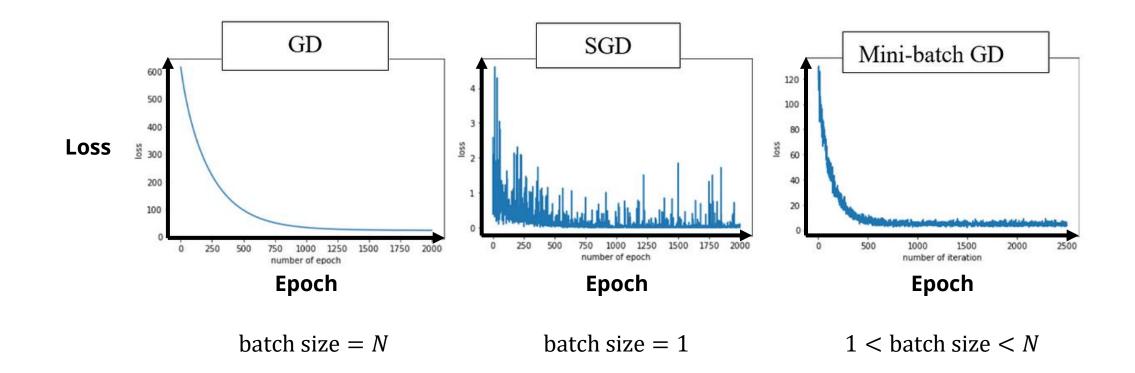
• Gradient estimate using one single sample can be unreliable



How about we use more samples to estimate the gradient?

Mini-batch Gradient Descent

Intuition: Estimate the gradient using several random training samples



Effects of Batch Size

- An **epoch** is a full run of the whole dataset
- Steps per epoch depends on the batch size

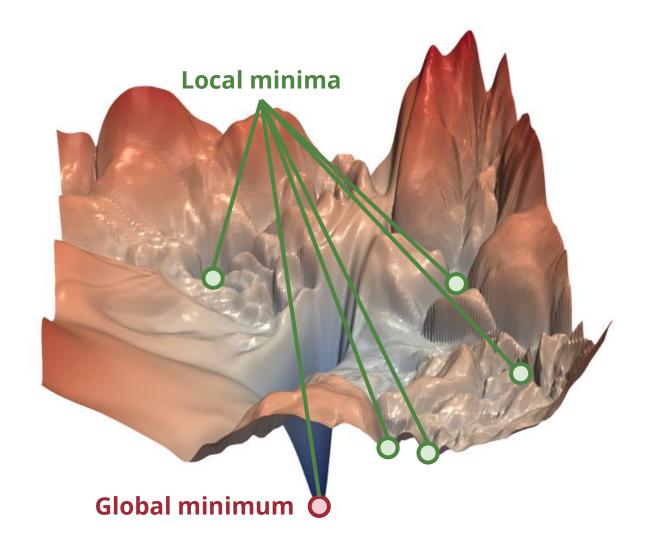
Epoch

#(training samples)

batch size

#(steps) =

Local Minima in Complex Loss Landscape



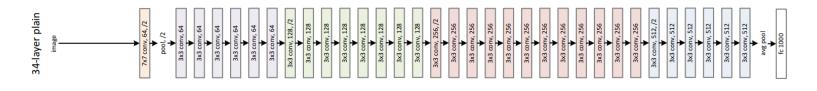
Solution 1 Use an optimizer with adaptive learning rate

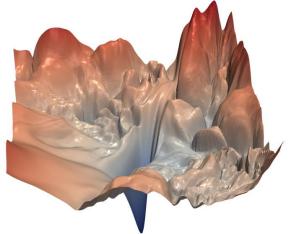
> Solution 2 Use a stochastic optimizer

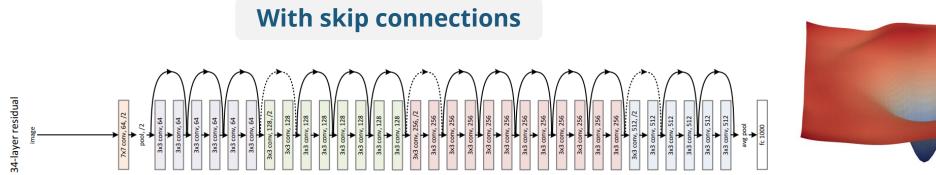
Solution 3 Make the loss landscape smoother

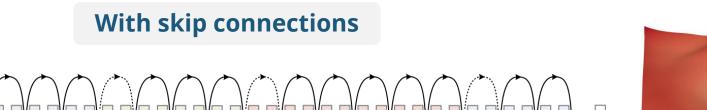
Skip Connections

Without skip connections



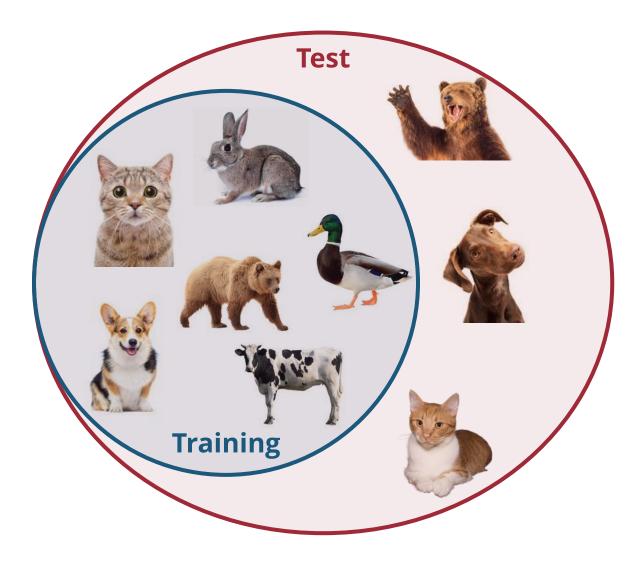




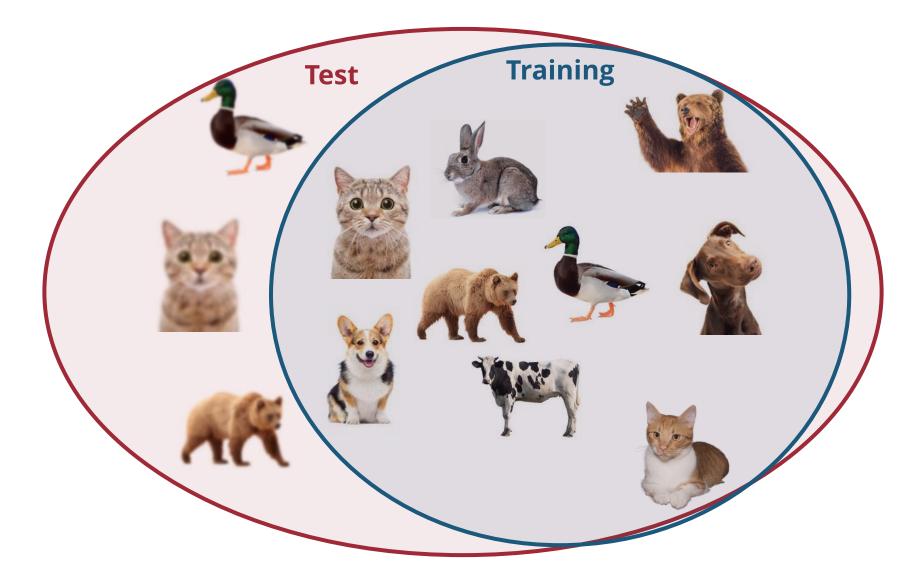


Training-Validation-Test

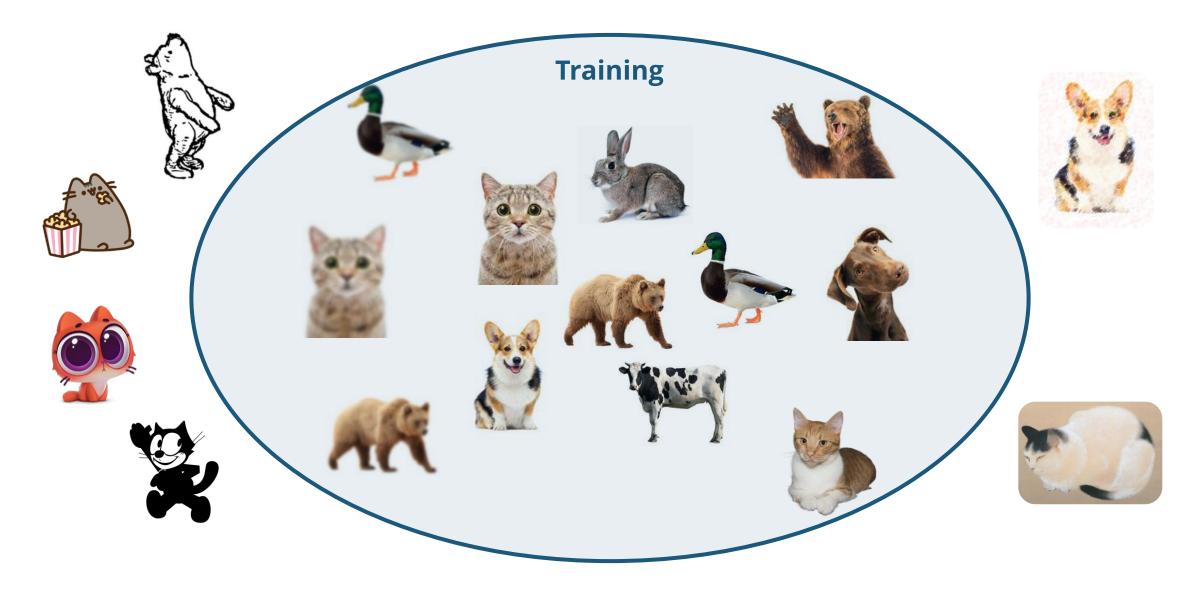
In-distribution vs Out-of-distribution



In-distribution vs Out-of-distribution



In-distribution vs Out-of-distribution



In-distribution vs Out-of-distribution

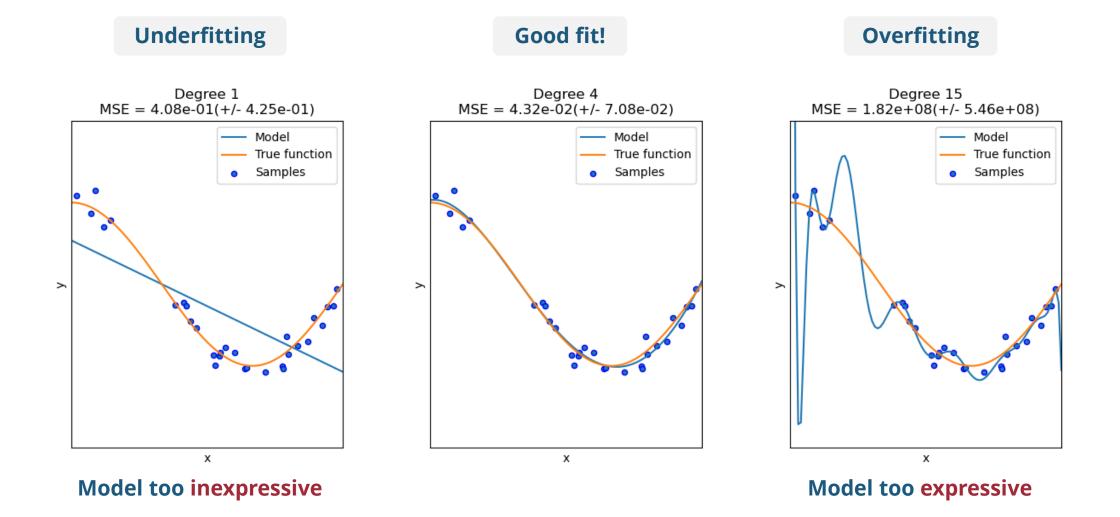
- **Key**: Make the training distribution closer to the target distribution
- First, we need to **define our target distribution**
- Then, we can try to
 - Collect a diverse dataset covering that covers different parts of the target distribution
 - Apply data augmentation to fill the gaps in the distribution

In-distribution vs Out-of-distribution

- What do we really want?
 - Good performance on the **training samples** We already have their answers
 - Good performance on unseen samples in the target distribution Yep, we can do this!
 - Good performance on out-of-distribution samples Hopefully, but not guaranteed

How to achieve good performance on unseen samples in the target distribution

Overfitting & Underfitting

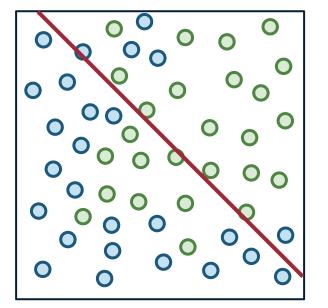


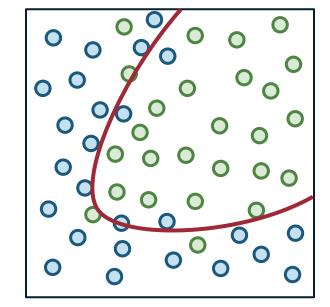
Overfitting & Underfitting

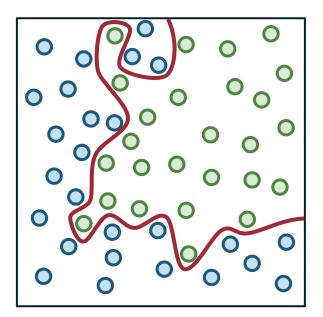
Underfitting

Good fit!

Overfitting







Model too inexpressive

Model too expressive

Train–Test Split

• Goal: Good performance on unseen samples in the target distribution

Train–Test Split

• Goal: Good performance on unseen samples in the target distribution

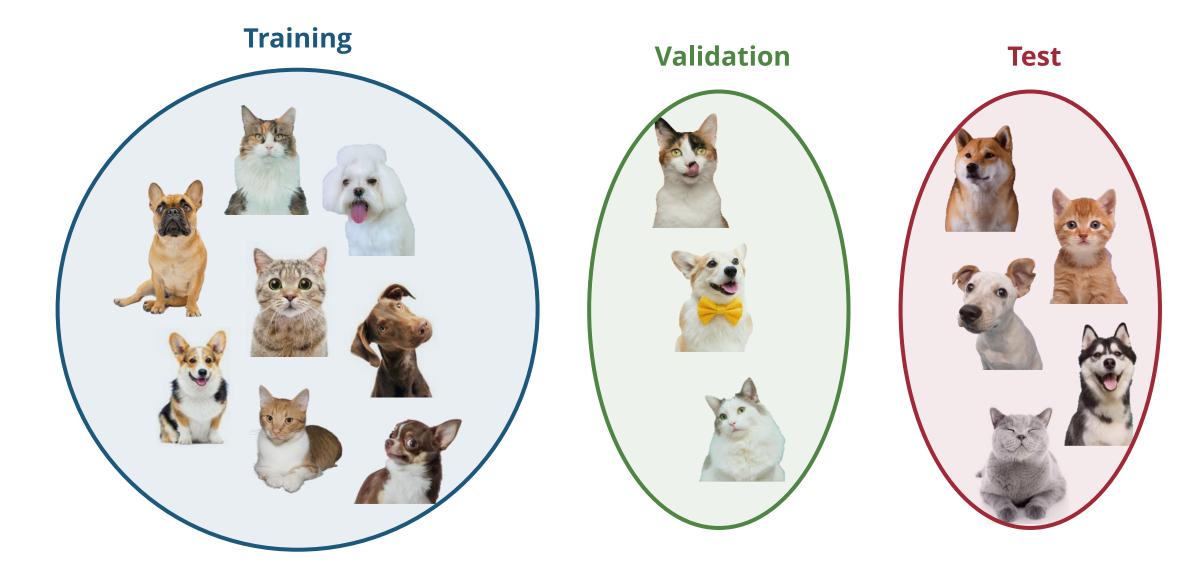
Test

Test Set is an Estimation of the Test Distribution

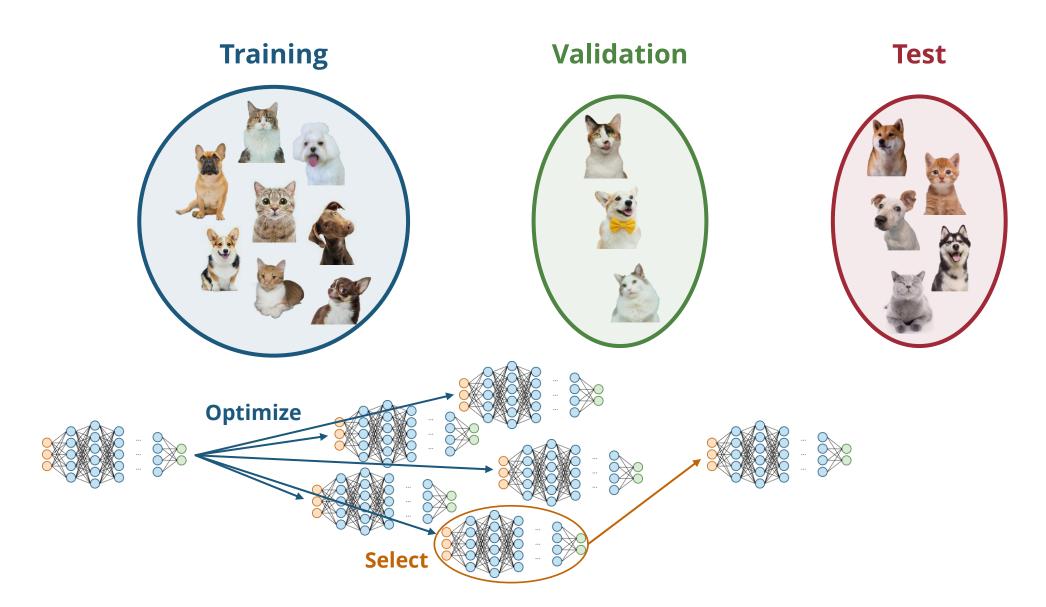
 We create a test set because we want to estimate the performance when the model is applied to an interested distribution

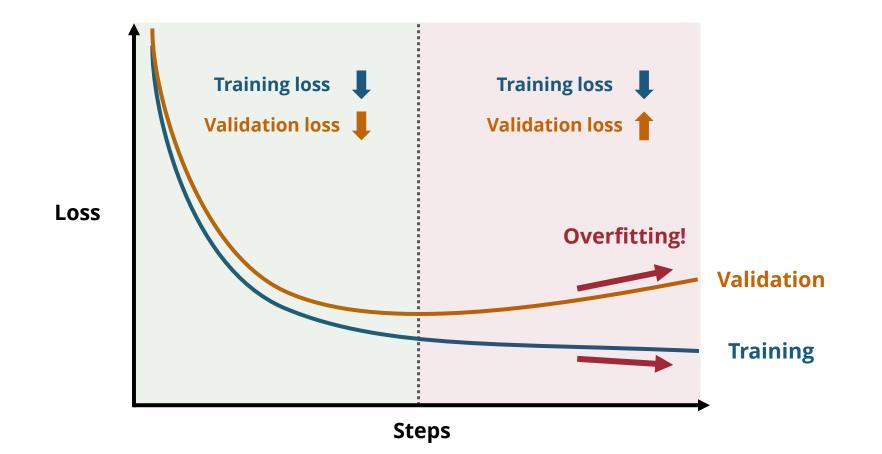
Train–Validation–Test Split

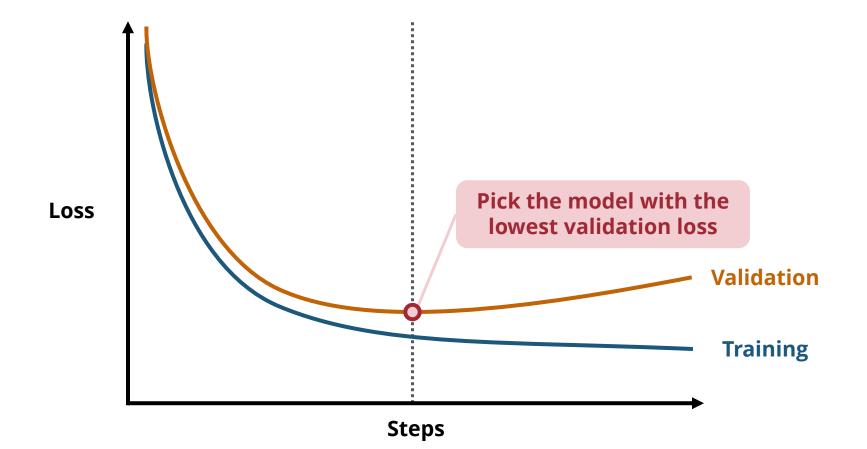
Train–Validation–Test Split

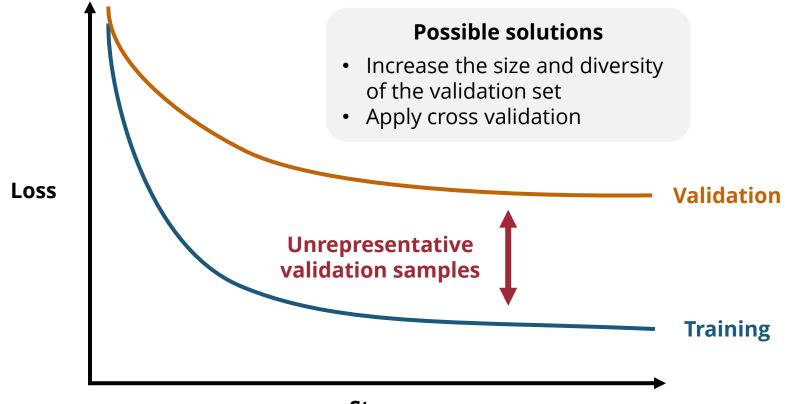


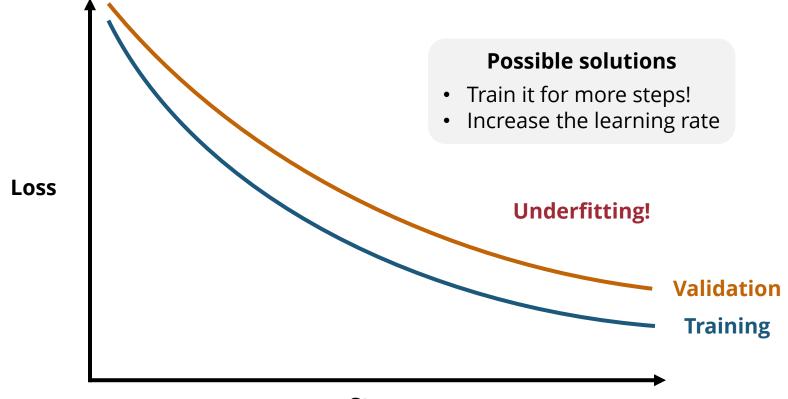
Training-Validation-Test Pipeline

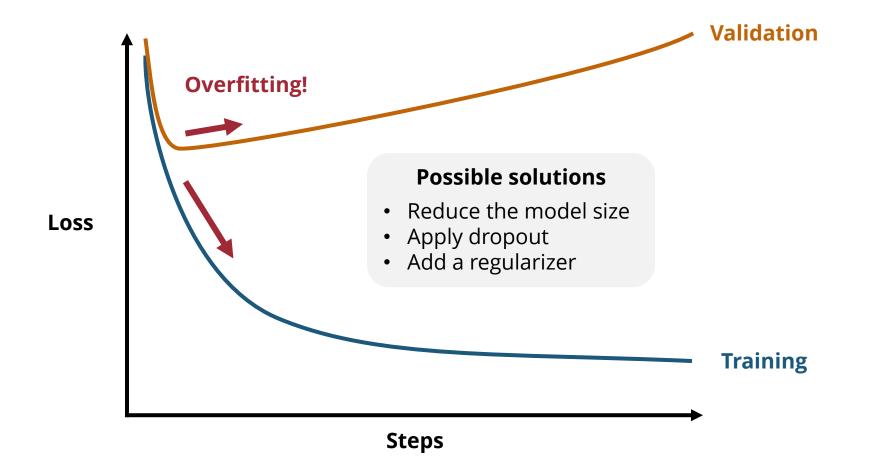










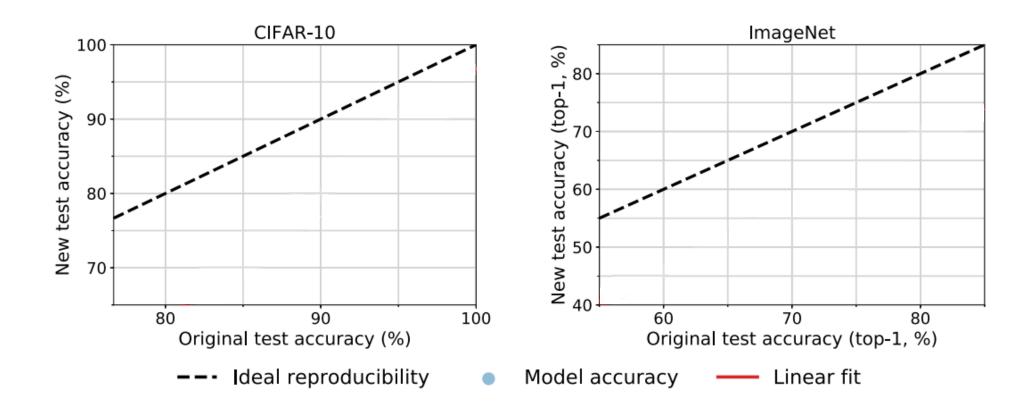


Train–Validation–Test Split

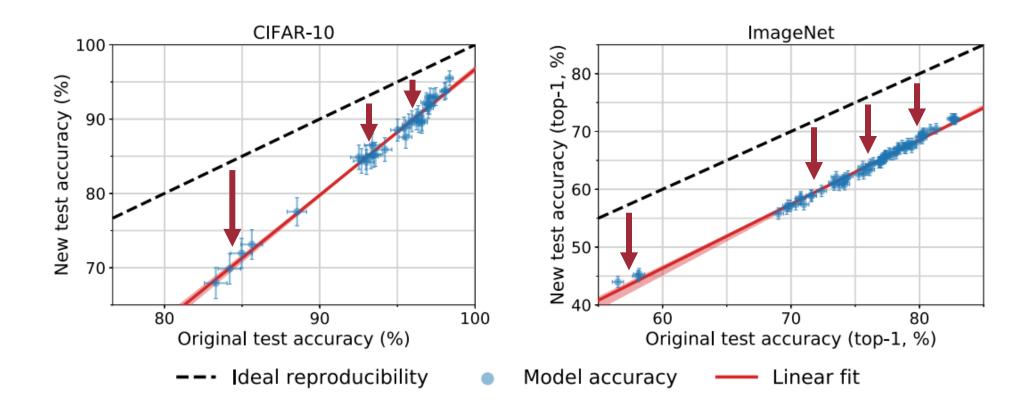
• Keys

- Never train or select your model on test samples!
- Don't over-select your model on the validation set
- What's the **best ratio**?
 - Most common: 8:1:1 or 9:0.5:0.5
 - For smaller dataset, you might even want 6:2:2

Validation Set

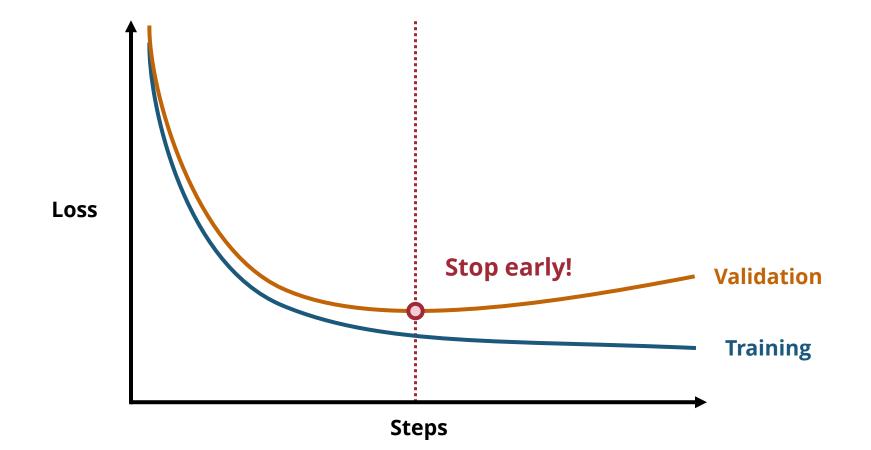


Validation Set

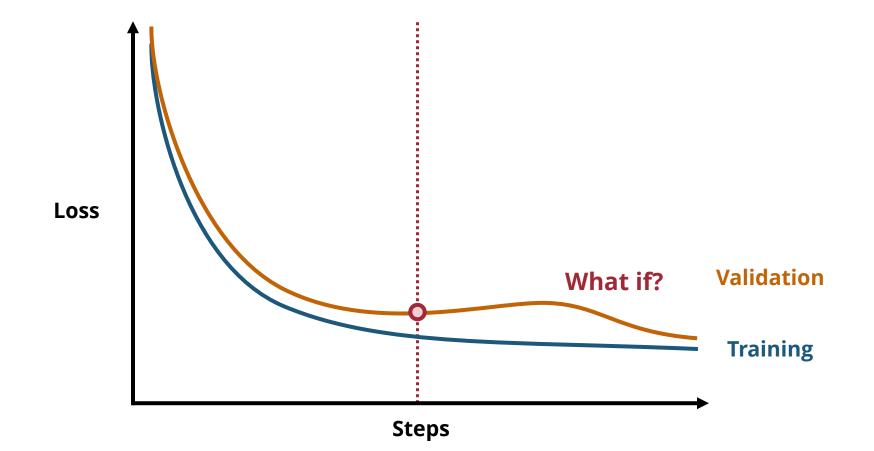


Overcoming Overfitting

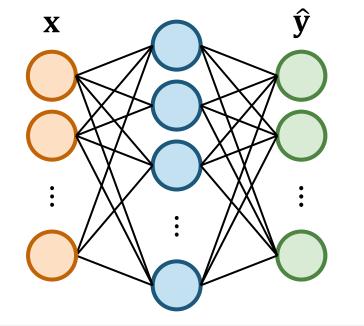
Early Stopping



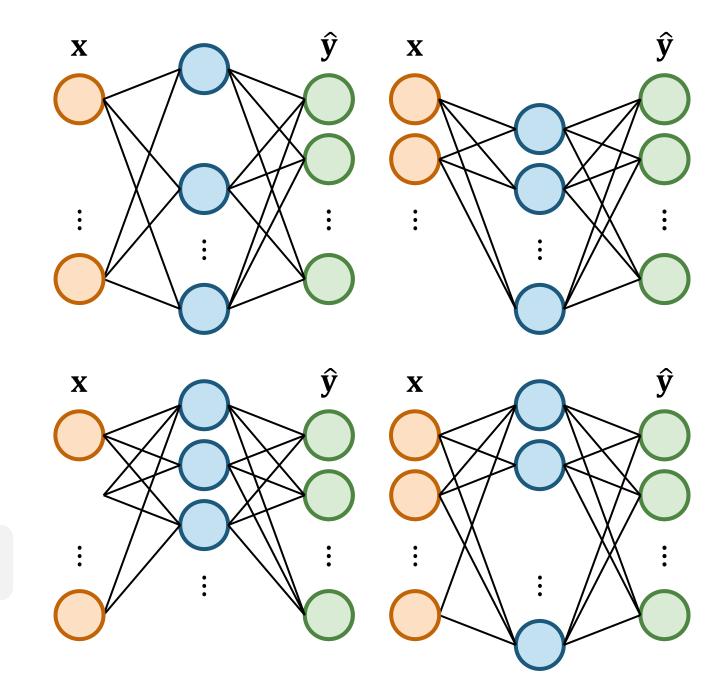
Early Stopping



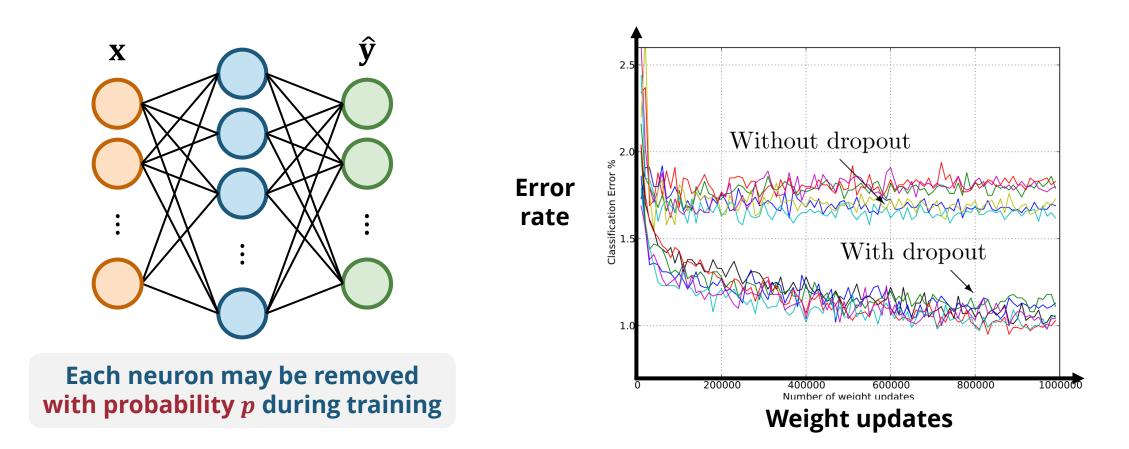
Dropout



Each neuron may be removed with probability *p* during training



Dropout



Regularization Term

- A regularization term can help alleviate overfitting
 - L1 regularization (LASSO)

$$L' = L + \lambda(|w_1| + |w_2| + \dots + |w_K|)$$

• L2 regularization (ridge regression)

$$L' = L + \lambda \left(w_1^2 + w_2^2 + \dots + w_K^2 \right)$$

Both L1 and L2 regularization encourage smaller weights