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How do we process audio on a computer?
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Four Representative Music Representations
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Today’s topic!
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Digital Audio

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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Aaron van den Oord and Sander Dieleman, “WaveNet: A generative model for raw audio,” DeepMind Blog, September 8, 2016.

Digital Audio

(Source: van den Oord et al., 2016)
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Waveform

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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Digitalizing Audio: Timing

Discretize the timing

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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Digitalizing Audio: Amplitude

Discretize the amplitude
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Resolution: Sampling Rate

Double the sampling rate

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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• Definition:  Number of samples per second
 How many times the “sound pressure” is measured per second
 The higher the sampling rate, the lower the timing distortion

• Common sampling rates
 Telephone:  8 kHz
 CD:  44.1 kHz
 DVD:  48 kHz
 Modern audio interfaces & DAWs:  96 kHz, 192 kHz

Sampling Rate

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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Resolution: Bit Depth

Double the bit depth

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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• Definition:  Number of bits used to store each sample
 How many bits used to store the amplitude
 The higher the bit depth, the lower the amplitude distortion

• Common bit depth
 Chiptunes:  8 bit
 CD:  16 bit
 Modern audio interfaces & DAWs:  24 bit, 32 bit

Bit Depth

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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• 8 bit: -128 to 127

• 16 bit:  -32,768 to 32,767

• 24 bit:  -8,388,608 to 8,388,607

• 32 bit:  32-bit floating numbers

Bit Depth

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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Resolution: Sampling Rate & Bit Depth

Double the sampling rate & bit depth

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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• Bit Depth:  Number of bits used to store each sample
 Example: CD quality is 16bit/44.1kHz

• Bit Rate: Amount of data transferred per second (unit: bits/sec)
 Example:  320K MP3 files → 320kbps (320,000 bits per second)
 Example:  YouTube recommendation → 128 kbps for mono and 384 kbps for stereo
 Determines the file size!

Bit Depth ≠ Bit Rate

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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Into The Ordinary, “How do microphones work? - Recording Explained,” YouTube, June 24, 2015.

Reading: Microphones: Measuring Sound Pressure

youtu.be/d_crXXbuEKE

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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Animagraffs, "How Speakers Make Sound,“ YouTube, December 16, 2020.

Reading: Speakers: Reproducing Sound Pressure

youtu.be/RxdFP31QYAg

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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Sampling Theorem

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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• Theorem:  If a signal contains no frequencies higher than 𝑓𝑚𝑎𝑥, then the 
signal can be perfectly reconstructed when sampled at a rate 𝑓𝑠 > 2𝑓𝑚𝑎𝑥

  2𝑓𝑚𝑎𝑥 is usually referred to as the Nyquist rate

Nyquist–Shannon Sampling Theorem

𝑇 =
1

𝑓𝑚𝑎𝑥

1

2
𝑇 =

1

2𝑓𝑚𝑎𝑥
We need a sampling rate larger than 𝟐𝒇𝒎𝒂𝒙

To reconstruct a signal of frequency 𝒇𝒎𝒂𝒙

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan

19



Sampling Theorem: Oversampling

Critically sampled
(𝑓𝑠 = 2𝑓𝑚𝑎𝑥)

Oversampled
(𝑓𝑠 = 4𝑓𝑚𝑎𝑥)

Oversampled
(𝑓𝑠 = 6𝑓𝑚𝑎𝑥)

Reconstruction 
is possible!
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Sampling Theorem: Undersampling

Critically sampled
(𝑓𝑠 = 2𝑓𝑚𝑎𝑥)

Undersampled

(𝑓𝑠 =
2

3
𝑓𝑚𝑎𝑥)

Undersampled

(𝑓𝑠 =
2

5
𝑓𝑚𝑎𝑥)

Can only reconstruct 
frequency up to 𝟏

𝟑
𝒇𝒎𝒂𝒙

Can only reconstruct 
frequency up to 𝟏

𝟑
𝒇𝒎𝒂𝒙
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• Telephone audio is sampled at 8 kHz. What is the maximum frequency it 
can reconstruct?
 4 kHz

• To cover the human hearing range of 20 Hz to 20 kHz, what is the 
minimum sampling rate required?
 40 kHz

Sampling Theorem

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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Bell Laboratories Record, 12(6):314, 1934.
Harry Ferdinand Olson, “Speech, Music and Hearing,” Elements of acoustical engineering Hardcover, p. 326, 1947.
en.wikipedia.org/wiki/Hearing_range

Sampling Rate & Frequency Range

(Source: Bell Laboratories Record 1934 & Olson 1947)

(Source: Wikipedia)

Music frequency range

Speech frequency range
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Spectral Analysis

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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• Goal:  Analyze the frequency components of a signal

Spectral Analysis

sin(2 ⋅ 2𝜋𝑡) +
1

2
sin(10 ⋅ 2𝜋𝑡) sin(2 ⋅ 2𝜋𝑡)

1

2
sin(10 ⋅ 2𝜋𝑡)

2Hz
10Hz
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Spectral Analysis

2Hz 10Hz5Hz
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Fourier Transform

10Hz

2Hz

Signal Spectrum
(time-domain) (frequency-domain)

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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• Intuition:  Decompose time-domain signals into frequency components

• Math formulation:

Fourier Transform

Sum over all 𝒕

Input 
signal

Output 
spectrum

Frequency

𝐹 𝜔 = න
−∞

∞

 𝑓 𝑡  𝑒−𝑗𝜔𝑡 𝑑𝑡

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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Demystifying Fourier Transform

Euler’s formula

𝑒−𝑗𝜃 = cos 𝜃 + 𝑗 sin 𝜃

𝐹 𝜔 = න
−∞

∞

 𝑓 𝑡  𝑒−𝑗𝜔𝑡 𝑑𝑡

𝐹 𝜔 = න
−∞

∞

 𝑓 𝑡 cos(−𝜔𝑡) + 𝑗 𝑓 𝑡 sin(−𝜔𝑡)  𝑑𝑡

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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Demystifying Fourier Transform

1Hz

2Hz

3Hz

4Hz

5Hz

10Hz

Candidate frequency components

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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Demystifying Fourier Transform

1Hz

2Hz

3Hz

4Hz

5Hz

10Hz

Candidate frequency components
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Demystifying Fourier Transform

1Hz

2Hz

3Hz

4Hz

5Hz

10Hz

Candidate frequency components
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Demystifying Fourier Transform

1Hz

2Hz

3Hz

4Hz

5Hz

10Hz

Candidate frequency components
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Demystifying Fourier Transform

1Hz

2Hz

3Hz

4Hz

5Hz

10Hz

Candidate frequency components
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Demystifying Fourier Transform

1Hz

2Hz

3Hz

4Hz

5Hz

10Hz

Candidate frequency components
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Demystifying Fourier Transform

𝑓 𝑡

sin(−𝜔𝑡)

Sum = 0.495

𝑓 𝑡 sin(−𝜔𝑡)

Sum over all 𝒕

𝐹 𝜔 = න
−∞

∞

 𝑓 𝑡 cos(−𝜔𝑡) + 𝑗 𝑓 𝑡 sin(−𝜔𝑡)  𝑑𝑡
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Demystifying Fourier Transform

Signal Spectrum
(time-domain) (frequency-domain)

Fourier 
Transform

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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Demystifying Fourier Transform

Signal Spectrum
(time-domain) (frequency-domain)

Fourier 
Transform

Sum = 0.495
2Hz

2Hz
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Demystifying Fourier Transform

Signal Spectrum
(time-domain) (frequency-domain)

Fourier 
Transform

Sum = 0.495

Sum = 0.248

5Hz

5Hz

2Hz
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Demystifying Fourier Transform

Signal Spectrum
(time-domain) (frequency-domain)

Fourier 
Transform

Sum = 0.495

Sum = 0.248

Sum = 0.124

10Hz

5Hz

10Hz

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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Demystifying Fourier Transform

𝑓 𝑡cos(−𝜔𝑡)

Sum = 0

𝑓 𝑡 cos(−𝜔𝑡)

Sum over all 𝒕

𝐹 𝜔 = න
−∞

∞

 𝑓 𝑡 cos(−𝜔𝑡) + 𝑗 𝑓 𝑡 sin(−𝜔𝑡)  𝑑𝑡

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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Phase

sin(2 ⋅ 2𝜋𝑡) +
1

2
sin(10 ⋅ 2𝜋𝑡) sin(2 ⋅ 2𝜋𝑡)

1

2
sin(10 ⋅ 2𝜋𝑡)

cos(2 ⋅ 2𝜋𝑡) +
1

2
sin(10 ⋅ 2𝜋𝑡) cos(2 ⋅ 2𝜋𝑡)

1

2
sin(10 ⋅ 2𝜋𝑡)
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42



Demystifying Fourier Transform

𝑓 𝑡

sin(−𝜔𝑡)

Real part Imaginary part

cos(−𝜔𝑡)

𝐹 𝜔 = න
−∞

∞

 𝑓 𝑡 cos(−𝜔𝑡) + 𝑗 𝑓 𝑡 sin(−𝜔𝑡)  𝑑𝑡
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Demystifying Fourier Transform

𝑓 𝑡

Real part Imaginary part

𝒓, 𝜽
𝒓

𝜽

𝝅

𝟐

𝟑𝝅

𝟐

𝝅 𝟎 𝟐𝝅

−
𝝅

𝟐

𝒓 𝐜𝐨𝐬𝜽 + 𝒋 𝒓 𝐬𝐢𝐧𝜽

𝐹 𝜔 = න
−∞

∞

 𝑓 𝑡 cos(−𝜔𝑡) + 𝑗 𝑓 𝑡 sin(−𝜔𝑡)  𝑑𝑡
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Demystifying Fourier Transform

𝑓 𝑡

Real part Imaginary part

𝝅

𝟐

𝟑𝝅

𝟐

𝝅 𝟎 𝟐𝝅

−
𝝅

𝟐

𝐹 𝜔 = න
−∞

∞

 𝑓 𝑡 cos(−𝜔𝑡) + 𝑗 𝑓 𝑡 sin(−𝜔𝑡)  𝑑𝑡
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Demystifying Fourier Transform

𝑓 𝑡

Real part Imaginary part

𝝅

𝟐

𝟑𝝅

𝟐

𝝅 𝟎 𝟐𝝅

−
𝝅

𝟐

𝐹 𝜔 = න
−∞

∞

 𝑓 𝑡 cos(−𝜔𝑡) + 𝑗 𝑓 𝑡 sin(−𝜔𝑡)  𝑑𝑡
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Demystifying Fourier Transform

𝑓 𝑡

Real part Imaginary part

𝝅

𝟐

𝟑𝝅

𝟐

𝝅 𝟎 𝟐𝝅

−
𝝅

𝟐

𝐹 𝜔 = න
−∞

∞

 𝑓 𝑡 cos(−𝜔𝑡) + 𝑗 𝑓 𝑡 sin(−𝜔𝑡)  𝑑𝑡
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Demystifying Fourier Transform

𝑓 𝑡

Real part Imaginary part

𝝅

𝟐

𝟑𝝅

𝟐

𝝅 𝟎 𝟐𝝅

−
𝝅

𝟐

𝐹 𝜔 = න
−∞

∞

 𝑓 𝑡 cos(−𝜔𝑡) + 𝑗 𝑓 𝑡 sin(−𝜔𝑡)  𝑑𝑡
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Magnitude & Phase

Same spectrum 
magnitude

Different 
waveforms

Different phase!

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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Example: A 2Hz Sine Wave

Signal Spectrum
(time-domain) (frequency-domain)

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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Example: A 10Hz Sine Wave

Signal Spectrum
(time-domain) (frequency-domain)
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Example: Sum of 2Hz & 10Hz Sine Waves

10Hz

2Hz

Signal Spectrum
(time-domain) (frequency-domain)

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan

52



How about this?

Signal Spectrum
(time-domain) (frequency-domain)

2Hz 10Hz

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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• Intuition:  Decompose time-domain signals into frequency components

• Math formulation:

Fourier Transform

Sum over all 𝒕

Input 
signal

Output 
spectrum

Frequency

Sine and cosine waves 
of frequency 𝜔

𝐹 𝜔 = න
−∞

∞

 𝑓 𝑡  𝑒−𝑗𝜔𝑡 𝑑𝑡

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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• Intuition:  Analysis through resynthesis!

Fourier Transform

𝐹 𝜔 = න
−∞

∞

 𝑓 𝑡  𝑒−𝑗𝜔𝑡 𝑑𝑡

Synthesis

Analysis

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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• Intuition:  Fourier transform with discrete time and frequency
 Used for digital audio → we cannot achieve an infinite sampling rate…

• Math formulation:

Discrete Fourier Transform (DFT)

𝑋𝑘 = ෍

𝑛=0

𝑁−1

 𝑥𝑛 𝑒−𝑗2𝜋
𝑘
𝑁𝑛

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan

56



Fourier Transform vs. Discrete Fourier Transform

𝑋𝑘 = ෍

𝑛=0

𝑁−1

 𝑥𝑛 𝑒−𝑗2𝜋
𝑘
𝑁𝑛𝐹 𝜔 = න

−∞

∞

 𝑓 𝑡  𝑒−𝑗𝜔𝑡 𝑑𝑡

Fourier Transform Discrete Fourier Transform

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan

57



• An efficient implementation of discrete Fourier transform
 Reduce the complexity from 𝑂(𝑛2) to 𝑂(𝑛 log 𝑛)

In Practice: Fast Fourier Transform (FFT)

Yangwenbo99, CC-By-SA 4.0, via Wikimedia.

(Source: Yangwenbo99 via Wikimedia)

Top 10 algorithms from the 20th century

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan

58

https://commons.wikimedia.org/wiki/File:DIT-FFT-butterfly.svg


Time-Frequency Analysis

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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Fourier Transform of a Trumpet Sound

Signal Spectrum
(time-domain) (frequency-domain)

Fourier Transform cannot localize!  

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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• Intuition:  Slice the audio into chunks and apply Fourier transform

Short-Time Fourier Transform (STFT)

STFT

Time

Frequency

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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Short-Time Fourier Transform (STFT)

DFT

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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Short-Time Fourier Transform (STFT)
Window size

Hop size

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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Spectrogram

Time

Frequency

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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Spectrogram

Time

Frequency

Fundamental 
frequency

Harmonics

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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Meinard Müller, “Fundamentals of Music Processing – Using Python and Jupyter Notebooks,” 2nd edition, Springer Verlag, 2021.

Timbre

(Source: Müller et al., 2021)

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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Example: librosa.stft

# Load the example audio in librosa
y, sr = librosa.load(librosa.example("trumpet"))

# Compute the spectrogram
S = np.abs(librosa.stft(y))

# Plot the spectrogram
im = plt.imshow(S, cmap="inferno", aspect="auto",
                origin="lower")
plt.colorbar(im)
plt.xlabel("Time (sec)")
plt.ylabel("Frequency (Hz))")
plt.show()

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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Example: librosa.display.specshow

# Load the example audio in librosa
y, sr = librosa.load(librosa.example("trumpet"))

# Compute the spectrogram
S = np.abs(librosa.stft(y))

# Plot the spectrogram
im = librosa.display.specshow(S, x_axis="time",
                              y_axis="linear")
plt.colorbar(im)
plt.show()

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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Example: librosa.amplitude_to_db

# Load the example audio in librosa
y, sr = librosa.load(librosa.example("trumpet"))

# Compute the spectrogram
S = np.abs(librosa.stft(y))
S_db = librosa.amplitude_to_db(S, ref=np.max)

# Plot the spectrogram
im = librosa.display.specshow(S_db, x_axis="time",
                              y_axis="linear")
plt.colorbar(im, format="%+2.0f dB")
plt.show()

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan

Example: Magnitude & Phase

Magnitude Phase
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• Use librosa to process audio files
 Fast Fourier transform (FFT)
 Short-time Fourier transform (STFT)

PA2: Spectral Analysis

librosa.org/doc/latest/index.html

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan
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archive.org/details/audacity-2.3.1
sonicvisualiser.org

Software

(Source: audacity-2.3.1 via Internet Archive)

Audacity Sonic Visualiser

(Source: sonicvisualizer.org)
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Ziyang Chen, Daniel Geng, and Andrew Owens, “Images that Sound: Composing Images and Sounds on a Single Canvas,” NeurIPS, 2024.

Images that Sound (Chen et al., 2024)

(Source: Chen et al., 2024) (Source: Chen et al., 2024)

Using diffusion models to generate visual spectrograms 
that look like images but can also be played as sound.
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Ziyang Chen, Daniel Geng, and Andrew Owens, “Images that Sound: Composing Images and Sounds on a Single Canvas,” NeurIPS, 2024.

Images that Sound (Chen et al., 2024)

(Source: Chen et al., 2024) (Source: Chen et al., 2024)

Using diffusion models to generate visual spectrograms 
that look like images but can also be played as sound.
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Recap
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Four Representative Music Representations

Symbolic music representations

Text-based Image-based

Audio-domain music representations

Image-basedTime series-based

Program_change_0,
Note_on_60, Time_shift_2, Note_off_60, 
Note_on_60, Time_shift_2, Note_off_60, 
Note_on_76, Time_shift_2, Note_off_67, 
Note_on_67, Time_shift_2, Note_off_67, 
...

MIDI

Time

Pi
tc

h

Piano roll Waveform

Time

Fr
eq

ue
nc

y

Spectrogram

Today’s topic!
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Resolution: Sampling Rate

Double the sampling rate
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Resolution: Bit Depth

Double the bit depth
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Sampling Theorem: Undersampling

Critically sampled
(𝑓𝑠 = 2𝑓𝑚𝑎𝑥)

Undersampled

(𝑓𝑠 =
2

3
𝑓𝑚𝑎𝑥)

Undersampled

(𝑓𝑠 =
2

5
𝑓𝑚𝑎𝑥)

Can only reconstruct 
frequency up to 𝟏

𝟑
𝒇𝒎𝒂𝒙

Can only reconstruct 
frequency up to 𝟏

𝟑
𝒇𝒎𝒂𝒙

Hao-Wen Dong, Generative AI for Music and Audio Creation (PAT 464/564), University of Michigan

79



Spectral Analysis

2Hz 10Hz5Hz
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Demystifying Fourier Transform

Signal Spectrum
(time-domain) (frequency-domain)

Fourier 
Transform

Sum = 0.495

Sum = 0.248

Sum = 0.124

10Hz

5Hz

10Hz
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• Intuition:  Slice the audio into chunks and apply Fourier transform

Short-Time Fourier Transform (STFT)

STFT

Time

Frequency
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Spectrogram

Time

Frequency

Fundamental 
frequency

Harmonics
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Ziyang Chen, Daniel Geng, and Andrew Owens, “Images that Sound: Composing Images and Sounds on a Single Canvas,” NeurIPS, 2024.

Images that Sound (Chen et al., 2024)

(Source: Chen et al., 2024) (Source: Chen et al., 2024)

Using diffusion models to generate visual spectrograms 
that look like images but can also be played as sound.
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Music Analysis

Next Lecture

(Source: Dong et al., 2022)
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