PAT 498/598 (Fall 2024)

Special Topics: Generative AI for Music and Audio Creation

Lecture 12: Language-based Music Generation

Instructor: Hao-Wen Dong

Assignment 1: Al Song Contest

- **Q1**: Which is your favorite song? What did they do well? What can be improved?
- **Q2**: What is one dimension that most finalists didn't look into or didn't do well on?
- **Q3**: What tasks are easy for current AI? What are difficult?

Assignment 1 Discussions – Favorite Songs

- 1 vote for "Echoes of the Synthetic Forest" by KeRa
- 1 vote for "One Mantra" by DJ Swami
- 2 votes for "Genre Cannon" by Dadabots
- 3 votes for "binary b1o0d" by HEL9000

Assignment 1 Discussions – Limitations

- "... the artists excused poor decision making by AIs because of the novelty of the process."
- "... did not have key modulations, tempo shifts, or very clearly demarcated distinct structures, in either their lyrical or sonic content"
- "Long-term musical development, both in terms of the song structure and the evolution of musical ideas."
- "... emotional depth, particularly in the vocal performances. ... the music struggled to connect on a more human, emotional level."
- "... didn't explore deeply is the **generation of music form and cohesion** by Al. ... Al is not yet adept at generating long, cohesive musical forms or handling transitions in a way that feels natural over time."

Assignment 1 Discussions – What are easy?

- "... instrumental timbre emulation, vocal emulation, recreation of different vocal mixing and production techniques from different eras, lyric creation, chord progression creation"
- "... tasks that are highly repetitive or based on patterns that don't require complex reasoning. Generating individual sound clips, synthesizing audio, and creating simple loops or short musical phrases are relatively easy for AI."
- "Generating and processing material is easy for Al."
- "AI models thrive in terms of idea creation."
- "... quick, mass generation of **short musical snippets** specific to the musical genre and instrumentation style they are trained on."

Assignment 1 Discussions – What are difficult?

- "... Al struggles with tasks that require abstract thinking or the ability to generate highlevel structures. ... Al's challenge lies in generating coherent, dynamic compositions that can maintain interest over time without sounding repetitive."
- "... the devil's in the details ... are **not refined enough** to the point that they can avoid those small flaws and fool the trained ears of experienced musicians or audio engineers."
- "Refining material into a composition is difficult for AI."
- "... creating new harmonic and rhythmic patters different from the training data, ..."
- "... large-scale form, functional harmony (when generating raw audio), maintaining a tempo in the way a human drummer would maintain a tempo, sticking with a genre, or developing their compositional ideas in ways familiar to human listeners"
- "Lyric writing remains challenging for AI."

Discussions

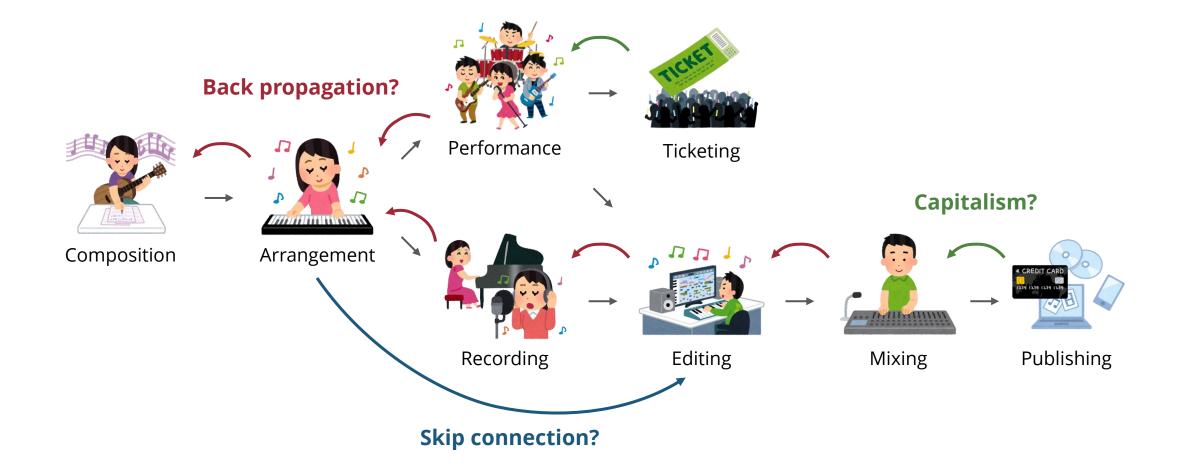
- To what extent of human involvements can a song still be called AI music?
- **Shall we intervene** if AI-generated material doesn't sound polished?
- What is the **goal of AI music**?

"Whatever you now find weird, ugly, uncomfortable and nasty about a new medium will surely **become its signature**."

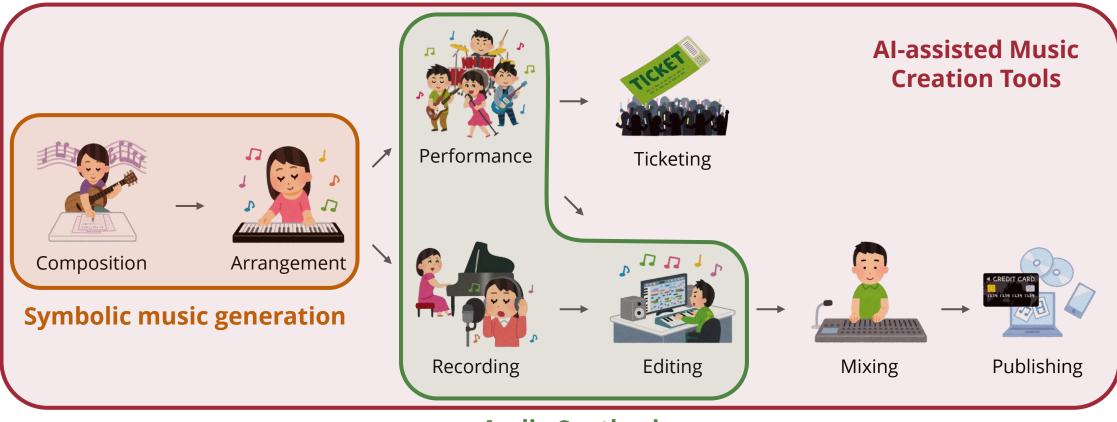
– Brian Eno, 1996

The Landscape

A Simplified Music Production Workflow

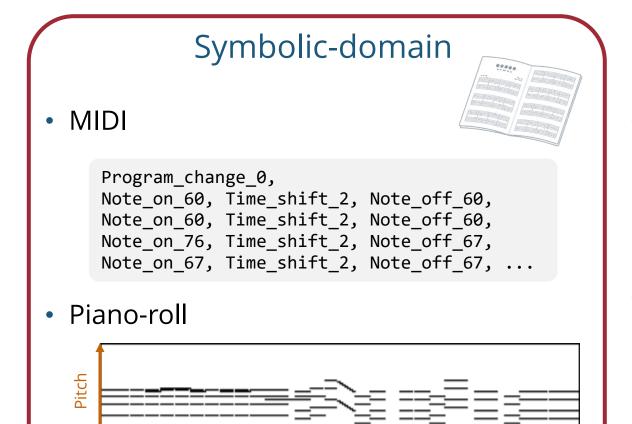


A Simplified Music Production Workflow



Audio Synthesis

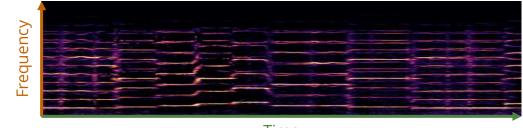
Music Generation – Symbolic vs Audio



Audio-domain

• Waveform

• Spectrogram



Time

Today's topic!

Time

Symbolic Music Generation – Relevant Topics

Unconditional

Symbolic music generation • $\emptyset \rightarrow$ melody • $\emptyset \rightarrow$ lead sheet $\overset{\text{Melody}}{\overset{\text{Melody}}}{\overset{Melody}}{$

Today's topic!

Conditional

Automatic arrangement

- Melody \rightarrow lead sheet
- Melody \rightarrow multitrack
- Lead sheet \rightarrow multitrack
- Solo → multitrack
- Multitrack \rightarrow simple version

Performance rendering

• Sheet music \rightarrow performance

Improvisation systems

Performance → performance

Multimodal

X-to-music generation

- Text → sheet music
- Video → sheet music
- X \rightarrow sheet music

Symbolic Music Generation – Two Main Approaches

Text-based

- Treat music like text
- Sharing models with natural language processing (NLP)
 - RNNs, LSTMs, Transformers, etc.

Today's topic!

Program_change_0, Note_on_60, Time_shift_2, Note_off_60, Note_on_60, Time_shift_2, Note_off_60, Note_on_76, Time_shift_2, Note_off_67, Note_on_67, Time_shift_2, Note_off_67, ...

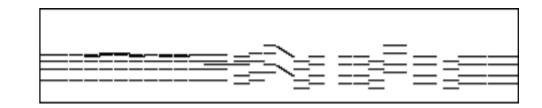
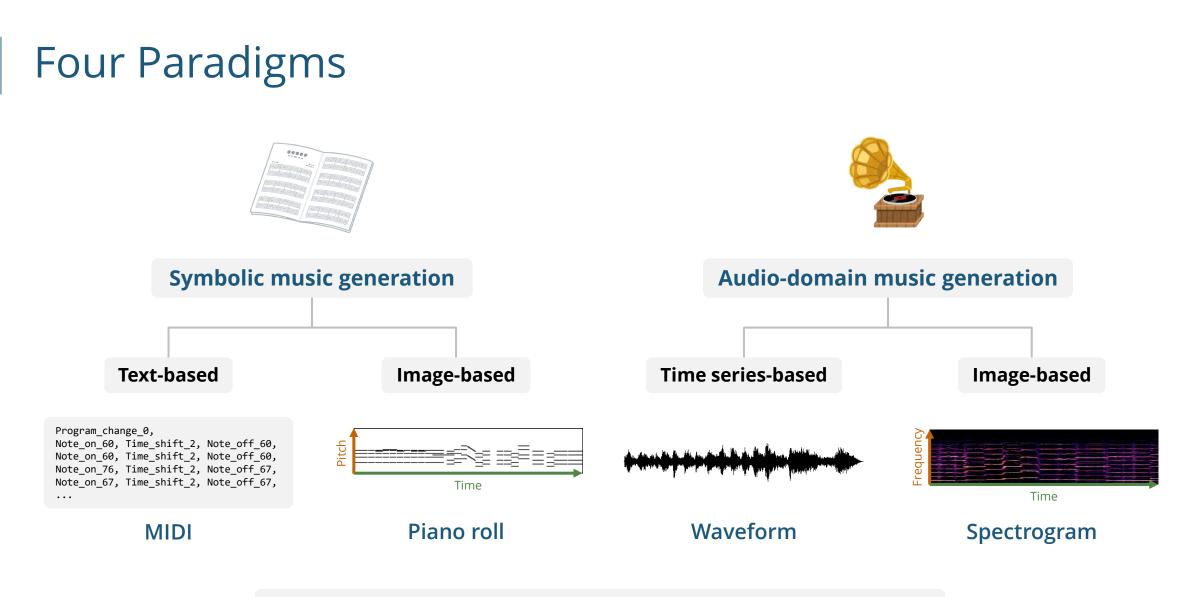


Image-based

- Treat music like **images**
- Sharing models with computer vision (CV)
 - GANs, VAEs, diffusion models, etc.



Today, we also have many latent-space based systems!

Generating Music like Languages

Large Language Models (LLMs)

• The models behind ChatGPT!

🗚 You

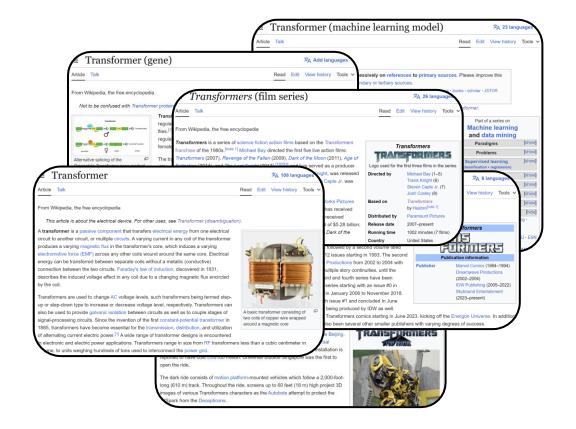
What's so cool about AI for music? Give me a brief answer

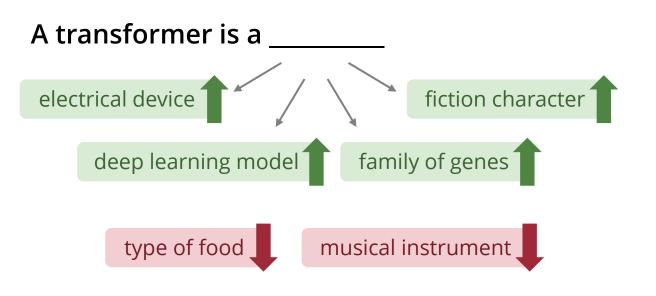
ChatGPT Word-by-word generation

Al in music is cool because it can compose original pieces, provide personalized recommendations, automate music production tasks, enhance creativity for artists, enable interactive performances, analyze music trends, and even create virtual artists or bands, expanding the possibilities in music creation and enjoyment.

Language Models

• Predicting the next word given the past sequence of words

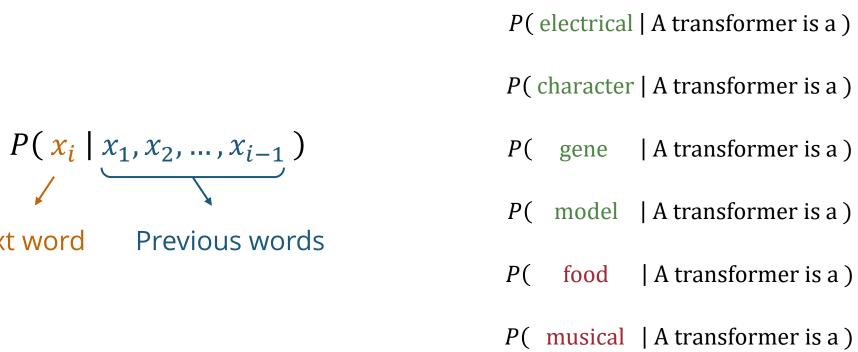




Language Models (Mathematically)

Next word

• A class of machine learning models that learn the next word probability



Language Models – Generation

• How do we generate a new sentence using a trained language model?

A transformer is a		Model	\rightarrow	deep
A transformer is a <mark>deep</mark>	\rightarrow	Model	\rightarrow	learning
A transformer is a deep learning		Model	\rightarrow	model
A transformer is a deep learning model		Model		introduced
A transformer is a deep learning model introduced	\rightarrow	Model		in
A transformer is a deep learning model introduced in	\rightarrow	Model		2017

Designing a Machine-readable Music Language

- How can we "represent" music in a way that machines understand?
 - Musical representation is a key component of a music generation system
- Why not using sheet music "images" directly?
 - Machines still have a hard time reading sheet music
 - A challenging task known as "optical music recognition" (OMR)
- Examples:
 - ABC notation
 - MIDI

ABC Notation-based Representation

ABC Notation

- A simple text-based notation
- Use letters to denote pitches
 - Lower octave (A–G), higher octave (a–g)
- Use prefix to denote accidentals
 - Sharp (^), flat (_), natural (=)

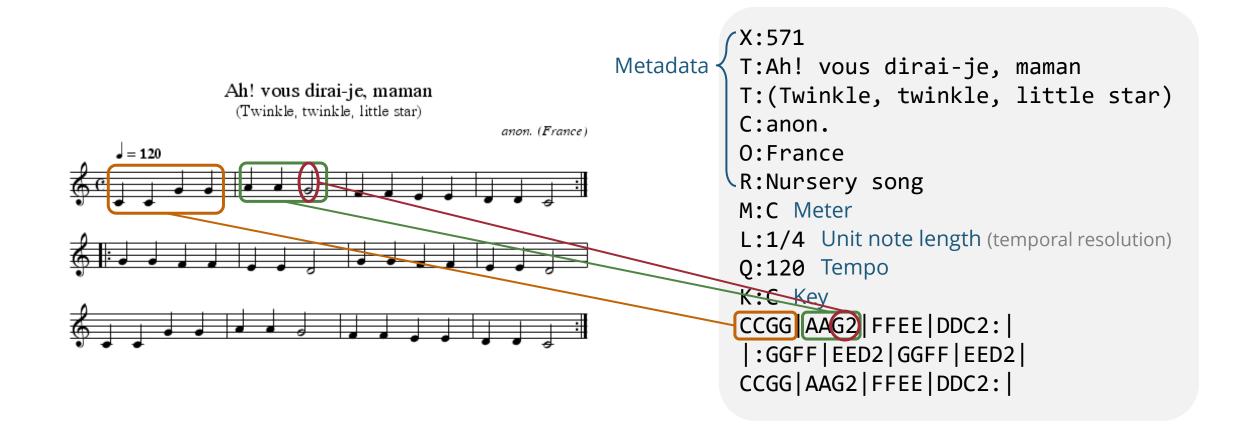
C, D, E, F, |G, A, B, C | D E F G | A B c d | e f g a | b c' d' e' | f' g' a' b'

What is this song in ABC notation?

CCGG AAG2 FFEE DDC2: |:GGFF EED2 GGFF EED2 CCGG AAG2 FFEE DDC2:

Twinkle, twinkle, little star!

An Example of ABC Notation



Example System: Folk RNN (Sturm et al., 2015)

• Data

- Collections of folk tunes
- Representation
 - ABC notation without metadata
- Model
 - LSTM (long short-term memory)
 - Working on the character level

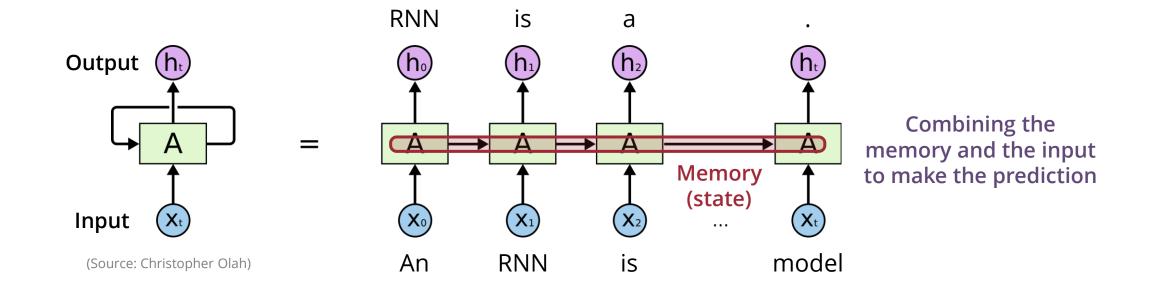
	folk rnn
enerate a folk tune with a	recurrent neural network

PRESS TO GENERATE TUNE		
Compose		
	MODEL	
thesession.org (w/ : :)		
TEMPERATURE	SEED	
1	62063	
METER	MODE	
4/4	C Major	
	INITIAL ABC	
Enter start of tune in ABC	C notation	

folkrnn.org

What is an RNN (Recurrent Neural Network)?

- A type of neural networks that have **loops**
- Widely used for modeling sequences (e.g., in natural language processing)



Example: Folk RNN (Sturm et al., 2015)

• Data

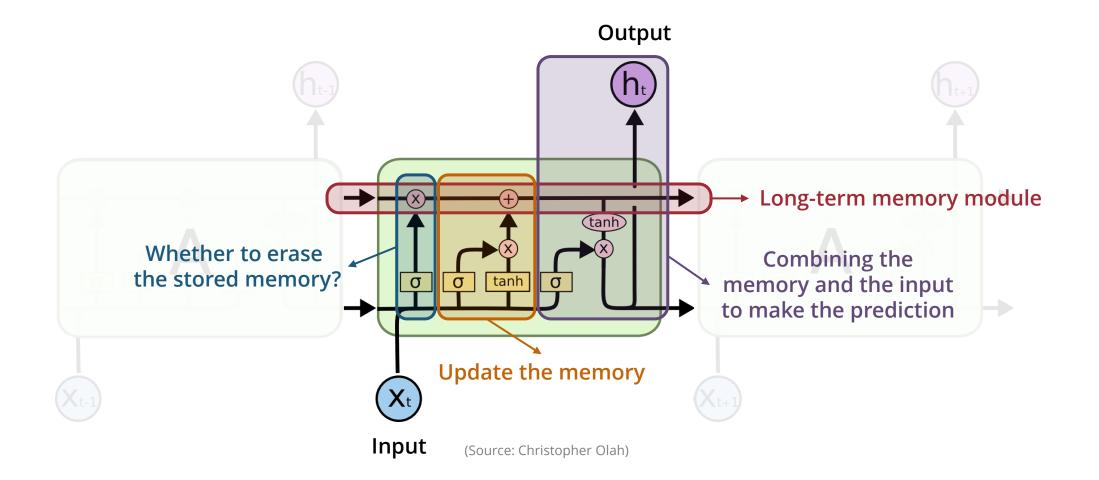
- Collections of folk tunes
- Representation
 - ABC notation without metadata
- Model
 - LSTM (long short-term memory)
 - Working on the character level

	folk rnn
generate a folk tune with a	recurrent neural network

PRESS TO GENERATE TUNE		
Compose		
	MODEL	
thesession.org (w/ : :)		
TEMPERATURE	SEED	
1	62063	
METER	MODE	
4/4	C Major	
	INITIAL ABC	
Enter start of tune in ABC notation		

folkrnn.org

(Recap) Demystifying LSTMs

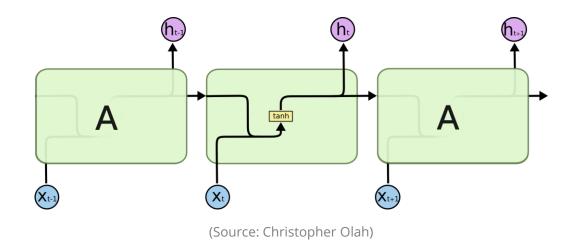


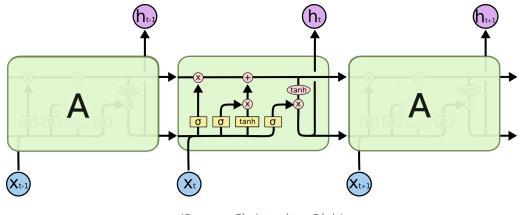
(Recap) Vanilla RNNs vs LSTMs

Vanilla RNN

- Simplest form of RNNs
- Limited long-term memory

- Improved memory module
- Better long-term memory





(Source: Christopher Olah)

Example: Folk RNN (Sturm et al., 2015)

• Data

- Collections of folk tunes
- Representation
 - ABC notation without metadata
- Model
 - LSTM (long short-term memory)
 - Working on the character level

	folk RNN
generate a folk tune with a	recurrent neural network

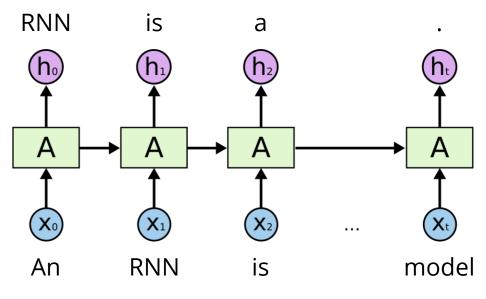
	PRESS TO GENERATE TUNE	
Compose		
	MODEL	
thesession.org (w/ : :)		
TEMPERATURE	SEED	
1	62063	
METER	MODE	
4/4	C Major	
	INITIAL ABC	
Enter start of tune in ABC	C notation	

folkrnn.org

Word-level vs Character-level RNNs

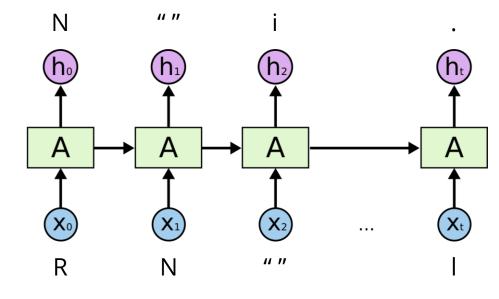
Word-level RNNs

- Predicting word by word
- Most common



Character-level RNNs

- Predicting character by character
- Useful when there is no natural "spaces"



(Source: Christopher Olah)

(Source: Christopher Olah)

colah.github.io/posts/2015-08-Understanding-LSTMs/

ChatGPT can also Compose Songs in ABC Notation!

SA	You Write a cheerful folk song using ABC notation		\$4
6	ChatGPT Certainly! Here's a cheerful folk song in ABC notation:		<u>}</u>
	vbnet	🗂 Copy code	0
	X:1		.
	T:Sunshine on the Meadow M:4/4		0
	K:C		6
	G2 G2 E2 E2 F2 F2 D4 E2 E2 G2 G2 A4 G4		Ð
	G2 G2 E2 E2 F2 F2 D4 E2 E2 G2 G2 C4 E4 G2 G2 E2 E2 F2 F2 D4 E2 E2 G2 G2 A4 G4		
	G2 G2 E2 E2 F2 F2 D4 E2 E2 G2 G2 F A4 G4 G2 G2 E2 E2 F2 F2 D4 G4 F4 E4 D4 C4 z4		9
	G2 G2 E2 E2 F2 F2 D4 E2 E2 G2 G2 A4 G4		
	G2 G2 E2 E2 F2 F2 D4 E2 E2 G2 G2 C4 E4		2
	G2 G2 E2 E2 F2 F2 D4 E2 E2 G2 G2 A4 G4 G2 G2 E2 E2 F2 F2 D4 G4 F4 E4 D4 C4 z4		
			•
	Feel free to play around with the tempo and instrumentation to give it you	r own unique	5
	style!		
	<u>chat.openai.com</u>		

Limitations of ABC Notations

- Limited expressiveness
- Monophonic tunes only

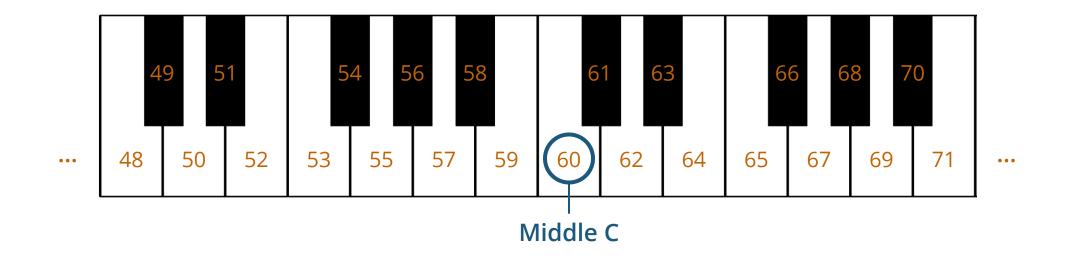
MIDI-like Representation

MIDI (Musical Instrument Digital Interface)

- A communication protocol between devices
- MIDI Messages
 - Note on
 - Note off
 - Delta time
 - Program change
 - Control change
 - Pitch bend change

MIDI Note Numbers

- Ranging from 0 to 127
 - Middle C is 60
 - Wider than standard piano's pitch range
- Widely used in various software, keyboards and algorithms



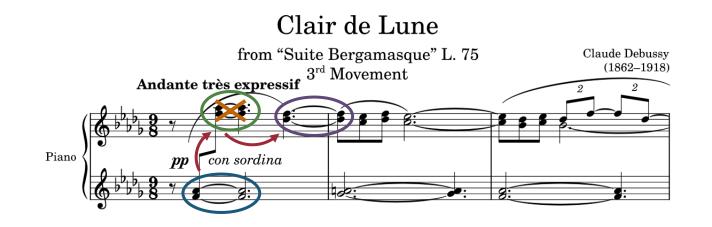
Representing Music using MIDI Messages

- Three main MIDI messages
 - Note on
 - Note off
 - Time Shift

Note_on_67	Time_shift_quarter_note, Note_off_67	
Note_on_67	Time_shift_quarter_note, Note_off_67,	
Note_on_64,	<pre>Time_shift_quarter_note, Note_off_64,</pre>	
Note_on_64,	Time_shift_quarter_note, Note_off_64,	
• • •		

Representing Polyphonic Music

- We can now handle music with multi-pitch at the same time
 - In the literature, "polyphonic" & "multi-pitch" are often used interchangeably



Note_on_65, Note_on_68 Time_shift_eighth_note	Note_on_77, Note_on_80						
Time_shift_half_note] Note_off_77, Note_off_80	Note_on_73, Note_on_77						
Time_shift_dotted_quarter_note, Note_off_65, Note_off_68,							

Example: Performance RNN (Oore et al., 2020)

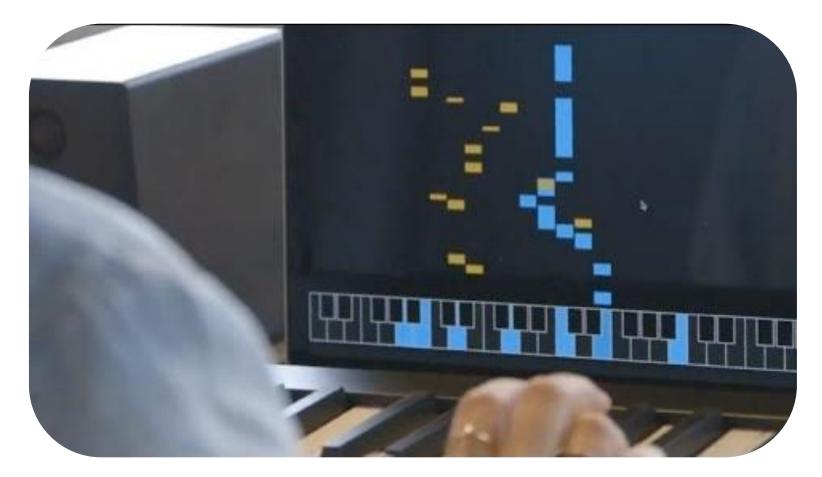
• Data

- Yamaha e-Piano Competition dataset (MAESTRO)
- Representation
 - 128 Note-On events
 - 128 Note-Off events
 - 125 Time-Shift events (8ms-1s)
 - 32 Set-Velocity events

 Handle dynamics
- Model
 - LSTM

Examples of generated music

Example: A.I. Duet (Mann et al., 2016)

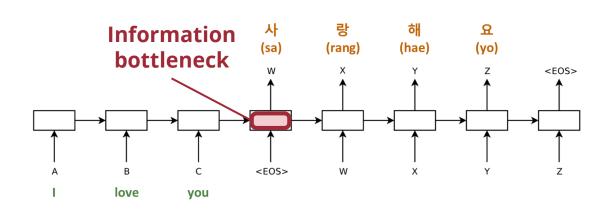


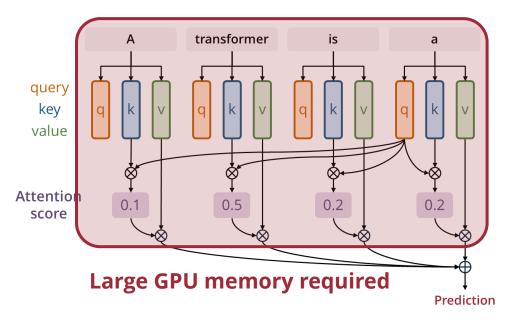
<u>experiments.withgoogle.</u> <u>com/ai/ai-duet/view/</u>

youtu.be/0ZE1bfPtvZo

(Recap) Seq2seq vs Transformers

Seq2seq





Example: Music Transformer (Huang et al., 2019)

• Data

Yamaha e-Piano Competition dataset (MAESTRO)

Almost the same representation as

PerformanceRNN

Representation

- 128 Note-On events
- 128 Note-Off events
- 100 Time-Shift events (10ms-1s)
- 32 Set-Velocity events

 Handle dynamics
- Model
 - Transformer

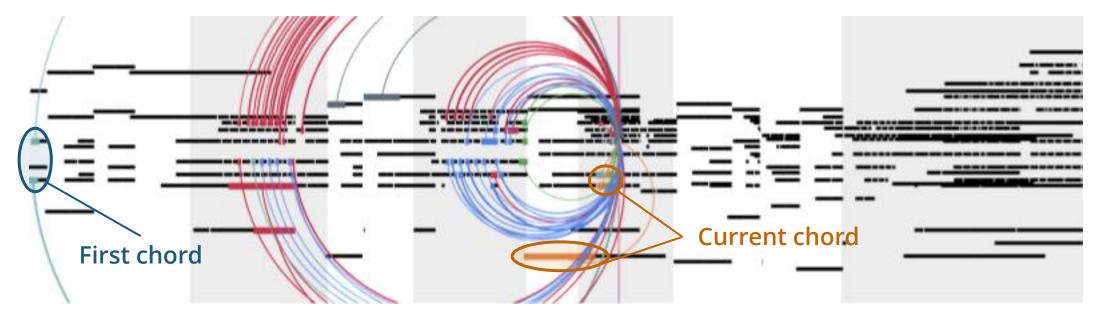
Examples of generated music

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Ian Simon, Curtis Hawthorne, Andrew M. Dai, Matthew D. Hoffman, Monica Dinculescu, and Douglas Eck, "<u>Music Transformer: Generating Music with Long-Term Structure</u>," *ICLR*, 2019.

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Ian Simon, Curtis Hawthorne, Andrew M. Dai, Matthew D. Hoffman, Monica Dinculescu, and Douglas Eck, "<u>Music Transformer: Generating Music with Long-Term Structure</u>," *Magenta Blog*, December 13, 2018.

Visualizing Musical Self-attention

(Each color represents an attention head)

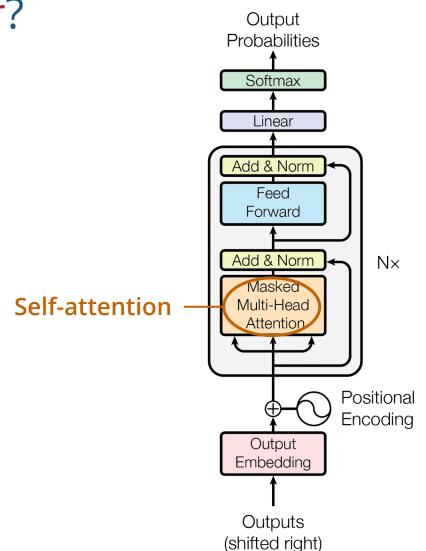


(Source: Huang et al., 2018)

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Ian Simon, Curtis Hawthorne, Andrew M. Dai, Matthew D. Hoffman, Monica Dinculescu, and Douglas Eck, "<u>Music Transformer: Generating Music with Long-Term Structure</u>," *Magenta Blog*, December 13, 2018.

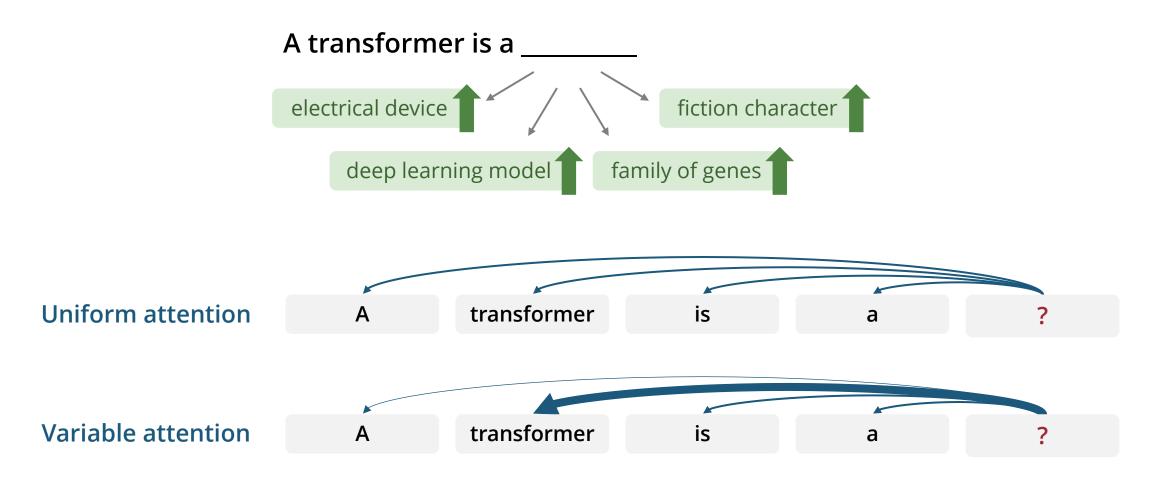
(Recap) What is a Transformer?

• A type of neural network that use the **self-attention mechanism**

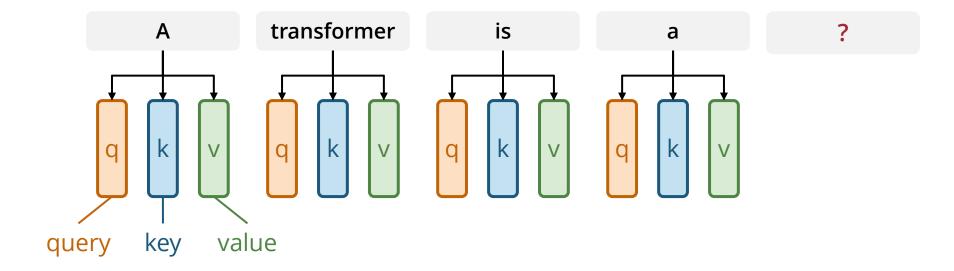


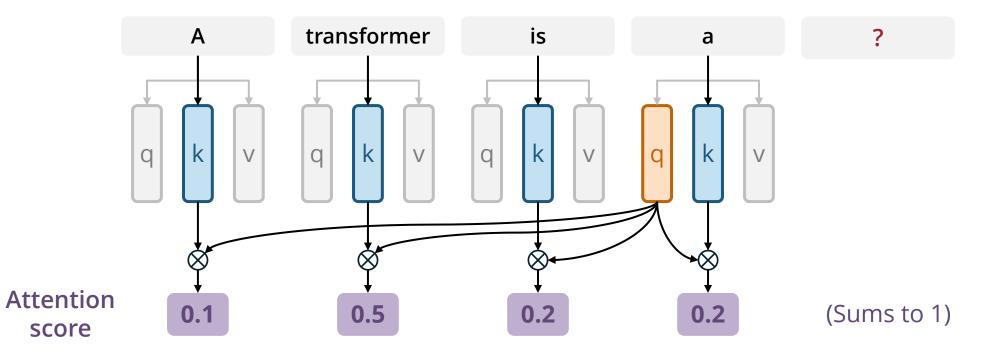
(Source: Vaswani et al., 2017; adapted)

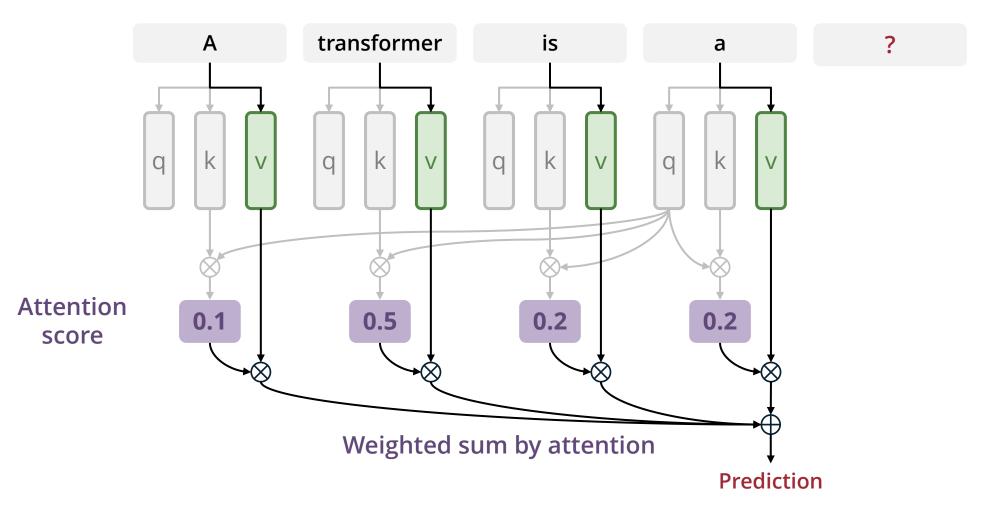
(Recap) Self-attention Mechanism

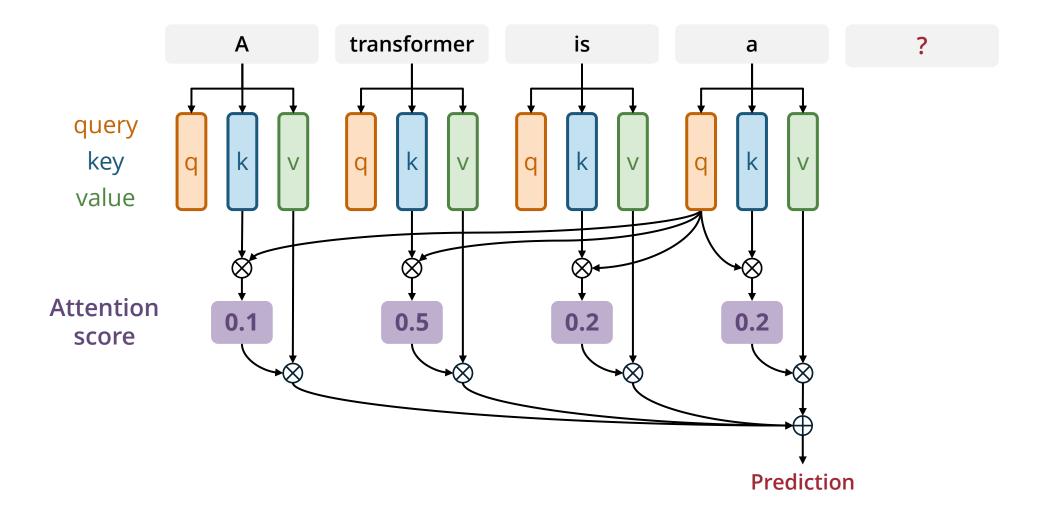


Transformers learn what to attend to from big data!



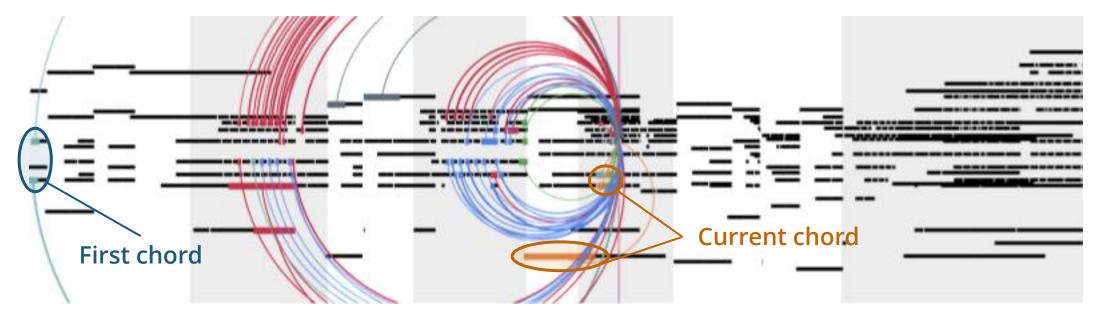






Visualizing Musical Self-attention

(Each color represents an attention head)

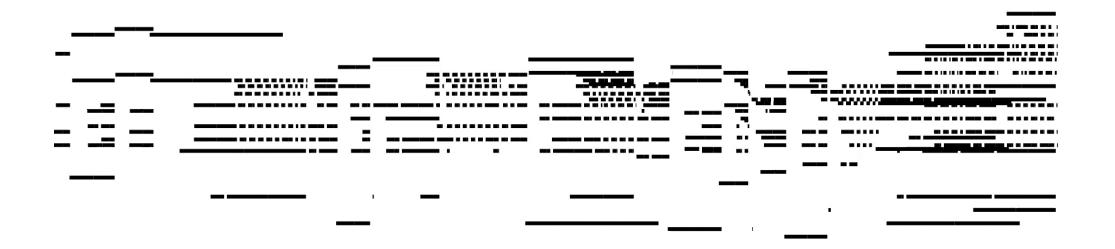


(Source: Huang et al., 2018)

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Ian Simon, Curtis Hawthorne, Andrew M. Dai, Matthew D. Hoffman, Monica Dinculescu, and Douglas Eck, "<u>Music Transformer: Generating Music with Long-Term Structure</u>," *Magenta Blog*, December 13, 2018.

Visualizing Musical Self-attention

(Each color represents an attention head)



(Source: Huang et al., 2018)

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Ian Simon, Curtis Hawthorne, Andrew M. Dai, Matthew D. Hoffman, Monica Dinculescu, and Douglas Eck, "<u>Music Transformer: Generating Music with Long-Term Structure</u>," *Magenta Blog*, December 13, 2018.

Beyond Solo Music

Representing Multiple Instruments

Prog# INSTRU

Using MIDI program change messages

1 2

3

4

5

6

7 8

- Program numbers: 1–128 (or 0–127)
- 128 instruments in 16 families

		1-0 FIANO		5-10 CHROMATIC PERCOSSION	05	Sopi and Sax	15	1100010
(0 0- 27)	1	Acoustic Grand	9	Celesta	66	Alto Sax	74	Flute
	2	Bright Acoustic	10	Glockenspiel	67	Tenor Sax	75	Recorder
	3	Electric Grand	11	Music Box	68	Baritone Sax	76	Pan Flute
nilies	4	Honky-Tonk	12	Vibraphone	69	Oboe	77	Blown Bottle
IIIC3	5	Electric Piano 1	13	Marimba	70	English Horn	78	Shakuhachi
	6	Electric Piano 2	14	Xylophone	71	Bassoon	79	Whistle
	7	Harpsichord	15	Tubular Bells	72	Clarinet	80	Ocarina
	8	Clav	16	Dulcimer				
						81-88 SYNTH LEAD		89-96 SYNTH PAD
		17-4 ORGAN		25-32 GUITAR	81	Lead 1 (square)	89	Pad 1 (new age)
	17	D awbar Organ	25	Acoustic Guitar(nylon)	82	Lead 2 (sawtooth)	90	Pad 1 (new age) Pad 2 (warm)
	18	Percussive Organ	26	Acoustic Guitar(steel)	83	Lead 3 (calliope)	90	Pad 3 (polysynth)
INSTRUMENT	19	Rock Organ	27	Electric Guitar(jazz)	84	Lead 4 (chiff)	92	Pad 4 (choir)
INSTRUMENT	20	Church Organ	28	Electric Guitar(clean)	85	Lead 5 (charang)	93	Pad 5 (bowed)
	21	Reed Organ	29	Electric Guitar(muted)	86	Lead 6 (voice)	94	Pad 6 (metallic)
1-8 PIANO	2	Accoridan	30	Overdriven Guitar	87	Lead 7 (fifths)	95	Pad 7 (halo)
	23	Harmonica	31	Distortion Guitar	88	Lead 8 (bass+lead)	96	Pad 8 (sweep)
Acoustic Grand	24	Tango Accordian	32	Guitar Harmonics	00	Lead o (bassfield)	30	Fau o (Sweep)
Acoustic di allu								
Pright Acoustic		33-40 BASS		41-48 STRINGS		97-104 SYNTH EFFECTS		105-112 ETHNIC
Bright Acoustic	33	Acoustic Bass	41	Violin	97	FX 1 (rain)	105	Sitar
Electric Grand	34	Electric Bass(finge		Viola	98	FX 2 (soundtrack)	106	Banjo
Electric Grand	35	Electric Bass(pick)	43	Cello	99	FX 3 (crystal)	107	Shamisen
	36	Fretless Bass	44	Contrabass	100	FX 4 (atmosphere)	108	Koto
Honky-Tonk	37	Slap Bass 1	45	Tremolo Strings	101	FX 5 (brightness)	109	Kalimba
	38	Slap Bass 2	46	Pizzicato Strings	102	FX 6 (goblins)	110	Bagpipe
Electric Piano 1	39	Synth Bass 1	47	Orchestral Strings	103	FX 7 (echoes)	111	Fiddle
	40	Synth Bass 2	48	Timpani	104	FX 8 (sci-fi)	112	Shanai
Electric Piano 2								
		49-56 ENSEMBLE		57-64 BRASS		113-120 PERCUSSIVE		121-128 SOUND EFFECTS
Harpsichord	49	String Ensemble 1	57	Trumpet	113	Tinkle Bell	121	Guitar Fret Noise
nur porenoru	50	String Ensemble 2	58	Trombone	114	Agogo	122	Breath Noise
Clav	51	SynthStrings 1	59	Tuba	115	Steel Drums	123	Seashore
CIAV	52	SynthStrings 2	60	Muted Trumpet	116	Woodblock	124	Bird Tweet
	53	Choir Aahs	61	French Horn	117	Taiko Drum	125	Telephone Ring
	54	Voice Oohs	62	Brass Section	118	Melodic Tom	126	Helicopter
	55	Synth Voice	63	SynthBrass 1	119	Synth Drum	127	Applause
	56	Orchestra Hit	64	SynthBrass 2	120	Reverse Cymbal	128	Gunshot

Prog# INSTRUMENT

9-16 CHROMATIC PERCUSSION

65-72 REED

Soprano Sax

73-80 PIPE

Piccolo

73

rog# INSTRUMENT

1-8 PIANO

(Source: Roger Dannenberg)

Example: MuseNet (Payne et al., 2019)

- **Data**: ClassicalArchives + BitMidi + MAESTRO
- Representation: "instrument:velocity:pitch"
 - Time shifts in real time (sec)
- Model: Transformer

bach piano_strings start tempo90
piano:v72:G1 piano:v72:G2 piano:v72:B4
piano:v72:D4 violin:v80:G4 piano:v72:G4
piano:v72:B5 piano:v72:D5 wait:12
piano:v0:B5 wait:5 piano:v72:D5 wait:12
....

Example of generated music

Example: Multitrack Music Machine (Ens & Pasquier, 2020)

- Data: Lakh MIDI Dataset (LMD)
- **Representation**: as shown →
- Model: Transformer

LETS START WITH SOME U2

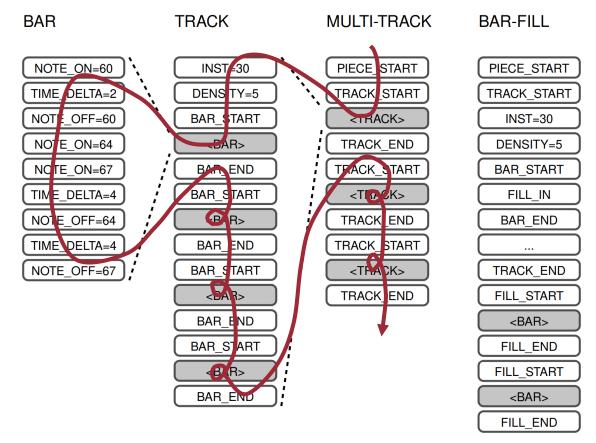


Fig. 1. The MultiTrack and BarFill representations are shown. The **<bar>** tokens correspond to complete bars, and the **<track>** tokens correspond to complete tracks.

(Ens & Pasquier, 2020)

youtu.be/NdeMZ3y-84Q

Jeff Ens and Philippe Pasquier, "MMM : Exploring Conditional Multi-Track Music Generation with the Transformer," arXiv preprint arXiv:2008:06048, 2020.

Example: Multitrack Music Transformer (Dong et al., 2023)

- **Data**: Symbolic Orchestral Database (SOD)
- Representation: "(beat, position, pitch, duration, instrument)"

• No time shift events Why?

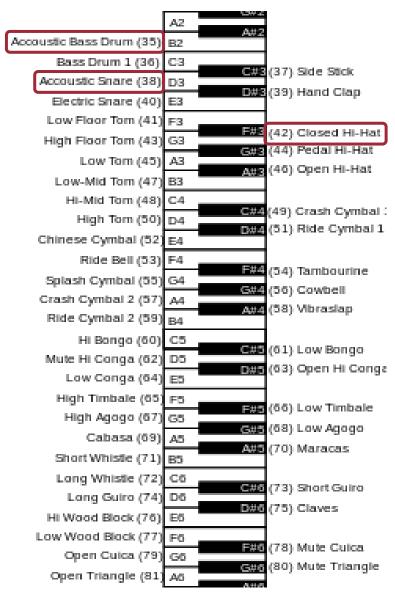
• Model: Multi-dimensional Transformer

(0,	0,	0,	0,	0,	0)	Start of song
(1,	0,	0,	0,	0,	15)	Instrument: accordion
(1,	0,	0,	0,	0,	36)	Instrument: trombone
(1,	0,	0,	0,	0,	39)	Instrument: brasses
(2,	0,	0,	0,	0,	0)	Start of notes
(3,	1,	1,	41,	15,	36)	Note: beat=1, position=1, pitch=E2, duration=48, instrument=trombone
(3,	1,	1,	65,	4,	39)	Note: beat=1, position=1, pitch=E4, duration=12, instrument=brasses
(3,	1,	1,	65,	17,	15)	Note: beat=1, position=1, pitch=E4, duration=72, instrument=accordion
(3,	1,	1,	68,	4,	39)	Note: beat=1, position=1, pitch=G4, duration=12, instrument=brasses
(3,	1,	1,	68,	17,	15)	Note: beat=1, position=1, pitch=G4, duration=72, instrument=accordion
(3,	1,	1,	73,	17,	15)	Note: beat=1, position=1, pitch=C5, duration=72, instrument=accordion
(3,	1,	13,	68,	4,	39)	Note: beat=1, position=13, pitch=G4, duration=12, instrument=brasses
(3,	1,	13,	73,	4,	39)	Note: beat=1, position=13, pitch=C5, duration=12, instrument=brasses
(3,	2,	1,	73,	12,	39)	Note: beat=2, position=1, pitch=C5, duration=36, instrument=brasses
(3,	2,	1,	77,	12,	39)	Note: beat=2, position=1, pitch=E5, duration=36, instrument=brasses
			••			
(4,	0,	0,	0,	0,	0)	End of song (Source: Dong et al., 2023)

Hao-Wen Dong, Ke Chen, Shlomo Dubnov, Julian McAuley, and Taylor Berg-Kirkpatrick, "Multitrack Music Transformer," ICASSP, 2023.

Drums in MIDI

- Channel 10 is reserved for drums
- Encoded by MIDI pitches 35-81
- Models that support drums
 - MuseNet (Payne et al., 2019)
 - Song from PI (Chu et al., 2017)
 - MMM (Ens and Pasquier, 2019)
 - and many more...



en.wikipedia.org/wiki/General_MIDI

Christine Payne, "<u>MuseNet</u>," *OpenAI*, 2019. Hang Chu, Raquel Urtasun, and Sanja Fidler, "<u>Song From PI: A Musically Plausible Network for Pop Music Generation</u>," *ICLR Workshop*, 2017. Jeff Ens and Philippe Pasquier, "<u>MMM : Exploring Conditional Multi-Track Music Generation with the Transformer</u>," *arXiv preprint arXiv:2008.06048*, 2020.

(Source: Wikipedia)

The Many Representations for Music Generation

- PerformanceRNN (Oore et al., 2020)
- **REMI** (Huang et al., 2020)
- **MuMIDI** (Ren et al., 2020)
- Compound Word (Hsiao et al., 2021)
- **REMI+** (von Rütte et al., 2023)
- **TSD** (Fradet et al., 2023)
- and so on...

github.com/Natooz/MidiTok

Sageev Oore, Ian Simon, Sander Dieleman, Douglas Eck, and Karen Simonyan, "This Time with Feeling: Learning Expressive Musical Performance", *Neural Computing and Applications*, 32, 2020.

Yu-Siang Huang and Yi-Hsuan Yang, "Pop Music Transformer: Beat-based Modeling and Generation of Expressive Pop Piano Compositions," *MM*, 2020. Yi Ren, Jinzheng He, Xu Tan, Tao Qin, Zhou Zhao, and Tie-Yan Liu, "PopMAG: Pop Music Accompaniment Generation," *MM*, 2020.

Wen-Yi Hsiao, Jen-Yu Liu, Yin-Cheng Yeh, and Yi-Hsuan Yang, "<u>Compound Word Transformer: Learning to Compose Full-Song Music over Dynamic Directed Hypergraphs</u>," AAAI, 2021.

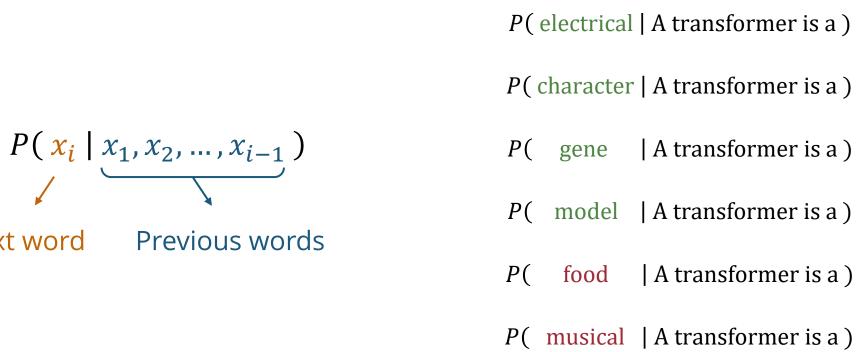
Dimitri von Rütte, Luca Biggio, Yannic Kilcher, and Thomas Hofmann, "<u>FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control</u>," *ICLR*, 2023. Nathan Fradet, Nicolas Gutowski, Fabien Chhel, and Jean-Pierre Briot, "<u>Byte Pair Encoding for Symbolic Music</u>," *EMNLP*, 2023.

Decoding Strategies

(Recap) Language Models (Mathematically)

Next word

A class of machine learning models that learn the next word probability

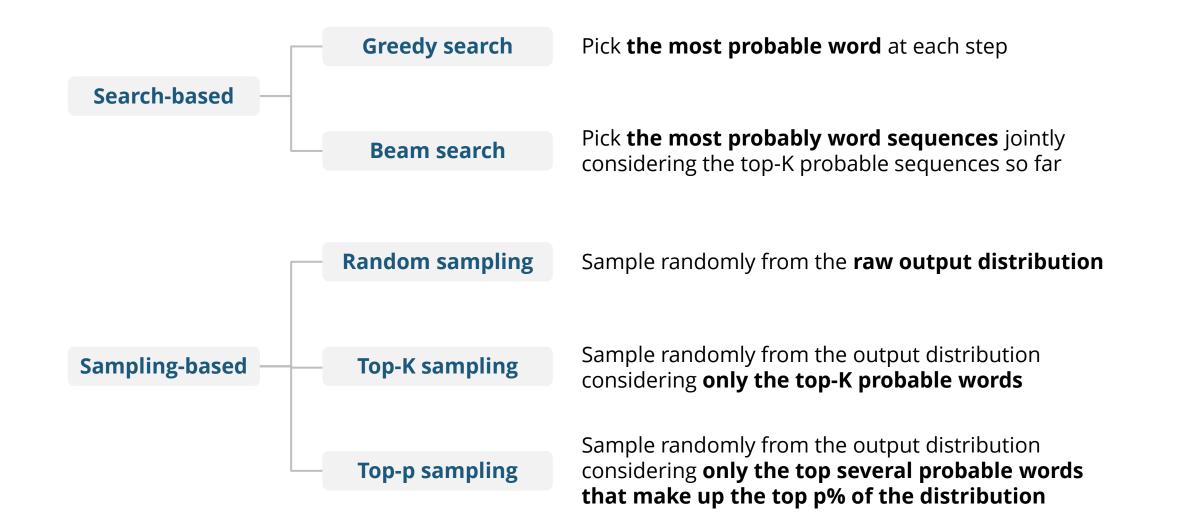


(Recap) Language Models – Generation

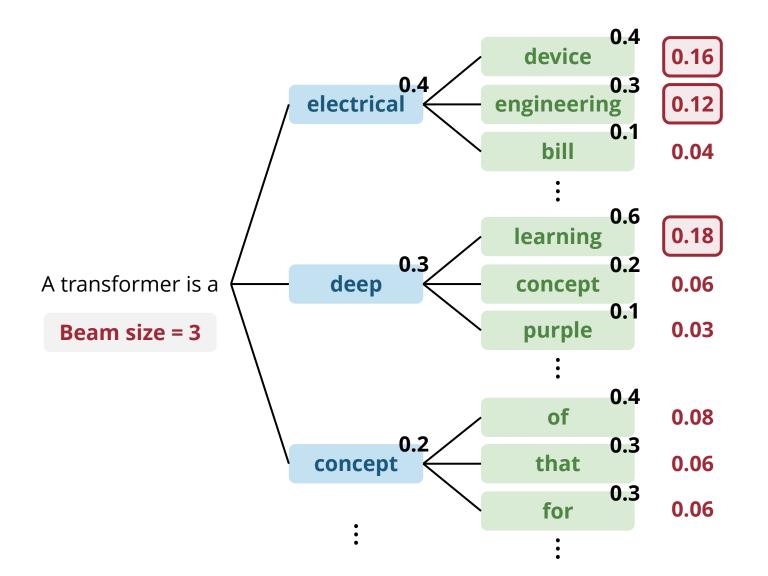
• How do we generate a new sentence using a trained language model?

A transformer is a	\rightarrow	Model	\rightarrow	deep
A transformer is a <mark>deep</mark>	\rightarrow	Model	\rightarrow	learning
A transformer is a deep learning		Model	\rightarrow	model
A transformer is a deep learning model		Model	\rightarrow	introduced
A transformer is a deep learning model introduced	\rightarrow	Model	\rightarrow	in
A transformer is a deep learning model introduced in	\rightarrow	Model		2017

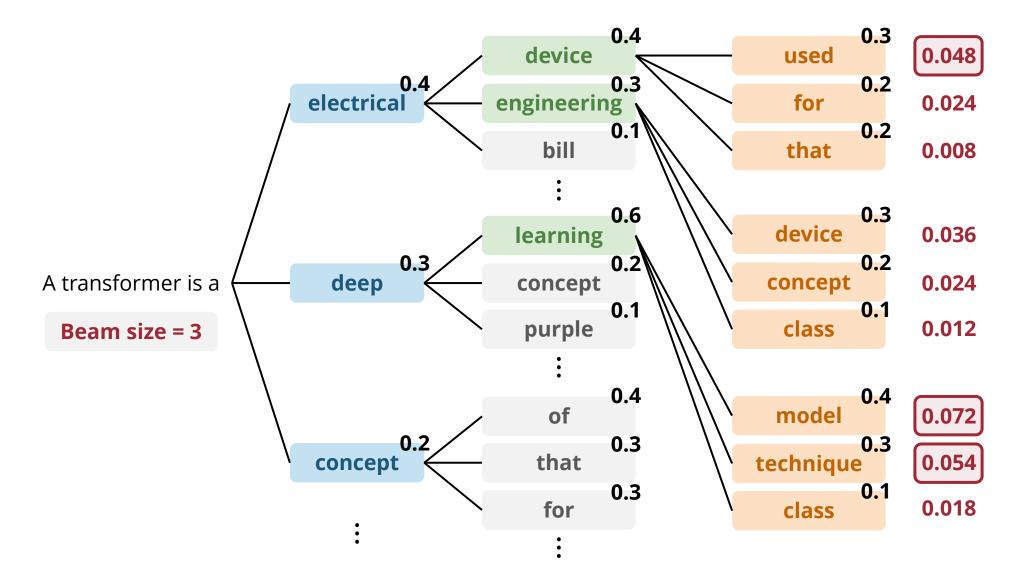
Decoding Strategies



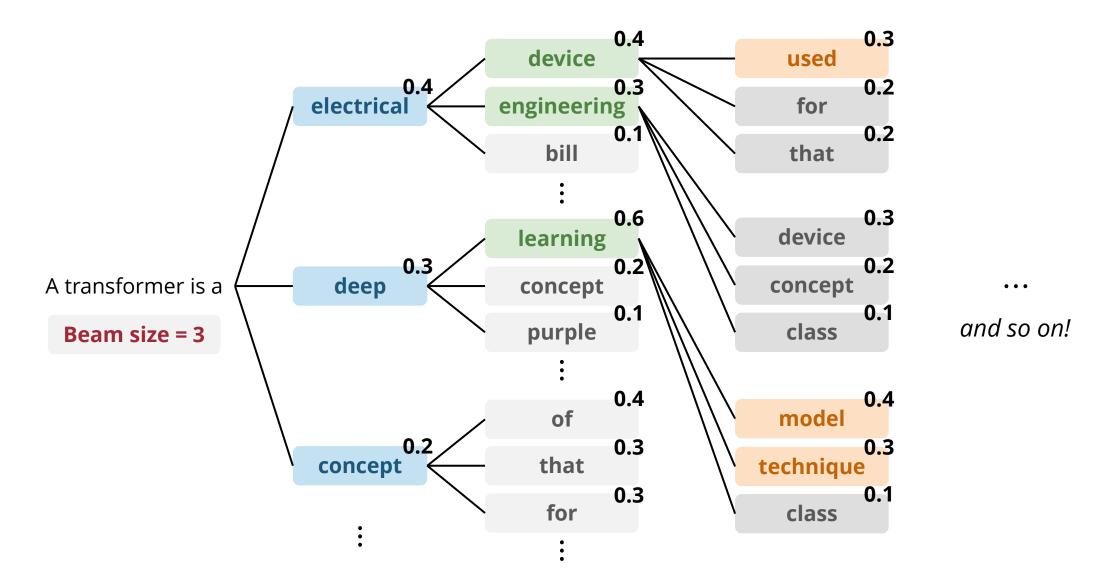
Decoding Strategies – Beam Search



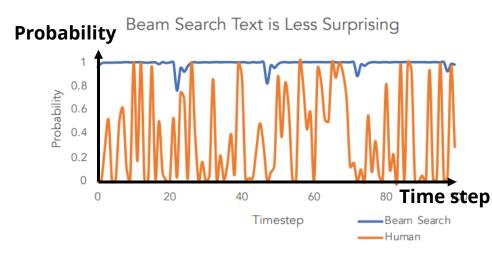
Decoding Strategies – Beam Search



Decoding Strategies – Beam Search



Is the Most Probably Sequence What We Want?



(Source: Holtzman et a., 2020)

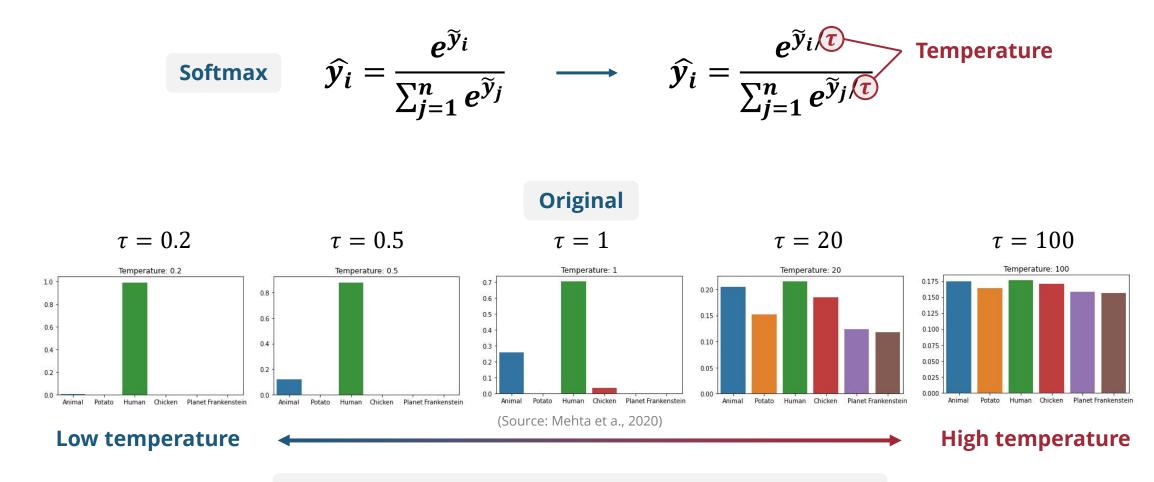
Beam Search

...to provide an overview of the current state-of-the-art in the field of computer vision and machine learning, and to provide an overview of the current state-of-the-art in the field of computer vision and machine learning, and to provide an overview of the current state-of-the-art in the field of computer vision and machine learning, and to provide an overview of the current state-of-the-art in the field of computer vision and machine learning, and...

Human

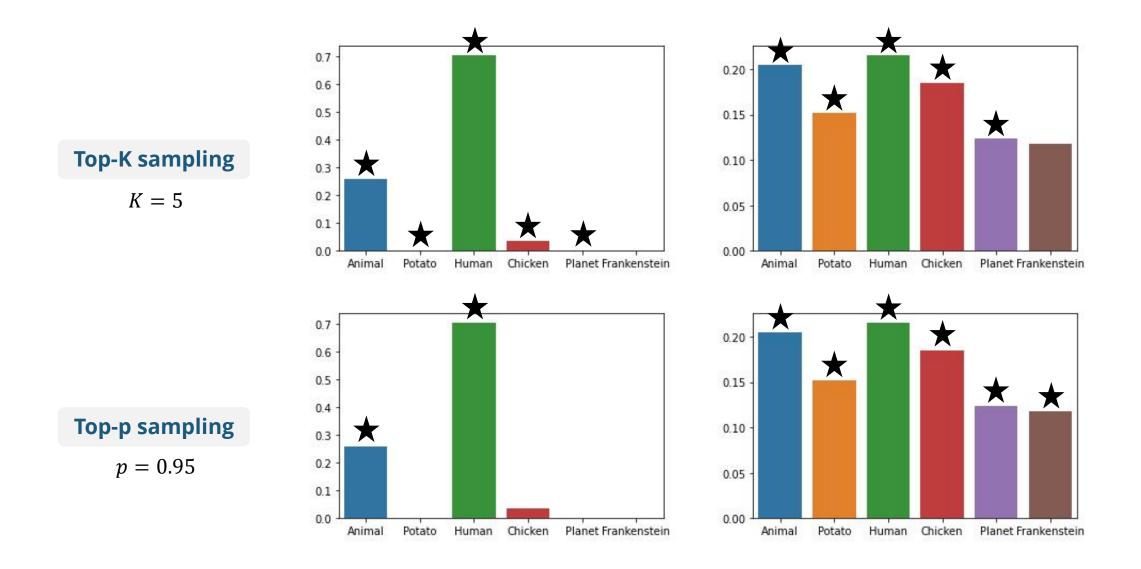
...which grant increased life span and three years warranty. The Antec HCG series consists of five models with capacities spanning from 400W to 900W. Here we should note that we have already tested the HCG-620 in a previous review and were quite satisfied With its performance. In today's review we will rigorously test the Antec HCG-520, which as its model number implies, has 520W capacity and contrary to Antec's strong beliefs in multi-rail PSUs is equipped...

Decoding Strategies – Temperature

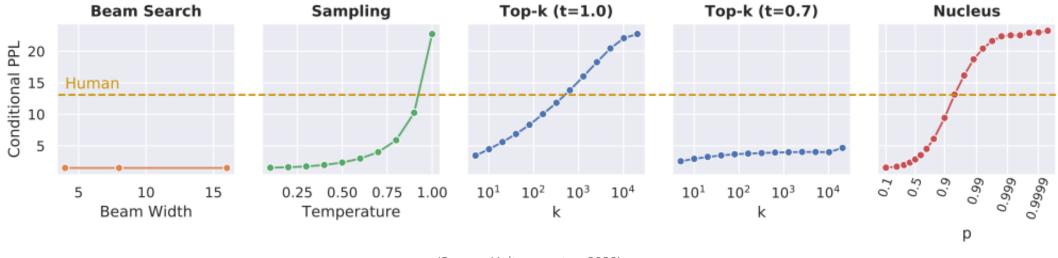


Temperature adjusts the "contrast" of the distribution!

Decoding Strategies – Top-K vs Top-p Sampling



Striking a Balance between Coherence & Interestingness



(Source: Holtzman et a., 2020)

(Recap) Decoding Strategies

