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What is Deep Learning?

2
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Artificial Intelligence

Algorithms that exhibit 
intelligent behaviors 

like humans

1950s
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AI vs ML vs DL

Machine Learning

Algorithms that show 
intelligence through 
learning from data

1980s 2010s

Deep Learning

Algorithms that learn 
from data using deep 

neural networks
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Improve on task T,

with respect to performance metric P,

based on experience E

Components of a Machine Learning Model
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Optimization

Objective function
(loss function)

Training data

Defining inputs & outputs
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• A type of machine learning that uses deep neural networks

What is Deep Learning?
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⋯

⋯

⋯
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• A type of machine learning that uses deep neural networks

What is Deep Learning?
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⋯

⋯

⋯

Input layer
Output layer

Hidden layers

neuron
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Neural Networks
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Inside a Neuron

+

𝑤1

𝑤2

𝑤3

𝑤𝑛

ෝ𝒚  = 𝝋 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑛𝑥𝑛 + 𝑏

𝝋

Activation 
function

ො𝑦

Output

𝑥1

𝑥2

𝑥3

𝑥𝑛

⋮

Input
0 2 4-2-4

0.5

1

Sigmoid function

𝑏

Bias term
𝒘𝟏

⋮
𝒘𝒏

𝒙𝟏

⋮
𝒙𝒏

= 𝝋 𝐰 ∙ 𝐱 + 𝑏= 𝝋 ෍

𝑖=1

𝑛

𝑤𝑖𝑥𝑖 + 𝑏
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Casey Henley, Introduction to Neuroscience 9

Human Neuron

Threshold potential

Failed initiation

Successful initiation
(action potential)
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Artificial vs Human Neuron

Human neuron

𝑥1

𝑥2

𝑥3 +

𝑥𝑛

⋮

𝝋

𝑤1

𝑤2

𝑤3

𝑤𝑛

𝑏

ො𝑦

Artificial neuron

0 2 4-2-4

0.5

1

Sigmoid Threshold 
potential
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Why Sigmoid?

0 2 4-2-4

0.5

1
Sigmoid

Threshold potential

Failed initiation

Successful initiation
(action potential)

Unit step

0 2 4-2-4

1

Nondifferentiable

Threshold

𝜎 𝑧 =
1

1 + 𝑒−𝑧
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• Allow nonzero outputs when all inputs are zero

Why Bias Term?
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ෝ𝒚  = 𝝋 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑛𝑥𝑛 + 𝑏
0 0 0

= 𝝋 𝑏
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Artificial vs Human Neuron

Human neuron

𝑥1

𝑥2

𝑥3 +

𝑥𝑛

⋮

𝝋

𝑤1

𝑤2

𝑤3

𝑤𝑛

𝑏

ො𝑦

Artificial neuron

0 2 4-2-4

0.5

1

Sigmoid Threshold 
potential
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• Although inspired by human neural networks, artificial neural networks 
nowadays do not work like human brains
 Lacking functional hierarchy, high-level feedback loops, memory module, etc.
 Human brains work more like spiking neural networks → Efficiency!

Artificial Neural Networks
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• Most basic form of deep neural networks

Fully Connected Feedforward Network
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⋯

⋯
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Math Formulation
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Math Formulation

⋯

⋯

⋯

⋯

⋮ ⋮⋮ ⋮⋮⋮

Input layer Output layerHidden layers
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Math Formulation

⋯

⋯

⋯

⋯

⋮ ⋮⋮ ⋮⋮⋮

ℎ1 = 𝝋 𝐰𝟏 ∙ 𝐱 + 𝑏1

𝒙𝟏

⋮
𝒙𝒏

𝐱

𝒘𝟏,𝟏

⋮
𝒘𝟏,𝒏

𝐰𝟏
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Math Formulation

⋯

⋯

⋯

⋯

⋮ ⋮⋮ ⋮⋮⋮

ℎ2 = 𝝋 𝐰𝟐 ∙ 𝐱 + 𝑏𝟐

𝒘𝟐,𝟏

⋮
𝒘𝟐,𝒏

𝐰𝟐

𝒙𝟏

⋮
𝒙𝒏

𝐱
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Math Formulation

⋯

⋯

⋯

⋯

⋮ ⋮⋮ ⋮⋮⋮

ℎ𝑛 = 𝝋 𝐰𝐧 ∙ 𝐱 + 𝑏𝑛

𝒘𝒏,𝟏

⋮
𝒘𝒏,𝒏

𝐰𝐧

𝒙𝟏

⋮
𝒙𝒏

𝐱
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Math Formulation

⋯

⋯

⋯

⋯

⋮ ⋮⋮ ⋮⋮⋮

𝐡 = 𝝋 𝑾𝐱 + 𝐛

𝒘𝟏,𝟏 ⋯ 𝒘𝟏,𝒏

⋮ ⋱ ⋮
𝒘𝒏,𝟏 ⋯ 𝒘𝒏,𝒏

𝑾

+

𝑏1

⋮
𝑏𝑛

𝐛

𝒙𝟏

⋮
𝒙𝒏

𝐱

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan



22

Math Formulation

⋯

⋯

⋯

⋯

⋮ ⋮⋮ ⋮⋮⋮

𝐡 = 𝝋 𝑾𝐱 + 𝐛

𝒘𝟏,𝟏 ⋯ 𝒘𝟏,𝒏

⋮ ⋱ ⋮
𝒘𝒏,𝟏 ⋯ 𝒘𝒏,𝒏

𝑾

+

𝑏1

⋮
𝑏𝑛

𝐛

𝒙𝟏

⋮
𝒙𝒏

𝐱

ℎ1 = 𝝋 𝐰𝟏 ∙ 𝐱 + 𝑏1
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Math Formulation

⋯

⋯

⋯

⋯

⋮ ⋮⋮ ⋮⋮⋮

𝐡 = 𝝋 𝑾𝐱 + 𝐛

𝒘𝟏,𝟏 ⋯ 𝒘𝟏,𝒏

⋮ ⋱ ⋮
𝒘𝒏,𝟏 ⋯ 𝒘𝒏,𝒏

𝑾

+

𝑏1

⋮
𝑏𝑛

𝐛

𝒙𝟏

⋮
𝒙𝒏

𝐱

ℎ𝑛 = 𝝋 𝐰𝒏 ∙ 𝐱 + 𝑏𝑛
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Math Formulation

⋯

⋯

⋯

⋯

⋮ ⋮⋮ ⋮⋮⋮

𝐡𝟏 = 𝝋 𝑾𝟏𝐱 + 𝐛𝟏

𝐱 𝐡𝟏
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Math Formulation

⋯

⋯

⋯

⋯

⋮ ⋮⋮ ⋮⋮⋮

𝐱 𝐡𝟏 𝐡𝟐

𝐡𝟐 = 𝝋 𝑾𝟐𝐡𝟏 + 𝐛𝟐
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Math Formulation

⋯

⋯

⋯

⋯

⋮ ⋮⋮ ⋮⋮⋮

𝐱 𝐡𝟏 𝐡𝟐 ෝ𝒚𝐡𝟑 𝐡𝑳−𝟏

𝐡𝟏 = 𝝋 𝑾𝟏𝐱 + 𝐛𝟏

𝐡𝟐 = 𝝋 𝑾𝟐𝐡𝟏 + 𝐛𝟐

𝐡𝟑 = 𝝋 𝑾𝟐𝐡𝟐 + 𝐛𝟐

ෝ𝒚 = 𝝋 𝑾𝑳𝐡𝑳−𝟏 + 𝐛𝑳
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Fully Connected Feedforward Network

⋯

⋯

⋯

𝐡𝟏 = 𝝋 𝑾𝟏𝐱 + 𝐛𝟏

𝐡𝟐 = 𝝋 𝑾𝟐𝐡𝟏 + 𝐛𝟐

𝐡𝟑 = 𝝋 𝑾𝟐𝐡𝟐 + 𝐛𝟐

ෝ𝒚 = 𝝋 𝑾𝑳𝐡𝑳−𝟏 + 𝐛𝑳
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• A neural network represents a set of functions

Neural Networks are Parameterized Functions
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⋯

⋯

⋯

𝑓(𝐱)

𝐱
ෝ𝒚
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• A neural network represents a set of functions

Neural Networks are Parameterized Functions
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⋯

⋯

⋯

𝑓𝜃(𝐱)

𝐱
ෝ𝒚

All the parameters
𝑾𝟏, … , 𝑾𝑳, 𝐛𝟏, … , 𝐛𝑳
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Training a Neural Network

Build a neural network
(which defines a set of functions)

Define the objective 
(i.e., what is good for a function)

Find the optimal parameters
(which leads to the best function)
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• A neural network represents a set of functions

Neural Networks are Parameterized Functions

31

⋯

⋯

⋯

𝑓𝜃(𝐱)

𝐱
ෝ𝒚

All the parameters
𝑾𝟏, … , 𝑾𝑳, 𝐛𝟏, … , 𝐛𝑳

𝒚

Good or bad?

Objective

Find the optimal parameters

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan



Regression vs Classification
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Regression vs Classification

𝑓𝜃(𝐱)Regression 5

Age

Classification Yes / No𝑓𝜃(𝐱)
Is human?

Output a number

Output a label
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Regression Example: Stock Price Prediction

𝑦 ∈ [0, ∞)

𝑓

 

= 108.15

𝑓

 

= 18.95
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medium.com/@omarbarakat1995/depth-estimation-with-deep-neural-networks-part-1-5fa6d2237d0d 35

Regression Example: Depth Estimation

𝐲 ∈ 0, ∞ 𝑊×𝐻

𝑓 =

𝑓 =
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Classification Example: Image Recognition

𝑓  = cat

𝑓  = dog

𝑓  = bear

𝑓  = 8

𝑓  = 6

𝑦 ∈ cat, dog, bear, bird 𝑦 ∈ 0, 1, 2, … , 9
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Classification Example: Spam Filter

𝑓

 

= spam

𝑓

 

= not spam

𝑦 ∈ spam, not spam

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan



Activation Functions
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Inside a Neuron

+

𝑤1

𝑤2

𝑤3

𝑤𝑛

ෝ𝒚  = 𝝋 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑛𝑥𝑛 + 𝑏

𝝋

Activation 
function

ො𝑦

Output

𝑥1

𝑥2

𝑥3

𝑥𝑛

⋮

Input
0 2 4-2-4

0.5

1

Sigmoid function

𝑏

Bias term
𝒘𝟏

⋮
𝒘𝒏

𝒙𝟏

⋮
𝒙𝒏

= 𝝋 𝐰 ∙ 𝐱 + 𝑏= 𝝋 ෍

𝑖=1

𝑛

𝑤𝑖𝑥𝑖 + 𝑏
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• Activation functions introduce nonlinearity to a neural network

• A linear function is a weighted sum of the inputs (plus a bias term)

𝑓 𝑥1, 𝑥2, … , 𝑥𝑛 = 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ + 𝑎𝑛𝑥𝑛 + 𝑏

• Examples of nonlinear functions:
 𝑓 𝑥1 =

1

𝑥1

 𝑓 𝑥1 = 𝑥1
2

 𝑓 𝑥1 = 𝑒𝑥

 𝑓 𝑥1, 𝑥2 = 𝑥1𝑥2

Why do We Need Activation Functions?

40

Nonlinear functions are hard to model and approximate. 
That’s where deep neural networks shine!
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Why do We Need Activation Functions?

⋯

⋯

⋯

𝑾𝟏 ∈ ℝ𝟓×𝟑

𝐛𝟏 ∈ ℝ𝟓

𝑾𝟐 ∈ ℝ𝟔×𝟓

𝐛𝟐 ∈ ℝ𝟔

𝑾𝟑 ∈ ℝ𝟓×𝟔

𝐛𝟑 ∈ ℝ𝟓

𝑾𝑳 ∈ ℝ𝟑×𝟐

𝐛𝑳 ∈ ℝ𝟐

𝐡𝟏 = 𝝋 𝑾𝟏𝐱 + 𝐛𝟏

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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Why do We Need Activation Functions?

ෝ𝒚 = 𝝋 𝑾𝑳 𝝋 𝑾𝑳−𝟏𝐡𝑳−𝟐 + 𝐛𝑳−𝟏  + 𝐛𝑳

ෝ𝒚 = 𝝋 𝑾𝑳𝐡𝑳−𝟏 + 𝐛𝑳𝐡𝟏 = 𝝋 𝑾𝟏𝐱 + 𝐛𝟏

𝐡𝟐 = 𝝋 𝑾𝟐𝐡𝟏 + 𝐛𝟐

𝐡𝟑 = 𝝋 𝑾𝟑𝐡𝟐 + 𝐛𝟑

ෝ𝒚 = 𝝋 𝑾𝑳𝐡𝑳−𝟏 + 𝐛𝑳

⋮

ෝ𝒚 = 𝝋 𝑾𝑳 𝝋 𝑾𝑳−𝟏 𝝋 𝑾𝑳−𝟐𝐡𝑳−𝟑 + 𝐛𝑳−𝟐  + 𝐛𝑳−𝟏  + 𝐛𝑳

⋮

ෝ𝒚 = 𝝋 𝑾𝑳 𝝋 𝑾𝑳−𝟏 𝝋 𝑾𝑳−𝟐 𝝋 ⋯ 𝐱 ⋯  + 𝐛𝑳−𝟐  + 𝐛𝑳−𝟏  + 𝐛𝑳

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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Why do We Need Activation Functions?

ෝ𝒚 = 𝝋 𝑾𝑳 𝝋 𝑾𝑳−𝟏 𝝋 𝑾𝑳−𝟐 𝝋 ⋯ 𝐱 ⋯ + 𝐛𝑳−𝟐  + 𝐛𝑳−𝟏  + 𝐛𝑳

ෝ𝒚 = 𝑾𝑳 𝑾𝑳−𝟏 𝑾𝑳−𝟐 ⋯ 𝐱 ⋯ + 𝐛𝑳−𝟐 + 𝐛𝑳−𝟏 + 𝐛𝑳

Without activation functions, a neural 
network can only represent linear functions

With activation functions, a neural network 
can represent nonlinear functions

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan



0 2 4-2-4

1

2

3

44

Commonly Used Activation Functions

0 2 4-2-4

0.5

1

Sigmoid ReLUtanh

0

2 4-2-4

1

-1

𝜎 𝑧 =
1

1 + 𝑒−𝑧 tanh 𝑧 =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
ReLU 𝑧 = ቊ

𝑧,  if 𝑧 ≥ 0 
0, otherwise
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ReLUs & Piecewise Linear Functions
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Expressiveness of Neural Networks

46
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• A neural network with one hidden layer can 
approximate any continuous function given 
sufficient hidden neurons and appropriate 
activation functions
 Sigmoid, ReLUs are good activation functions

Universal Approximation Theorem

47

Then why do we want to go deep?
⋮

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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Shallow vs Deep Neural Networks
45 connections

(3 x 9 + 9 x 2)45 connections
(3 x 5 + 5 x 3 + 3 x 3 + 3 x 2)

45 connections
(3 x 3 + 3 x 3 + 3 x 3 + 3 x 2 + 2 x 2 + 2 x 2 + 2 x 2)

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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Shallow vs Deep Neural Networks – In Practice

Deep neural nets

More expressive
(more parameter efficient)

Shallow neural nets

Less expressive
(less parameter efficient)

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan



• Deeper is not always better
 Actual number of parameters
 Optimization difficulties
 Data size
 Inductive bias of the model

How Deep is Deep Enough?

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner, “Gradient-based learning applied to document recognition,” Proc. IEEE, 1998.
Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” NeurIPS, 2012.
Karen Simonyan and Andrew Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition,” ICLR, 2015.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep Residual Learning for Image Recognition,” CVPR, 2016. 50

LeNet 
(1998)

AlexNet
(2012)

VGG-19
(2015)

ResNet
(2015)
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Computation Cost vs Classification Accuracy

2012

2014

2015

2015 2015

Classification 
accuracy

Computation cost

Low cost
High performance

High cost
Low performance
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Neural Networks are NOT always Layer-by-Layer

Skip connections Feedback loops

Used in ResNets, U-Nets, diffusion models Used in RNNs, LSTMs, GRUs

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan



Recap
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Artificial vs Human Neuron

Human neuron

𝑥1

𝑥2

𝑥3 +

𝑥𝑛

⋮

𝝋

𝑤1

𝑤2

𝑤3

𝑤𝑛

𝑏

ො𝑦

Artificial neuron

0 2 4-2-4

0.5

1

Sigmoid Threshold 
potential

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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• Although inspired by human neural networks, artificial neural networks 
nowadays do not work like human brains
 Lacking functional hierarchy, high-level feedback loops, memory module, etc.
 Human brains work more like spiking neural networks → Efficiency!

Artificial Neural Networks

55
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Fully Connected Feedforward Network

⋯

⋯

⋯

𝐡𝟏 = 𝝋 𝑾𝟏𝐱 + 𝐛𝟏

𝐡𝟐 = 𝝋 𝑾𝟐𝐡𝟏 + 𝐛𝟐

𝐡𝟑 = 𝝋 𝑾𝟐𝐡𝟐 + 𝐛𝟐

ෝ𝒚 = 𝝋 𝑾𝑳𝐡𝑳−𝟏 + 𝐛𝑳

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan



• A neural network represents a set of functions

Neural Networks are Parameterized Functions
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⋯

⋯

⋯

𝑓𝜃(𝐱)

𝐱
ෝ𝒚

All the parameters
𝑾𝟏, … , 𝑾𝑳, 𝐛𝟏, … , 𝐛𝑳

𝒚

Good or bad?

Objective

Find the optimal parameters

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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Training a Neural Network

Build a neural network
(which defines a set of functions)

Define the objective 
(i.e., what is good for a function)

Find the optimal parameters
(which leads to the best function)

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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Regression vs Classification

𝑓𝜃(𝐱)Regression 5

Age

Classification Yes / No𝑓𝜃(𝐱)
Is human?

Output a number

Output a label

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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Why do We Need Activation Functions?

ෝ𝒚 = 𝝋 𝑾𝑳 𝝋 𝑾𝑳−𝟏 𝝋 𝑾𝑳−𝟐 𝝋 ⋯ 𝐱 ⋯ + 𝐛𝑳−𝟐  + 𝐛𝑳−𝟏  + 𝐛𝑳

ෝ𝒚 = 𝑾𝑳 𝑾𝑳−𝟏 𝑾𝑳−𝟐 ⋯ 𝐱 ⋯ + 𝐛𝑳−𝟐 + 𝐛𝑳−𝟏 + 𝐛𝑳

Without activation functions, a neural 
network can only represent linear functions

With activation functions, a neural network 
can represent nonlinear functions

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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ReLUs & Piecewise Linear Functions

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan



• A neural network with one hidden layer can 
approximate any continuous function given 
sufficient hidden neurons and appropriate 
activation functions
 Sigmoid, ReLUs are good activation functions

Universal Approximation Theorem

62

Then why do we want to go deep?
⋮

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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Computation Cost vs Classification Accuracy

2012

2014

2015

2015 2015

Classification 
accuracy

Computation cost

Low cost
High performance

High cost
Low performance
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Deep Learning Fundamentals II

Next Lecture
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