PAT 498/598 (Fall 2024)

Special Topics: Generative AI for Music and Audio Creation

Lecture 11: Midterm Review

Instructor: Hao-Wen Dong

Review – Background

What is Artificial Intelligence?

Al is the study of how to make computers **do things at which**, **at the moment**, **people are better**.

– Elaine Rich and Kevin Knight, 1991

1997

(Source: Britannica)

(Source: The Guardian)

(Source: SC2HL)

Elaine Rich and Kevin Knight, *Artificial Intelligence*. United Kingdom: McGraw-Hill, 1991. <u>https://www.britannica.com/topic/Deep-Blue</u> <u>https://www.theguardian.com/technology/2016/mar/15/alphago-what-does-google-advanced-software-go-next</u> <u>https://www.youtube.com/watch?v=PFMRDm_H9Sg</u>

Al vs ML vs DL

Machine Learning

Components of a Machine Learning Model

Deep learning is almost the same as machine learning by this definition!

What's special about deep learning?

Types of Machine Learning

- Supervised learning
 - Classification: discrete outputs
 - **Regression**: *continuous* outputs
- Unsupervised learning
 Self-supervised learning

Given pairs of example inputs and outputs

- Given only example inputs
- Semi-supervised learning
- Given example inputs and a few example outputs
- Reinforcement learning Given scalar rewards for a sequence of actions

Many generative AI models based on self-supervised learning!

Review – Deep Learning Fundamentals

What is Deep Learning?

• A type of machine learning that uses **deep neural networks**

Inside a Neuron

Neural Networks are Parameterized Functions

• A neural network represents **a set of functions**

Training a Neural Network

Shallow vs Deep Neural Networks – In Practice

Shallow neural nets

Deep neural nets

Less expressive (less parameter efficient) More expressive (more parameter efficient)

Convolutional Neural Network (CNNs)

2D Convolution

Output

High activation when the local pattern is close to the kernel

2D Convolution

-1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1

Input

*

Kernel

Output

Low activation when the local pattern differs from the kernel

Max Pooling Layer

Downsample and keep the strongest activation in each block

Learned CNN Kernels in a Trained AlexNet

Layer 1

Learned CNN kernels

Top activations

Learned CNN Kernels in a Trained AlexNet

Learned CNN Kernels in a Trained AlexNet

Matthew D. Zeiler and Rob Fergus, "Visualizing and Understanding Convolutional Networks," ECCV, 2014.

What is an RNN (Recurrent Neural Network)?

- A type of neural networks that have **loops**
- Widely used for modeling sequences (e.g., in natural language processing)

Demystifying LSTMs

Training a Neural Network

Common Loss Functions for Regression

Binary Cross Entropy for Binary Classification

• Logistic regression approaches classification like regression

Cross Entropy for Multiclass Classification

Cross Entropy for Multiclass Classification

Training a Neural Network

Gradient Descent – Pseudocode

- Pick an initial weight vector w_0 and learning rate η
- Repeat until convergence: $w_{t+1} = w_t \eta \nabla f(w_t)$

Forward Pass & Backward Pass

Backward pass

loss.backward()

Gradient-based Adaptive Learning Rate

• Intuition: Compensate axis that has little progress by comparing the current gradients to the previous gradients

Momentum

• Intuition: Maintain the momentum to escape from local minima

Comparison of Optimizers

Momentum

- Gets you out of spurious local minima
- Allows the model to explore around

Gradient-based adaption

- Maintains steady improvement
- Allows faster convergence

Mini-batch Gradient Descent

Intuition: Estimate the gradient using several random training samples

Training-Validation-Test Pipeline

Training vs Validation Losses

Review – Deep Generative Models

Network Architectures vs Training Frameworks

Network architectures

Training frameworks

Multilayer perceptron (MLP)

Convolutional neural networks (CNNs)

Recurrent neural networks (RNNs)

Transformers

ResNets

U-Nets

Autoregressive

Autoencoders

Variational autoencoders (VAEs)

Generative adversarial networks (GANs)

Diffusion models

Consistency models

Language Models

Predicting the next word given the past sequence of words

Language Models (Mathematically)

Next word

A class of machine learning models that learn the next word probability

Language Models – Generation

• How do we generate a new sentence using a trained language model?

A transformer is a	\rightarrow	Model	\rightarrow	deep
A transformer is a <mark>deep</mark>	\rightarrow	Model	\rightarrow	learning
A transformer is a deep learning	\rightarrow	Model	\rightarrow	model
A transformer is a deep learning model	\rightarrow	Model	\rightarrow	introduced
A transformer is a deep learning model introduced	\rightarrow	Model	\rightarrow	in
A transformer is a deep learning model introduced in	\rightarrow	Model	\rightarrow	2017

Demystifying Transformers

Transformers learn what to attend to from big data!

What does a Transformer Learn?

(Source: Cheng et al., 2016)

(Source: Bahdanau et al., 2015)

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio, "<u>Neural Machine Translation by Jointly Learning to Align and Translate</u>," *ICLR*, 2015. Jianpeng Cheng, Li Dong, and Mirella Lapata, "Long Short-Term Memory-Networks for Machine Reading," *EMNLP*, 2016.

What does a Transformer Learn?

(Each color represents an attention head)

(Source: Huang et al., 2018)

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Ian Simon, Curtis Hawthorne, Andrew M. Dai, Matthew D. Hoffman, Monica Dinculescu, and Douglas Eck, "<u>Music Transformer: Generating Music with Long-Term Structure</u>," *Magenta Blog*, December 13, 2018.

Seq2seq vs Transformers

Seq2seq

Transformers

Comparison of Deep Generative Models

Autoencoders

• A neural network where the **input and output are the same**

Discriminative vs Generative Models

Discriminative

Discriminative models learn the decision boundary

P(y|x)

Generative

Generative models learn the underlying distribution

P(x) or P(x|y)

Generating Data from a Random Distribution

Random distribution

Data distribution

If we can learn this mapping, we can easily generate new samples from the data distribution

Variational Autoencoders (VAEs) – Training

Variational Autoencoders (VAEs) – Generation

Decoding the Latent Space of a VAE

(Source: tensorflow.org)

Comparison of Deep Generative Models

(Source: Weng, 2021)

A Loss Function for Distributions

But what about another neural network!?

Generative Adversarial Nets (GANs) – Training

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio, "Generative Adversarial Networks," NeurIPS, 2014.

Generative Adversarial Nets (GANs) – Generation

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio, "Generative Adversarial Networks," NeurIPS, 2014.

Interpolation on the Latent Space

Latent space

Comparison of Deep Generative Models

(Source: Weng, 2021)

Diffusion Models

• Intuition: Many denoising autoencoders stacked together

Diffusion Models – Training

• Intuition: Many denoising autoencoders stacked together

Diffusion Models

• Intuition: Many denoising autoencoders stacked together

Diffusion Models – Generation

Remove noise gradually

(Backward diffusion process)

Input Output

Coarse shapes (low-frequency components) **Fine details** (high-frequency components)

(Source: Ho et al., 2020)

Discussions

Discussions

- Why do we need machine learning?
- When should we use deep learning?
- When can't we use deep learning?

- Should we choose the best model based on validation loss or accuracy?
- Which generative model works best?
- Is overfitting always an issue?

Building Blocks of Modern AI Systems

That's It for the First Half of This Course!