
PAT 498/598: Special Topics: Generative AI for Music and Audio Creation (Fall 2024)

Assignment 3: Unconditional Music/Audio Generation

Due at 11:59pm ET on November 18

1 Unconditional Music/Audio Generation

In this open-ended assignment, you can choose to work on either unconditional symbolic

music generation or unconditional music/audio synthesis. You may use any dataset of

your choice and any machine learning model of your choice. You may also use your

own collection of data, and it’s fine to use existing codebase, but you need to provide proper

citation/reference. The only requirement is that the model needs to be unconditional, i.e.,

generating music or audio from scratch.

1.1 Option 1: Unconditional Symbolic Music Generation

Here are some good datasets that you might want to use:

• Nottingham: 1000+ folk songs in ABC format

• JSB Chorales: 382 Bach chorales in NPY format

• POP 909: 909 C-pop songs in MIDI format, with the melody and accompaniment tracks

• MAESTRO: 200 hours of expressive piano performances in MIDI format

• Groove MIDI: 13.6 hours of expressive drum performances in MIDI format

You will likely want to set a small temporal resolution to start with, e.g., a temporal

resolution of 4 time steps per quarter note (i.e., allowing anything greater than a 16th note)

is a good starting point for nonexpressive symbolic music datasets. Also, you might find

mido, pretty_midi and MusPy useful for processing MIDI files, and MidiTok for tokenizing

MIDI files.

https://github.com/jukedeck/nottingham-dataset
https://github.com/czhuang/JSB-Chorales-dataset/tree/master
https://github.com/music-x-lab/POP909-Dataset
https://magenta.tensorflow.org/datasets/maestro
https://magenta.tensorflow.org/datasets/groove
https://github.com/mido/mido
https://github.com/craffel/pretty-midi
https://github.com/salu133445/muspy
https://github.com/Natooz/MidiTok

Assignment 3: Unconditional Music/Audio Generation PAT 498/598 (Fall 2024)

Example system A simple option is to implement an n-gram-like model using multilayer

perceptrons (i.e., fully-connected feedforward network) or a convolutional neural network

(CNN). You will implement a model that learns to predict the next word given the previous

n− 1 words, i.e., learning the mapping (xt−n+1, xt−n+2, . . . , xt−1) → xt. You can then compare

the performance of the model for different n, e.g., n = 1, 10, 100, 1000, depending on your

computing budget.

1.2 Option 2: Unconditional Music/Audio Synthesis

Here are some good datasets that you might want to use:

• NSynth: 305,979 4-sec recordings of single-shot music notes

• MAESTRO: 200 hours of expressive piano performances

• Bach Violin: 6.5 hours of recordings of Bach’s six sonatas and partitas for violin

• DCASE Foley: 4,850 audio samples in 7 classes

• ESC-50: 2000 environmental audio recordings in 50 classes, with 40 samples each

You will likely want to downsample/resample the audio files to 8kHz or 16kHz for sim-

plicity if the data come in a higher sampling rate, which can be done using ffmpeg or librosa.

If you want to implement a frequency-domain synthesis model, you might want to use

the pretrained Hifi-GAN models (note that you need to use their code to compute the mel

spectrograms as your training targets if you’re using Hifi-GAN as the vocoder).

Example system A not-too-challenging (though not easy either) option is to implement a

diffusionmodel that generates audio spectrograms. You can use and adapt the nicely-written

codebase for improved-diffusion. Specifically, you will need to modify the data loader so

that it can read mel spectrograms rather than images. You will want to rewrite load_data()

into, assuming you’re storing the mel spectrograms as NPY files:

def load_data(

*, data_dir, batch_size, image_size, class_cond=False,

deterministic=False

):

data_dir = pathlib.Path(data_dir)

Load filenames

all_files = list(data_dir.rglob("*.npy"))

...

You will also want to rewrite ImageDataset.__getitem__() into:

2 / 4

https://magenta.tensorflow.org/datasets/nsynth
https://magenta.tensorflow.org/datasets/maestro
https://hermandong.com/bach-violin-dataset/
https://dcase.community/challenge2023/task-foley-sound-synthesis
https://github.com/karolpiczak/ESC-50
https://github.com/FFmpeg/FFmpeg
https://github.com/librosa/librosa
https://github.com/jik876/hifi-gan
https://github.com/jik876/hifi-gan/blob/master/meldataset.py
https://github.com/openai/improved-diffusion
https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/image_datasets.py
https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/image_datasets.py#L8
https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/image_datasets.py#L78

Assignment 3: Unconditional Music/Audio Generation PAT 498/598 (Fall 2024)

MELSPEC_MIN = -12.0

MELSPEC_MAX = 3.0

def __getitem__(self, idx):

Load the mel spectrogram

melspec = np.load(self.local_images[idx])

Get a random slice

start = np.random.randint(melspec.shape[1] - self.resolution)

data = melspec[np.newaxis, :, start : start + self.resolution]

data = data.astype(np.float32)

data = 2 * (data - MELSPEC_MIN) / (MELSPEC_MAX - MELSPEC_MIN) - 1

Also, you will need to change this line to input_channels=1 as mel spectrograms have only

one channel.

1.3 Task

Please complete the followings:

• Report the training, validation and test losses

• Show some example generated music or audio

• Conduct at least one experiment on any aspect, e.g., datasets, network architecture,

training configuration, latent space interpolation, zero-shot generalization

You work will not be graded by the performance of your final model, but rather the

amount of work you put in exploring different techniques and analyzing the experi-

mental results. Thus, please also report any negative results that you find not working and

discuss why it is not working.

Please submit your code and a report that summarizes the experimental design and

your findings. The report should be no more than 2 pages, excluding references, and you

may use any template you like. You will receive zero credit if the code is missing.

1.4 Rubrics

• Model implementation (10pt)

• Experimental results (5pt)

• Analysis and discussions (5pt)

3 / 4

https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/script_util.py#L113

Assignment 3: Unconditional Music/Audio Generation PAT 498/598 (Fall 2024)

2 Submission

• All assignments must be completed on your own. You are welcome to exchange ideas

with your peers, but this should be in the form of concepts and discussion, not in the

form of writing and code.

• Please provide proper citations/references for any external resources you use in your

writing and code.

• Please submit your work to Gradescope.

• Late submissions will be deducted by 3 points per day.

4 / 4

https://www.gradescope.com/courses/824616

	Unconditional Music/Audio Generation
	Option 1: Unconditional Symbolic Music Generation
	Option 2: Unconditional Music/Audio Synthesis
	Task
	Rubrics

	Submission

