
Special Topics:
Generative AI for Music and Audio Creation

Lecture 5: Deep Learning Fundamentals II

PAT 498/598 (Fall 2024)

Instructor: Hao-Wen Dong



• Please listen to the ten finalists of AI Song Contest 2024 and read the 
about pages by clicking the cover arts

• Vote for your favorites

• Answer the following questions (in 10-20 sentences each)

 Which is your favorite song? What did they do well? What can
be improved?

 What is one dimension that most finalists didn't look into or
didn't do well on?

 What tasks are easy for current AI? What are difficult?

Assignment 1: AI Song Contest
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aisongcontest.com/
the-2024-finalists

https://www.aisongcontest.com/the-2024-finalists
https://www.aisongcontest.com/the-2024-finalists
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Assignment 1: AI Song Contest

• Instructions will be released on Gradescope

• Due at 11:59pm ET on September 20

• Late submissions: 3 point deducted per day
aisongcontest.com/

the-2024-finalists

https://www.aisongcontest.com/the-2024-finalists
https://www.aisongcontest.com/the-2024-finalists


• A type of machine learning that uses deep neural networks

(Recap) What is Deep Learning?
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(Recap) Inside a Neuron
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• A neural network represents a set of functions

(Recap) Neural Networks are Parameterized Functions
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𝑓𝜃(𝐱)

𝐱
ො𝐲

All the parameters

𝑾𝟏, … , 𝑾𝑳, 𝐛𝟏, … , 𝐛𝑳

𝐲

Good or bad?

Objective

Find the optimal parameters



(Recap) Shallow vs Deep Neural Networks – In Practice
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Deep neural nets

More expressive
(more parameter efficient)

Shallow neural nets

Less expressive
(less parameter efficient)



Regression vs Classification
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Regression vs Classification
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𝑓𝜃(𝐱)Regression 5

Age

Classification Yes / No𝑓𝜃(𝐱)
Is human?

Output a number

Output a label



Regression Example: Stock Price Prediction
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𝑦 ∈ [0, ∞)

𝑓

 

= 108.15

𝑓

 

= 18.95



Regression Example: Depth Estimation
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𝐲 ∈ 0, ∞ 𝑊×𝐻

𝑓 =

𝑓 =

medium.com/@omarbarakat1995/depth-estimation-with-deep-neural-networks-part-1-5fa6d2237d0d

https://medium.com/@omarbarakat1995/depth-estimation-with-deep-neural-networks-part-1-5fa6d2237d0d


Classification Example: Image Recognition
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𝑓  = cat

𝑓  = dog

𝑓  = bear

𝑓  = 8

𝑓  = 6

𝑦 ∈ cat, dog, bear, bird 𝑦 ∈ 0, 1, 2, … , 9



Classification Example: Spam Filter
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𝑓

 

= spam

𝑓

 

= not spam

𝑦 ∈ spam, not spam



How to Train a Neural Network?
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Training a Neural Network
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Build a neural network
(which defines a set of functions)

Define the objective 
(i.e., what is good for a function)

Find the optimal parameters
(which leads to the best function)



Training a Neural Network
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Build a neural network
(which defines a set of functions)

Define the objective 
(i.e., what is good for a function)

Find the optimal parameters
(which leads to the best function)



• A neural network represents a set of functions

(Recap) Neural Networks are Parameterized Functions
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𝑓𝜃(𝐱)

𝐱
ො𝐲

All the parameters

𝑾𝟏, … , 𝑾𝑳, 𝐛𝟏, … , 𝐛𝑳

𝐲

Good or bad?

Objective

Find the optimal parameters

𝐿 𝜽 = 𝐿 ො𝐲, 𝐲

Loss function



• Measure how well the model perform (in the opposite way)

• The choice of loss function depends on the task and the goals

Loss Function
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𝐿 𝜽 = 𝐿 ො𝐲, 𝐲



• Sometimes called

 Cost function

 Error function

• The opposite is known as

 Objective function

 Reward function (reinforcement learning)

 Fitness function (evolutionary algorithms & genetic algorithms)

 Utility function (economics)

 Profit function (economics)

Loss Function – The Many Names
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• What would be a good objective to train a neural audio codec?

• What do we care about for a codec?

 Reconstruction quality

 Bit rate (compression rate)

 Encoding/decoding speed

• How do we measure reconstruction quality?

 Difference in raw waveforms?

 Difference in spectrograms?

 Perceptual quality (psychoacoustics)?

Example: Audio Codec
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Trainable

Likely not trainable but searchable

Likely not trainable but searchable



Common Loss Functions for Regression
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Why not 𝑳 ෝ𝒚, 𝒚 = ෝ𝒚 − 𝒚?

No activation 
function!



L1 vs L2 Losses
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𝐿 ො𝑦, 𝑦 = | ො𝑦 − 𝑦|
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1

𝑛


𝑖=1
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| ො𝑦𝑖 − 𝑦𝑖|
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1

𝑛


𝑖=1

𝑛

ො𝑦𝑖 − 𝑦𝑖
2

Mean Squared Error (MSE)

More sensitive 
to outliers



• Logistic regression approaches classification like regression

Binary Cross Entropy for Binary Classification
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Loss function
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Sigmoid function
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𝒚 ∈ {𝟎, 𝟏}
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1
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𝐿 ො𝑦, 𝑦 = ቊ
− log ො𝑦 ,  if 𝑦 = 1

− log 1 − ො𝑦 , if 𝑦 = 0

= −𝑦 log ො𝑦 + 1 − 𝑦  log 1 − ො𝑦

if 𝑦 = 1 if 𝑦 = 0

Binary cross entropy

(Also called log loss)



Cross Entropy for Multiclass Classification
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Cross Entropy for Multiclass Classification
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Real-valued numbers to 
probability-like numbers



• Intuition:  Map several numbers to 0, 1  while keeping their relative 
magnitude

 Softmax is like the multivariate version of sigmoid

Softmax
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Cross Entropy for Multiclass Classification
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𝐿( ො𝑦, 𝑦) = −𝑦 log ො𝑦 + 1 − 𝑦  log 1 − ො𝑦

Binary Cross Entropy Cross Entropy

𝐿 ො𝐲, 𝐲 = −𝑦1 log ො𝑦1 − 𝑦2 log ො𝑦2 − ⋯ − 𝑦𝑖 log ො𝑦𝑛

= − 

𝑖

𝑛

𝑦𝑖 log ො𝑦𝑖

Only one of them will be one! Only one of them will be one!

Log likelihood



• Minimizing cross-entropy is equivalent to maximizing likelihood!

• However, no one prohibits you from using an MSE loss on Softmax output

 In fact, it will still train the model

• While loss functions can have the same global minima, they might have led 
to different training dynamics and weights for different types of errors

 For example, MSE is more sensitive to MAE due to the quadratic term even though they 
have the same global minima

Why not MSE Loss for Classification?

28



• Oftentimes, we change the output space instead of the loss function

• For example,

 MSE on spectrograms → MSE on mel spectrograms

 MSE of magnitude in raw values → MSE of magnitude in dB

• What’s the difference?

     Model  Loss

   Setup A  𝑓: 𝑥 → 𝑦  𝐿 𝓕(𝑦), 𝓕( ො𝑦)

   Setup B 𝑓: 𝑥 → 𝓕(𝑦) 𝐿 𝑦, ො𝑦

Loss Functions vs Output Space
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𝓕: spectrogram → mel spectrogram

𝓕: raw value → db



Optimization
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Training a Neural Network
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Build a neural network
(which defines a set of functions)

Define the objective 
(i.e., what is good for a function)

Find the optimal parameters
(which leads to the best function)

ො𝐲 = 𝑓𝜽(𝐱)

𝐿 𝜽

𝜽∗ = arg min
𝜽

𝐿 𝜽



Training a Neural Network
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Build a neural network
(which defines a set of functions)

Define the objective 
(i.e., what is good for a function)

Find the optimal parameters
(which leads to the best function)

ො𝐲 = 𝑓𝜽(𝐱)

𝐿 𝜽

𝜽∗ = arg min
𝜽

𝐿 𝜽



• Many, many ways…

• Most commonly through gradient descent in deep learning

• Alternatively, we can use search or genetic algorithm

Optimizing the Parameters of a Neural Network
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𝜽∗ = arg min
𝜽

𝐿 𝜽



• Intuition:  Gradient can suggest a good direction to tune the parameters

Gradient Descent
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𝑤0

Derivative for a vector, 
matrix or tensor



Gradient Descent – Pseudocode

• Pick an initial weight vector 𝑤0 and learning rate 𝜼

• Repeat until convergence:  𝑤𝑡+1 = 𝑤𝑡 − 𝜼∇𝑓 𝑤𝑡
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𝑤0

Gradient of function 𝒇 
with respect to weight 𝒘



Gradient Descent – Pseudocode

• Pick an initial weight vector 𝑤0 and learning rate 𝜂

• Repeat until convergence:  𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡

36

𝑤0

slope = ∇𝑓 𝑤0 > 0



Gradient Descent – Pseudocode

• Pick an initial weight vector 𝑤0 and learning rate 𝜂

• Repeat until convergence:  𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡
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𝑤0

adjustment = −𝜂∇𝑓 𝑤0 < 0

slope = ∇𝑓 𝑤0 > 0



Gradient Descent – Pseudocode

• Pick an initial weight vector 𝑤0 and learning rate 𝜂

• Repeat until convergence:  𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡
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𝑤0

slope = ∇𝑓 𝑤0 > 0

𝑤1

adjustment = −𝜂∇𝑓 𝑤0 < 0



Gradient Descent – Pseudocode

• Pick an initial weight vector 𝑤0 and learning rate 𝜂

• Repeat until convergence:  𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡
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𝑤0

slope = ∇𝑓 𝑤1 > 0

𝑤1

adjustment = −𝜂∇𝑓 𝑤1 < 0

𝑤2



Gradient Descent – Pseudocode

• Pick an initial weight vector 𝑤0 and learning rate 𝜂

• Repeat until convergence:  𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡
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𝑤0

slope = ∇𝑓 𝑤2 > 0

𝑤1

adjustment = −𝜂∇𝑓 𝑤2 < 0

𝑤2𝑤3



Gradient Descent – Pseudocode

• Pick an initial weight vector 𝑤0 and learning rate 𝜂

• Repeat until convergence:  𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡
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𝑤0

slope = ∇𝑓 𝑤𝑡 > 0

𝑤1

adjustment = −𝜂∇𝑓 𝑤𝑡 < 0

𝑤2𝑤3



Gradient Descent – 3D Case

42substance3d.adobe.com/community-assets/assets/9fe77d4279e12fe2fbd90b8f7ca18146a565f7ee

https://substance3d.adobe.com/community-assets/assets/9fe77d4279e12fe2fbd90b8f7ca18146a565f7ee


• An efficient way of computing gradients using chain rule

• The reason why we want everything to be differentiable in deep learning

Backpropagation: Efficiently Computing the Gradients
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𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡



Backpropagation: Efficiently Computing the Gradients
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youtu.be/Ilg3gGewQ5U?t=196

https://youtu.be/Ilg3gGewQ5U?t=196


Forward Pass & Backward Pass
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𝐱
ො𝐲

⋯

⋯

⋯

Forward pass

𝐡𝟏 = 𝝋 𝑾𝟏𝐱 + 𝐛𝟏

𝐡𝟐 = 𝝋 𝑾𝟐𝐡𝟏 + 𝐛𝟐

𝐡𝟑 = 𝝋 𝑾𝟐𝐡𝟐 + 𝐛𝟐

ො𝐲 = 𝝋 𝑾𝑳𝐡𝑳−𝟏 + 𝐛𝑳



Forward Pass & Backward Pass
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⋯

⋯

⋯
𝐱

ො𝐲

Backward pass

𝜕𝑳

𝜕𝐡𝑳−𝟏

𝜕𝑳

𝜕𝐡𝟑

𝜕𝑳

𝜕𝐡𝟐

𝜕𝑳

𝜕𝐡1

𝜕𝑳

𝜕𝐱

loss.backward()
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