PAT 498/598 (Fall 2024)

Special Topics: Generative Al for Music and Audio Creation

Lecture 13: Piano Roll-based Music Generation

Instructor: Hao-Wen Dong

(Recap) Four Paradigms

Today, we also have many latent-space based systems!

(Recap) Language Models

Predicting the next word given the past sequence of words

(Recap) An Example of ABC Notation

(Recap) Example System: Folk RNN (Sturm et al., 2015)

- Data
 - Collections of folk tunes
- Representation
 - ABC notation without metadata
- Model
 - LSTM (long short-term memory)
 - Working on the character level

folkrnn.org

(Recap) Representing Polyphonic Music

- We can now handle music with multi-pitch at the same time
 - In the literature, "polyphonic" & "multi-pitch" are often used interchangeably

Clair de Lune


```
Note_on_65, Note_on_68  Time_shift_eighth_note  Note_on_77, Note_on_80  Time_shift_half_note  Note_off_77, Note_off_80  Note_on_73, Note_on_77  Time_shift_dotted_quarter_note, Note_off_65, Note_off_68, ...
```

(Recap) Example: Performance RNN (Oore et al., 2020)

- Data
 - Yamaha e-Piano Competition dataset (MAESTRO)
- Representation
 - 128 Note-On events
 - 128 Note-Off events
 - 125 Time-Shift events (8ms-1s)
 - 32 Set-Velocity events ← Handle dynamics
- Model
 - LSTM

Examples of generated music

(Recap) Example: Music Transformer (Huang et al., 2019)

- Data
 - Yamaha e-Piano Competition dataset (MAESTRO)
- Representation

128 Note-On events

Almost the same representation as PerformanceRNN

- 128 Note-Off events
- 100 Time-Shift events (10ms-1s)
- 32 Set-Velocity events

 ← Ha

Handle dynamics

- Model
 - Transformer

Examples of generated music

(Recap) Visualizing Musical Self-attention

(Each color represents an attention head)

(Recap) Example: MuseNet (Payne et al., 2019)

- Data
 - ClassicalArchives + BitMidi + MAESTRO
- Representation
 - Notes are represented as a compound word in the form of "instrument:velocity:pitch"
 - Time shifts in real time (sec)
- Model
 - Transformer

Example of generated music


```
bach piano_strings start tempo90
piano:v72:G1 piano:v72:G2 piano:v72:B4
piano:v72:D4 violin:v80:G4 piano:v72:G4
piano:v72:B5 piano:v72:D5 wait:12
piano:v0:B5 wait:5 piano:v72:D5 wait:12
```

Christine Payne, "MuseNet," OpenAI, 2019.

(Recap) Example: Multitrack Music Transformer (Dong et al., 2023)

- Data
 - Symbolic Orchestral Database (SOD)
- Representation
 - Notes are represented as a six-value tuple: (beat, position, pitch, duration, instrument)
 - No time shift events (Why?)
- Model
 - Multi-dimensional Transformer

Example of generated music


```
Start of song
(0, 0, 0, 0, 0, 0)
                        Instrument: accordion
                        Instrument: trombone
                        Instrument: brasses
                        Start of notes
                                                  pitch=E2, duration=48, instrument=trombone
(3, 1, 1, 41, 15, 36)
                        Note: beat=1, position=1,
       1, 65, 4, 39)
                        Note: beat=1, position=1,
                                                  pitch=E4, duration=12, instrument=brasses
                        Note: beat=1, position=1,
                                                   pitch=E4, duration=72, instrument=accordion
(3, 1, 1, 65, 17, 15)
(3, 1, 1, 68, 4, 39)
                        Note: beat=1, position=1,
                                                   pitch=G4, duration=12, instrument=brasses
(3, 1, 1, 68, 17, 15)
                        Note: beat=1, position=1,
                                                   pitch=G4, duration=72, instrument=accordion
(3, 1, 1, 73, 17, 15)
                        Note: beat=1, position=1,
                                                   pitch=C5, duration=72, instrument=accordion
(3, 1, 13, 68, 4, 39)
                        Note: beat=1, position=13, pitch=G4, duration=12, instrument=brasses
(3, 1, 13, 73, 4, 39)
                        Note: beat=1, position=13, pitch=C5, duration=12, instrument=brasses
                        Note: beat=2, position=1, pitch=C5, duration=36, instrument=brasses
(3, 2, 1, 73, 12, 39)
(3, 2, 1, 77, 12, 39)
                        Note: beat=2, position=1, pitch=E5, duration=36, instrument=brasses
                       End of song
                                                    (Source: Dong et al., 2023)
```

(Recap) Decoding Strategies

Piano Roll Representation

Piano Rolls

(Source: Draconichiaro) (Source: Tangerineduel)

Player Pianos

youtu.be/07krQ661fok

Piano Roll Representation

Piano Roll Representation

With expressive timing

Without expressive timing

(Recap) Reusable Pattern Detectors

Why Piano Rolls?

Many musical patterns like melodies, chords, scales and arpeggios are translational invariant in the temporal and pitch axes

Music Generation using GANs

RNN-RBM (Boulanger-Lewandowski et al., 2012)

Example: MidiNet (Yang et al., 2017)

(Source: Yang et al., 2017)

(Recap) Generative Adversarial Nets (GANs)

(Recap) Generative Adversarial Nets (GANs) – Training

(Recap) Generative Adversarial Nets (GANs) – Generation

Example: MidiNet (Yang et al., 2017)

Examples of generated music

MidiNet generates music measure-by-measure by conditioning on the last measure generated

Example: MidiNet (Yang et al., 2017)

(Source: Yang et al., 2017)

Multitrack Piano Rolls

Examples of generated music

Music Generation using Diffusion Models

Example: Polyffusion (Min et al., 2023)

(Source: Min et al., 2023)

polyffusion.github.io

(Recap) Diffusion Models

• **Intuition**: Many denoising autoencoders stacked together

(Recap) Diffusion Models – Training

• **Intuition**: Many denoising autoencoders stacked together

(Recap) Diffusion Models

• **Intuition**: Many denoising autoencoders stacked together

(Recap) Diffusion Models – Generation

Remove noise gradually (Backward diffusion process) Input Output **Fine details Coarse shapes**

(Source: Ho et al., 2020)

(high-frequency components)

(low-frequency components)

Example: Polyffusion (Min et al., 2023)

(Source: Min et al., 2023)

polyffusion.github.io

(Source: Wang et al., 2024)

wholesonggen.github.io