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How do we process audio on a computer?



Four Representative Music Representations

Symbolic music representations

Text-based

Program_change_0,

Note_on_60, Time_shift_2, Note_off 60,
2, Note_off_60,

Note_on_60, Time_shift

Note_on_76, Time_shift_2, Note_off 67,
Note_on_67, Time_shift_2, Note_off 67,

MIDI

Pitch

Image-based

Piano roll

Audio-domain music representations

Time series-based

L

Waveform

Frequency

Image-based

Time

Spectrogram

Today's topic!
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Digital Audio
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Digital Audio

1 Second

(Source: van den Oord et al., 2016)

Aaron van den Oord and Sander Dieleman, “WaveNet: A generative model for raw audio,” DeepMind Blog, September 8, 2016.
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Waveform

Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan



Digitalizing Audio: Timing
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Discretize the timing
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Digitalizing Audio: Amplitude

Discretize the amplitude
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Resolution: Sampling Rate

v
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Sampling Rate

- Definition: Number of samples per second
- How many times the “sound pressure” is measured per second
- The higher the sampling rate, the lower the timing distortion

« Common sampling rates
- Telephone: 8 kHz
* CD: 44.1 kHz
 DVD: 48 kHz

- Modern audio interfaces & DAWSs: 96 kHz, 192 kHz
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Resolution: Bit Depth
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Bit Depth

- Definition: Number of bits used to store each sample
- How many bits used to store the amplitude
- The higher the bit depth, the lower the amplitude distortion

« Common bit depth
- Chiptunes: 8 bit
- CD: 16 bit
- Modern audio interfaces & DAWSs: 24 bit, 32 bit

v

A NEWS CORPORATION COMPANY
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Bit Depth

- 8 bit: -128 to 127

* 16 bit: -32,768 to 32,767

24 bit: -8,388,608 to 8,388,607
32 bit: 32-bit floating numbers
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Resolution: Sampling Rate & Bit Depth
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Bit Depth # Bit Rate

 Bit Depth: Number of bits used to store each sample
- Example: CD quality is 16bit/44.1kHz

- Bit Rate: Amount of data transferred per second (unit: bits/sec)
- Example: 320K MP3 files - 320kbps (320,000 bits per second)
- Example: YouTube recommendation > 128 kbps for mono and 384 kbps for stereo
- Determines the file size!
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L Reading: Microphones: Measuring Sound Pressure

How do microphones
work?

youtu.be/d_crXXbuEKE

Into The Ordinary, “How do microphones work? - Recording Explained,” YouTube, June 24, 2015.
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L Reading: Speakers: Reproducing Sound Pressure

youtu.be/RxdFP31QYAg

Animagraffs, "How Speakers Make Sound,” YouTube, December 16, 2020.

Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan
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Sampling Theorem
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Nyquist-Shannon Sampling Theorem

- Theorem: If a signal contains no frequencies higher than f,,,,, then the
signal can be perfectly reconstructed when sampled at a rate £, > 21,4«

* 2fmax IS Usually referred to as the Nyquist rate

1
T =

fmax

\ANANANL
VAVAVAYAY

1 _— 1
2 2 fmax

To reconstruct a signal of frequency f,,.x

l

I‘

We need a sampling rate larger than 2f,,,,
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Sampling Theorem: Oversampling
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(fs = 2fmax) \/ \/ \/ \/ \/

Oversampled

(fs = 4fmax)
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Reconstruction
is possible!
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Sampling Theorem: Undersampling

s N AN NN L
(fs = 2fmax) \/ \/ \/ \/ \/

Undersampled G\
2

(fs = § fmax)

Underszampled (\ /\ /\ /\ /\ /) "can only reconstruct
(fS = gfmCUC) \/ \/ \/ \/ \/ frequency up to - fmax
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Can only reconstruct
1
frequency up to gfmax
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£ Sampling Theorem

* Telephone audio is sampled at 8 kHz. What is the maximum frequency it
can reconstruct?

-4 kHz

* To cover the human hearing range of 20 Hz to 20 kHz, what is the
minimum sampling rate required?

- 40 kHz

Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan

22



Sampling Rate & Frequency Range
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Y16, 13.7. Frequency and volume ranges of speech and music. (From Bel/ Laboratori:

Record, June, 1934.) 20
(Source: Bell Laboratories Record 1934 & Olson 1947)

0
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. (Source: Wikipedia)
Bell Laboratories Record, 12(6):314, 1934.

Harry Ferdinand Olson, “Speech, Music and Hearing,” Elements of acoustical engineering Hardcover, p. 326, 1947.
en.wikipedia.org/wiki/Hearing_range
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Spectral Analysis
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Spectral Analysis
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Goal: Analyze the frequency components of a signal

10Hz

1 :
sin(2 - 2nt) + Esin(lO - 21t) sin(2 - 2mt)
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Spectral Analysis
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Fourier Transform

Signal Spectrum

(time-domain) (frequency-domain)
2Hz

1.5 - 1.0 -
1.0 - l

0.8 1
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fit)
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Fourier Transform

* Intuition: Decompose time-domain signals into frequency components

« Math formulation:

Output Input
spectrum signal

00
ez
| ey
Frequency ;

Sum over all ¢
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Demystitying Fourier Transform

o ¢
Fw) = j f(©) dt
— 00
Euler’'s formula
e /% = cosh +jsin@

Flw) = f_oo f(t)[cos(—a)t)]+j f(t)[sin(—a)t)] dt

Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan
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Demystitying Fourier Transform

fit)
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Candidate frequency components
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Demystitying Fourier Transform

fit)

Product
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0.6 0.8 1.0
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Demystitying Fourier Transform

fit)

Product
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Demystitying Fourier Transform

Candidate frequency components
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Demystitying Fourier Transform

Candidate frequency components
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Demystitying Fourier Transform
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Demystifying Fourier Transform

Flw) = f_oo f(t) cos(—wt) +sin(—a)t)]

Sumoverall t

1.5 1
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. m sin(—wt) ; ‘;‘L_A.‘A
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Demystitying Fourier Transform

Signal Spectrum
(time-domain) (frequency-domain)
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Demystitying Fourier Transform

Signal Spectrum
(time-domain) (frequency-domain)
2Hz
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Demystitying Fourier Transform

Signal Spectrum

(time-domain) (frequency-domain)
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Demystitying Fourier Transform

Signal Spectrum
(time-domain) (frequency-domain)
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Demystitying Fourier Transform

Flw) = Hf(t) cos(—wt)]+j f(t) sin(—wt)

Sum over all ¢ \
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Phase
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Demystifying Fourier Transform

Real part Imaginary part

Flw) = f_o:o [f(t) cos(—wt)] @f(t) sin(—a)t)]dt

1.5 1
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Demystitying Fourier Transform
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Demystifying Fourier Transform

Real part

Imaginary part

Flw) = f_o:o [f(t) cos(—wt)] @f(t) sin(—a)t)]dt
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Demystitying Fourier Transform

Real part Imaginary part

Flw) = f_o:o [f(t) cos(—a)t)] @f(t) sin(—a)t)]dt
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Demystitying Fourier Transform

. Real part Imaginary part
Flw) = f [f(t) cos(—a)t)] @f(t) sin(—a)t)]dt
2
15 3m (@
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t
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Demystitying Fourier Transform

. Real part Imaginary part
Flw) = f [f(t) cos(—a)t)] @f(t) sin(—a)t)]dt
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Magnitude & Phase
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Example: A 2Hz Sine Wave
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Example: A 1T0Hz Sine Wave
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Example: Sum of 2Hz & 10Hz Sine Waves

Signal Spectrum

(time-domain) (frequency-domain)
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How about this?
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Fourier Transform

* Intuition: Decompose time-domain signals into frequency components

« Math formulation:

Output Input Sine and cosine waves
spectrum signal of frequency w

f(t)

Frequency ;

Sum over all ¢

||
T
S 8

54
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Fourier Transform

* Intuition: Analysis through resynthesis!

Analysis
[ f(t)

Synthesis

F(w) =

Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan
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Discrete Fourier Transform (DFT)

* Intuition: Fourier transform with discrete time and frequency
- Used for digital audio - we cannot achieve an infinite sampling rate...

« Math formulation:

N—
z —]27T—7’L

Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan
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Fourier Transform vs. Discrete Fourier Transform

Fourier Transform Discrete Fourier Transform

N—1
%S e )

Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan
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In Practice: Fast Fourier Transform (FFT)

- An efficient implementation of discrete Fourier transform
- Reduce the complexity from 0(n?) to 0(nlogn)

Top 10 algorithms from the 20t" century

computin

z[0] o——

N /2-point
DFT

;c[S] o—r—

N/2-point
DFT

z[5] o——

;1:[7] o—r—

(Source: Yangwenbo99 via Wikimedia)

Yangwenbo99, CC-By-SA 4.0, via Wikimedia.

Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan


https://commons.wikimedia.org/wiki/File:DIT-FFT-butterfly.svg

Time-Frequency Analysis

Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan
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Fourier Transform of a Trumpet Sound

Signal Spectrum
N
(time-domain) (frequency-domain)

0.025 -
0.020 -
0.015 -

3

T
0.010 -
0.005 -
0.000 - —

I | | 1 | I | | 1 | | I
0.0 0.2 0.4 0.6 0.8 1.0 0 2000 4000 6000 8000 10000
t W

Fourier Transform cannot localize! &
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Short-Time Fourier Transform (STFT)

Intuition: Slice the audio into chunks and apply Fourier transform

Frequency

0.6 1 10000
0.4 1
8000
0.2 1
— ] STFT 6000
= 0.0 2
—-0.2
4000 18
—0.4 1 1§
2000 {5
—0.6
I 1 I I I I 0
0.0 0.2 0.4 0.6 0.8 1.0
t Time

Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan
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Short-Time Fourier Transform (STFT)

0.6 1 10000

0.4 -
8000

0.2
) 0.0 . 6000

= I

_0.2 4
4000

_0.4 r
2000

_06 .
0.0 0.2 0.4 0.6 0.8 1.0 9

t

0.08

DFT

0 2000 4000 6000 8000 10000
w

\ 4
Fw)|
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Short-Time Fourier Transform (STFT)

Window size

“'CrC 2 a3 | ! ! ;
o Kttt =< et i
: \J I . :
-0.1 | Hop slze 1 I |
23 : 245 25 2 55 26
short-time time/s
window
DFT
40
N
2 3000
_ E
@ 2000 g
1000

<
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Spectrogram
Frequency

10000

8000
6000
N
I
4000 4
e ?;___r
‘.’:1"”_
2000 -
0
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Spectrogram

Frequency

4000

Harmonics

Fundamental
frequency
—m-»
“ Time
0 0.6 1.2 1.8 2.4 3 3.6 4.2 4.8
Time
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Timbre

Piano Trumpet Violin
05} 06}
04
o+ 0.2}
N of ¥,
05! 0.2}
0 4 0
~ J—— 0 — —
jr\:J 2500 ;- - E 2500} SO - :'E
o —— > " —— >
S O o p— ©
% 1000} g 1000 —_— g
2 — , o o &
L 0 1 2 3 4 L 0 1 2 3 4 L 0 1 2 3 4
Time (seconds) Time (seconds) Time (seconds)

Figure 1.23 from [Miiller, FMP, Springer 2015]

(Source: Muller et al., 2021)

Meinard Muller, “Fundamentals of Music Processing - Using Python and Jupyter Notebooks,” 2nd edition, Springer Verlag, 2021.
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Example: librosa.stft

1000 - 80

- 70
800

- 60

600

Flx)

400

200

0 50 100 150 200

# Load the example audio in librosa
y, sr = librosa.load(librosa.example("trumpet"))

# Compute the spectrogram
S = np.abs(librosa.stft(y))

# Plot the spectrogram
im = plt.imshow(S, cmap="inferno", aspect="auto",

origin="lower")
plt.colorbar(im)
plt.xlabel("Time (sec)")
plt.ylabel("Frequency (Hz))")
plt.show()

Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan



Example: 1ibrosa.display.specshow

- 80
10000
r 70 # Load the example audio in librosa

8000 | co y, sr = librosa.load(librosa.example("trumpet"))

# Compute the spectrogram
S = np.abs(librosa.stft(y))

6000

Hz

4000 # Plot the spectrogram

im = librosa.display.specshow(S, x_ axis="time",
2000 y_axis="linear")

plt.colorbar(im)
plt.show()

0 0.6 1.2 1.8 2.4 3 3.6 4.2 4.8
Time
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Example: 1ibrosa.amplitude to db

—r +0dB
10000 [ 1o ds # Load the example audio in librosa
y, sr = librosa.load(librosa.example("trumpet™))

8000 r-20dB

045 # Compute the spectrogram
6000 S = np.abs(librosa.stft(y))

-40 dB S db = librosa.amplitude_to _db(S, ref=np.max)

-50 dB

4000 8

# Plot the spectrogram
60 dB im = librosa.display.specshow(S db, x axis="time",
y _axis="linear")
plt.colorbar(im, format="%+2.0f dB")
80 dB plt.show()

-70 dB

Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan



Example: Magnitude & Phase

Magnitude

10000

8000

6000

Hz

4000

Time

Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan
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® PA2: Spectral Analysis

 Use librosa to process audio files
- Fast Fourier transform (FFT)

- Short-time Fourier transform (STFT)

0.008 - 10000
0.006 1 8000
3 6000
N
= 0.004 L
4000 1
0.002 1
2000
0.000 1 2
T T 1 1 1 1 0
0 2000 4000 6000 8000 10000
w

librosa.org/doc/latest/index.html

Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan
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Software

Audacity Sonic Visualiser

dacity 2.3.1 default 'Light' theme

File Edit Select View Transport Tracks Generate Effect Analze Tools Help
Al O s s o ciktoSttvontong 8 2 50 rile Edit View Pane Layer Transform Playback Help
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{ Click Track / Rhythrm Track ) A G (N GO W W (O G R |
I [ T i i [ i i i T

’
x| Click Track /w] 1

Mute | Sob | g
[ |
X | Guitar track w

Mute Solo

1153373322368 |

Mono, £4100Hz
32-bit float

a | | B

X‘Myvoca\ -
Mute | Solo

Mono, 44100Hz
32-bit float

-

E ) 4 R N L T Ry (

Project Rate (Hz) | Snap-To | Audio Position | | Start and End of Selection ~ “lick and drag to navigate
ot v J00n03am33.25657 [[00n03m3026857 [00h03IM34506sT

Playing. Play (Space) / Loop Play (Shift+Space) Actual Rate: 44100 (SOU rce: SOI’]ICVISUE]“Z@ r-'or-g)

(Source: audacity-2.3.1 via Internet Archive)

archive.org/details/audacity-2.3.1
sonicvisualiser.org
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Images that Sound (Chen et al., 2024)

Using diffusion models to generate visual spectrograms
that look like images but can also be played as sound.

Image prompt: a colorful photo of corgis Image prompt: a colorful photo of tigers

il Al - ) jT———— N
Audio prompt: dog barking Audio prompt: tiger growling

(Source: Chen et al., 2024) (Source: Chen et al., 2024)

Ziyang Chen, Daniel Geng, and Andrew Owens, “Images that Sound: Composing Images and Sounds on a Single Canvas,” NeurlIPS, 2024.

Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan


https://arxiv.org/pdf/2405.12221

Images that Sound (Chen et al., 2024)

Using diffusion models to generate visual spectrograms
that look like images but can also be played as sound.

Image prompt: a colorful photo of an auto racing game Image prompt: a colorful photo of a castle with bell towers

Audio prompt: a race car passing by and disappearing

(Source: Chen et al., 2024) (Source: Chen et al., 2024)

Ziyang Chen, Daniel Geng, and Andrew Owens, “Images that Sound: Composing Images and Sounds on a Single Canvas,” NeurlIPS, 2024.
Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan
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Recap

Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan
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Four Representative Music Representations

Symbolic music representations

Text-based

Program_change_0,

Note_on_60, Time_shift_2, Note_off 60,
2, Note_off_60,

Note_on_60, Time_shift

Note_on_76, Time_shift_2, Note_off 67,
Note_on_67, Time_shift_2, Note_off 67,

MIDI

Pitch

Image-based

Piano roll

Audio-domain music representations

Time series-based

L

Waveform

Frequency

Image-based

Time

Spectrogram

Today's topic!

Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan
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Resolution: Sampling Rate

v

Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan
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Resolution: Bit Depth

>
X 4 (S5
%} ra
\ o4
! Double the bit depth
A %
—— NN ~ LY S
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A N 1 )
\\\ /III ‘\
\/A\‘ //
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Sampling Theorem: Undersampling

s N AN NN L
(fs = 2fmax) \/ \/ \/ \/ \/

Undersampled G\
2

(fs = § fmax)

Underszampled (\ /\ /\ /\ /\ /) "can only reconstruct
(fS = gfmCUC) \/ \/ \/ \/ \/ frequency up to - fmax

Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan

Can only reconstruct
1
frequency up to gfmax
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Spectral Analysis
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Demystitying Fourier Transform

Signal Spectrum
(time-domain) (frequency-domain)
s | 1.0 - C\
10Hz —AGMA
1.0 1 n ” ” n 0.8 1 Sum =0.495
0.5 - Fourier
Transform _ 061 [;5Hz
g o0 — 3 Sum =0.248
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—0.5 10Hz
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0.0 0.2 0.4 0.6 0.8 1.0 0 10 20 30 40 50
t W
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Short-Time Fourier Transform (STFT)

Intuition: Slice the audio into chunks and apply Fourier transform

Frequency

0.6 1 10000
0.4 1
8000
0.2 1
— ] STFT 6000
= 0.0 2
—-0.2
4000 18
—0.4 1 1§
2000 {5
—0.6
I 1 I I I I 0
0.0 0.2 0.4 0.6 0.8 1.0
t Time
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Spectrogram
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Time
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Images that Sound (Chen et al., 2024)

Using diffusion models to generate visual spectrograms
that look like images but can also be played as sound.

Image prompt: a colorful photo of corgis Image prompt: a colorful photo of tigers

il Al - ) jT———— N
Audio prompt: dog barking Audio prompt: tiger growling

(Source: Chen et al., 2024) (Source: Chen et al., 2024)

Ziyang Chen, Daniel Geng, and Andrew Owens, “Images that Sound: Composing Images and Sounds on a Single Canvas,” NeurlIPS, 2024.

Hao-Wen Dong, Generative Al for Music and Audio Creation (PAT 464/564), University of Michigan


https://arxiv.org/pdf/2405.12221

Next Lecture

Music Analysis

Yrorthb st

Gt AT e E e
A iy b’f — =

(Source: Dong et al., 2022)
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