PAT 498/598 (Fall 2024)

Special Topics: Generative AI for Music and Audio Creation

Lecture 4: Deep Learning Fundamentals

Instructor: Hao-Wen Dong

(Recap) How to Determine the Order of Features to Test?

(Recap) Entropy of a Distribution

(Recap) Components of a Machine Learning Model

Improve on task T, with respect to performance metric P, based on experience E

- Task T Animal classification
- Performance metric P Percentage of correct predictions
 Experience E Examples of animals with their features

(Recap) Types of Machine Learning

- Supervised learning
 - Classification: discrete outputs
 - **Regression**: *continuous* outputs
- Unsupervised learning
 Self-supervised learning

Given pairs of example inputs and outputs

- Given only example inputs
- Semi-supervised learning
 - Given example inputs and a few example outputs
- Reinforcement learning Given scalar rewards for a sequence of actions

Many generative AI models based on self-supervised learning!

Intro to Deep Learning

Components of a Machine Learning Model

Deep learning is almost the same as machine learning by this definition!

What's special about deep learning?

What is Deep Learning?

• A type of machine learning that uses **deep neural networks**

What is Deep Learning?

• A type of machine learning that uses **deep neural networks**

Neural Networks

Inside a Neuron

Human Neuron

Why Sigmoid?

Why Bias Term?

• Allow nonzero outputs when all inputs are zero

$$\hat{y} = \varphi(w_1 x_1^0 + w_2 x_2^0 + \dots + w_n x_n^0 + b) = \varphi(b)$$

Artificial vs Human Neuron

Artificial neuron

Human neuron

Artificial Neural Networks

- Although inspired by human neural networks, artificial neural networks nowadays *do not work like human brains*
 - Lacking functional hierarchy, high-level feedback loops, memory module, etc.
 - Human brains work more like **spiking neural networks** → Efficiency!

Fully Connected Feedforward Network

• Most basic form of deep neural networks

x w₁

 $h_2 = \boldsymbol{\varphi}(\mathbf{w}_2 \cdot \mathbf{x} + b_2)$

٠

X W₂

 $h_n = \boldsymbol{\varphi}(\mathbf{w}_n \cdot \mathbf{x} + b_n)$

٠

 $\mathbf{h} = \boldsymbol{\varphi}(W\mathbf{x} + \mathbf{b})$

 $\mathbf{h}_1 = \boldsymbol{\varphi}(\boldsymbol{W}_1\mathbf{x} + \mathbf{b}_1)$

٠

 $\mathbf{h}_2 = \boldsymbol{\varphi}(W_2\mathbf{h}_1 + \mathbf{b}_2)$

Fully Connected Feedforward Network

Fully Connected Feedforward Network

Neural Networks are Parameterized Functions

• A neural network represents **a set of functions**

Neural Networks are Parameterized Functions

• A neural network represents **a set of functions**

(Preview) Training a Neural Network

Neural Networks are Parameterized Functions

• A neural network represents **a set of functions**

Activation Functions

- Activation functions introduce **nonlinearity** to a neural network
- A linear function is a **weighted sum of the inputs** (plus a bias term)

$$f(x_1, x_2, \dots, x_n) = a_1 x_1 + a_2 x_2 + a_3 x_3 + \dots + a_n x_n + b$$

- Examples of nonlinear functions:
 - $\bullet f(x_1) = \frac{1}{x_1}$
 - $\bullet f(x_1) = x_1^2$
 - $f(x_1) = e^x$
 - $\bullet f(x_1, x_2) = x_1 x_2$

Nonlinear functions are hard to model and approximate. That's where deep neural networks shine!

With activation functions, a neural network can represent nonlinear functions

 $\widehat{\mathbf{y}} = \boldsymbol{\varphi}(W_L \ \boldsymbol{\varphi}(W_{L-1} \ \boldsymbol{\varphi}(W_{L-2} \ \boldsymbol{\varphi}(\cdots \mathbf{x} \cdots) + \mathbf{b}_{L-2}) + \mathbf{b}_{L-1}) + \mathbf{b}_L)$

 $\widehat{\mathbf{y}} = W_L(W_{L-1}(W_{L-2}(\cdots \mathbf{x} \cdots) + \mathbf{b}_{L-2}) + \mathbf{b}_{L-1}) + \mathbf{b}_L$

Without activation functions, a neural network can only represent linear functions

Commonly Used Activation Functions

ReLUs & Piecewise Linear Functions

Expressiveness of Neural Networks

Universal Approximation Theorem

- A neural network with one hidden layer can approximate any continuous function given sufficient hidden neurons and appropriate activation functions
 - Sigmoid, ReLUs are good activation functions

Then why do we want to go deep?

Shallow vs Deep Neural Networks – In Practice

Shallow neural nets

Deep neural nets

Less expressive (less parameter efficient) More expressive (more parameter efficient)

How Deep is Deep Enough?

64, /2

nv, 64

x3

X3

bo

Deeper is not always better

- Actual number of parameters
- Optimization difficulties
- Data size

ResNet

(2015)

Inductive bias of the model

34-layer residual

Ĕ

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner, "<u>Gradient-based learning applied to document recognition</u>," *Proc. IEEE*, 1998 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton, "<u>ImageNet Classification with Deep Convolutional Neural Networks</u>," *NeurIPS*, 2012 Karen Simonyan and Andrew Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition," *ICLR*, 2015 Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun

Computation Cost vs Classification Accuracy

Neural Networks are NOT always Layer-by-Layer

Skip connections

Feedback loops

Used in ResNets, U-Nets, diffusion models

Used in RNNs, LSTMs, GRUs