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What is Deep Learning?
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Al vs ML vs DL
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Artificial Intelligence Machine Learning Deep Learning
Algorithms that exhibit Algorithms that show Algorithms that learn
intelligent behaviors intelligence through from data using deep

like humans learning from data neural networks

-

1950s 1980s 2010s
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Components of a Machine Learning Mode|

Optimization Defining inputs & outputs

Improve on task T,

with respect to performance metric P,

Objective function

based on experience E (loss function)

Training data
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What is Deep Learning?

* A type of machine learning that uses deep neural networks
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What is Deep Learning?
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* A type of machine learning that uses deep neural networks
Input layer

—_—

Hidden layers
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Neural Networks
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Inside a Neuron

Sigmoid function
1 2

Input
. s
Y1 Activation
X2 & function Output
X3 - wr \?) Y
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Human Neuron

Cell body

Axon

Nucleus

Axon hillock

Endoplasmic
reticulum

Mitochondrion \ Dendrite

/ f X Dendritic branches

Casey Henley, Introduction to Neuroscience

Golgi apparatus

~

Telodendria

Synaptic terminals

Successful initiation
(action potential)

Threshold potential

| Resting membrane
potential

Membrane Potential (mV)

Failed|initiation
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https://openbooks.lib.msu.edu/introneuroscience1/chapter/action-potentials/

Artificial vs Human Neuron

Artificial neuron Human neuron

Cell body

Telodendria

Synaptic terminals

Endoplasmic
reticulum =
Sor
Mitochondrion Dendrite %
‘ g Threshold
/ J \ Dendritic branches % pOtentlaI
% .......................
= .y Resting membrane
potential

Casey Henley, Introduction to Neuroscience
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Why Sigmoid?

Unit step

1 \
Nondifferentiable
= f\ Successful initiation /
=T (action potential) =
2 4 -2 0 2 4
g Threshold
j: Threshold potential
N TR T LT T E 4 A T
= \/__» ____________ Resting membrane
potential

Failed|initiation

1+e™?

Casey Henley, Introduction to Neuroscience
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https://openbooks.lib.msu.edu/introneuroscience1/chapter/action-potentials/

Why Bias Term?

 Allow nonzero outputs when all inputs are zero

0 0 0
Yy = oW +wps + -+ wppp +b) = @(b)

Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan
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Artificial vs Human Neuron

Artificial neuron Human neuron

Cell body

Telodendria

Synaptic terminals

Endoplasmic
reticulum =
Sor
Mitochondrion Dendrite %
‘ g Threshold
/ J \ Dendritic branches % pOtentlaI
% .......................
= .y Resting membrane
potential

Casey Henley, Introduction to Neuroscience
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Artificial Neural Networks

* Although inspired by human neural networks, artificial neural networks
nowadays do not work like human brains

- Lacking functional hierarchy, high-level feedback loops, memory module, etc.

- Human brains work more like spiking neural networks - Efficiency!
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Fully Connected Feedforward Network

« Most basic form of deep neural networks
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Math Formulation

Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan
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Math Formulation

Input layer

Hidden layers
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Math Formulation
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Math Formulation
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Math Formulation
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Math Formulation
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Math Formulation

h=¢e(Wx+b)
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Math Formulation

h; = e(W;x+ by)
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Math Formulation
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Math Formulation
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Fully Connected Feedforward Network
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Neural Networks are Parameterized Functions

* A neural network represents a set of functions

Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan
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Neural Networks are Parameterized Functions

* A neural network represents a set of functions

fi 0 (X)

AII the parameters
W 1) ===y WL,bl, ey bL

Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan
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Training a Neural Network

Build a neural network
(which defines a set of functions)

|

l

Define the objective
(i.e., what is good for a function)

|

1

Find the optimal parameters
(which leads to the best function)

|

Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan
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Neural Networks are Parameterized Functions

* A neural network represents a set of functions

Find the optimal parameters

y
\
’ 9 (X) Good or bad?
)
AII the parameters Objective

Wl) Soc g WL,bl, = bL

Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan
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Regression vs Classification

Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan
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Regression vs Classification

Regression

Classification

Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan

Age

5

Output a number

Is human?

Yes/ No

Output a label
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Regression Example: Stock Price Prediction

y € [0, )

140 108.10 USD Tue, Sep 10
120
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Regression Example: Depth Estimation

y = [O’ OO)WXH

Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan
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Classification Example: Image Recognition

y € {cat, dog, bear, bird} y€1{0,1,2,..,9}
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Classification Example: Spam Filter

o
Q«

POWERD

CONGRATULATIONS!!

Your Email was selected in Powerball Lottery
Draw with the sum of 1.5million dollars.
Kindly send your Full Name, Address and
Phone Number for claims.

Yours Sincerely
Mr. James Hodges
Head Of Operations

<
iy
N

Call for Panelists with
Internship/work Experience for
PAT Seminar @ Sep 13 Inbox x

Hao-Wen Dong <h.. Mon, Sep 9, 4:04PM (1day ago) ¢ €
to PAT, pat.grads «

Hi folks,

We are planning an internship panel for our PAT seminar this Friday. That
being said, we'll need some panelists! If you did an internship this
summer (or previously) or have experience working in the industry,
please let me know! Also, feel free to recommend anyone who you
think would be a good panelist for this topic.

The goal of the panel is to give you a sense of what the application
process/timeline is like and what the whole internship experience is like.

Looking forward to hearing from you! And see you on Friday!

Best,
Herman

= spam

y € {spam, not spam}

= not

Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan

Sspam
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Activation Functions

Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan
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Inside a Neuron

Sigmoid function
1 2

Input
. s
Y1 Activation
X2 & function Output
X3 - wr \?) Y
WTL
xn b W1 xl
Bias term : ] 5 ‘
Wn xn
n
R \
y =@wixy +wox, + - +wyx, +b) =@ zwixi+b =@p(w-x+Db)

=1
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Why do We Need Activation Functions?

* Activation functions introduce nonlinearity to a neural network

* A linear function is a weighted sum of the inputs (plus a bias term)
f(xq, X9, e, X)) = A1X1 + 3%y + A3x3 + -+ ayx, + b

- Examples of nonlinear functions:

1
f(x1) = X

f(xq) = %%

 fxy) = e¥ Nonlinear functions are hard to model and approximate.

That's where deep neural networks shine!
" f(x1,x2) = x1x;

Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan
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Why do We Need Activation Functions?

h; = (W;x+ by)
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Why do We Need Activation Functions?

h; = (W;x+by)
h, = @(W3h; + b;)

h; = ¢(W3h; + b3)

y=¢@W.h,_;+Dbp)

y=¢@W.h,_;+bp)
y=oW, oW, _1h;,_,+b; 1) +by)

y=oW, oW1 oW, _5h;_3+b;_5) +b;,_4) +by)

y=oW, oW,y oW 5 @(-x-) +b;_5) +b;_4) +b;)

Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan
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Why do We Need Activation Functions?

With activation functions, a neural network
can represent nonlinear functions

y=oW, oW,y oW, @(-x--)+b;_5) +b;, 1) +by)

|

y=W W, (W;_,(¢-x-)+b;_5)+b,_1)+Dby

Without activation functions, a neural
network can only represent linear functions

Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan
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Commonly Used Activation Functions

Sigmoid tanh RelLU

v

Z, ifz=0
0, otherwise

o(z) = tanh(z) = ReLU(2) = {

Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan



ReLUs & Piecewise Linear Functions

45



Expressiveness of Neural Networks
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Universal Approximation Theorem

* A neural network with one hidden layer can
approximate any continuous function given
sufficient hidden neurons and appropriate
activation functions

- Sigmoid, ReLUs are good activation functions
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Then why do we want to go deep?
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Shallow vs Deep Neural Networks

. 45 connections
45 connections (3x9+9x2)
X5+5x3+3x3+3x2)

Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan
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Shallow vs Deep Neural Networks - In Practice

Shallow neural nets Deep neural nets

Less expressive More expressive
(less parameter efficient) (more parameter efficient)

Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan
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How Deep is Deep Enough?

LeNet /%f il
(1998)

Convolutions. Subsampling

Convolutions ~ Subsampling Full connection

=l L
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A
I_f

- Deeper is not always better
- Actual number of parameters AlexNet
2012
- Optimization difficulties ( )

- Data size
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Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner, “Gradient-based learning a
Alex Krizhevsky, llya Sutskever, and Geoffrey E. Hinton, “Im
Karen Simonyan and Andrew Zisserman, “

lied to document recognition,” Proc. IEEE, 1998.
ageNet Classification with Deep Convolutional Neural Networks,” NeurlPS, 2012.
Very Deep Convolutional Networks for Large-Scale Image Recognition,” ICLR, 2015.

Kaiming He, Xiangyu Zhang, Shaoqging Ren, and Jian Sun, “Deep Residual Learning for Image Recognition,” CVPR, 2016.
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Computation Cost vs Classification Accuracy
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High performance W
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ResNet-50FIN  VGG-16 ~ VGG-19

155M

High cost
Low performance
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Neural Networks are NOT always Layer-by-Layer

Skip connections

AN, @

5/
NEX AN

V'ﬁ,‘&v" 7
X 20\ O //

X

Used in ResNets, U-Nets, diffusion models

Hao-Wen Dong, Generative Al for Music and Audio Cr

Feedback loops

AN ‘ \\

AR

NOAC //’
N0

COFC

Used in RNNs, LSTMs, GRUs

eation (PAT 464/564 ), University of Michigan
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Recap

Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan
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Artificial vs Human Neuron

Artificial neuron Human neuron

Cell body

Telodendria

Synaptic terminals

Endoplasmic
reticulum =
Sor
Mitochondrion Dendrite %
‘ g Threshold
/ J \ Dendritic branches % pOtentlaI
% .......................
= .y Resting membrane
potential

Casey Henley, Introduction to Neuroscience
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https://openbooks.lib.msu.edu/introneuroscience1/chapter/action-potentials/

Artificial Neural Networks

* Although inspired by human neural networks, artificial neural networks
nowadays do not work like human brains

- Lacking functional hierarchy, high-level feedback loops, memory module, etc.

- Human brains work more like spiking neural networks - Efficiency!
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Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan
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Fully Connected Feedforward Network

y=@W.h,_;+Dbp)
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Neural Networks are Parameterized Functions

* A neural network represents a set of functions

Find the optimal parameters

y
\
’ 9 (X) Good or bad?
)
AII the parameters Objective

Wl) Soc g WL,bl, = bL

Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan
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Training a Neural Network

Build a neural network
(which defines a set of functions)

|

l

Define the objective
(i.e., what is good for a function)

|

1

Find the optimal parameters
(which leads to the best function)

|

Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan
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Regression vs Classification

Regression

Classification

Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan

Age

5

Output a number

Is human?

Yes/ No

Output a label
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Why do We Need Activation Functions?

With activation functions, a neural network
can represent nonlinear functions

y=oW, oW,y oW, @(-x--)+b;_5) +b;, 1) +by)

|

y=W W, (W;_,(¢-x-)+b;_5)+b,_1)+Dby

Without activation functions, a neural
network can only represent linear functions

Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan
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ReLUs & Piecewise Linear Functions
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Universal Approximation Theorem

* A neural network with one hidden layer can
approximate any continuous function given
sufficient hidden neurons and appropriate
activation functions

- Sigmoid, ReLUs are good activation functions
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Then why do we want to go deep?
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Computation Cost vs Classification Accuracy
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ResNet-50FIN  VGG-16 ~ VGG-19

155M

High cost
Low performance

63



Next Lecture

Deep Learning Fundamentals Il

\ // slope = Vf(w,) >0

W3 Wy Wy Wy

adjustment = —nVf(w,) <0

UNIVERSITY OF MICHIGAN
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