

PAT 464/564 (Winter 2026)

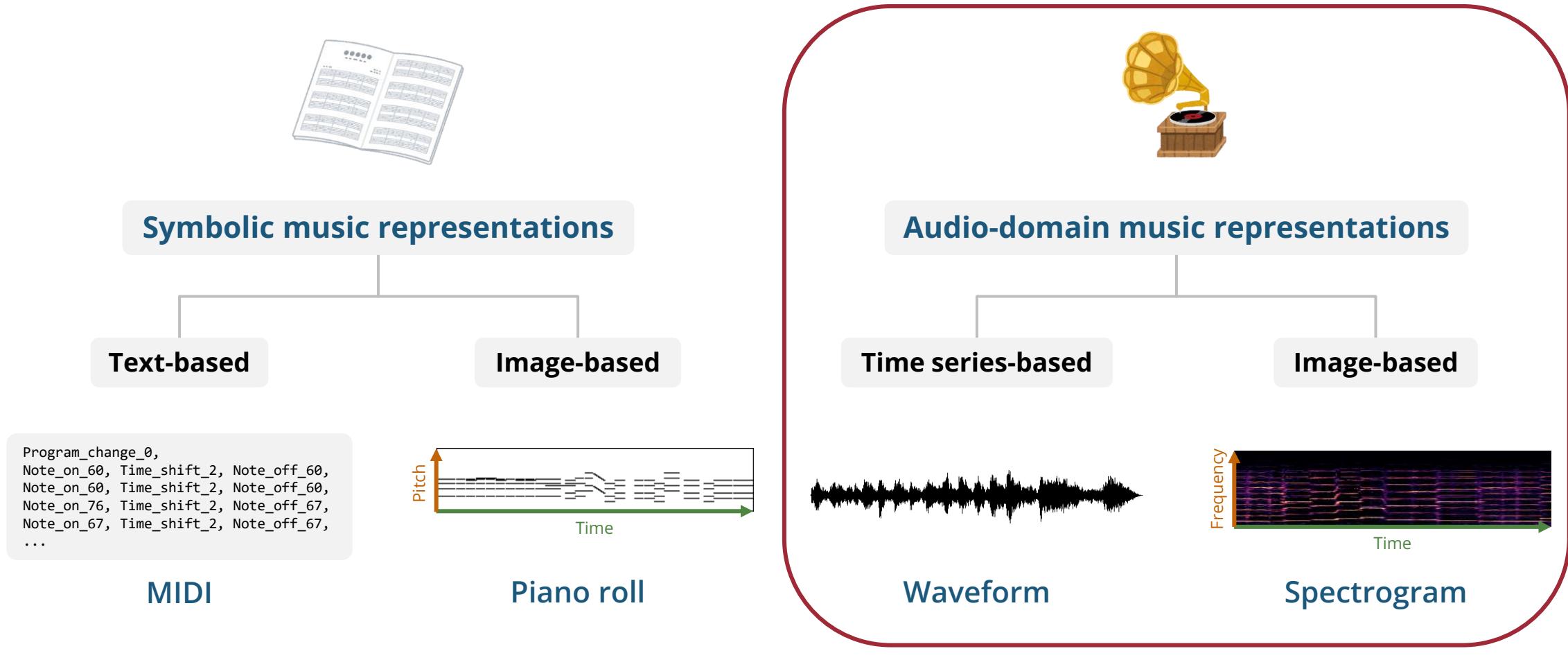
# Generative AI for Music & Audio Creation

## **Lecture 4: Audio Processing Fundamentals**

Instructor: Hao-Wen Dong

# How do we process audio on a computer?

# Four Representative Music Representations



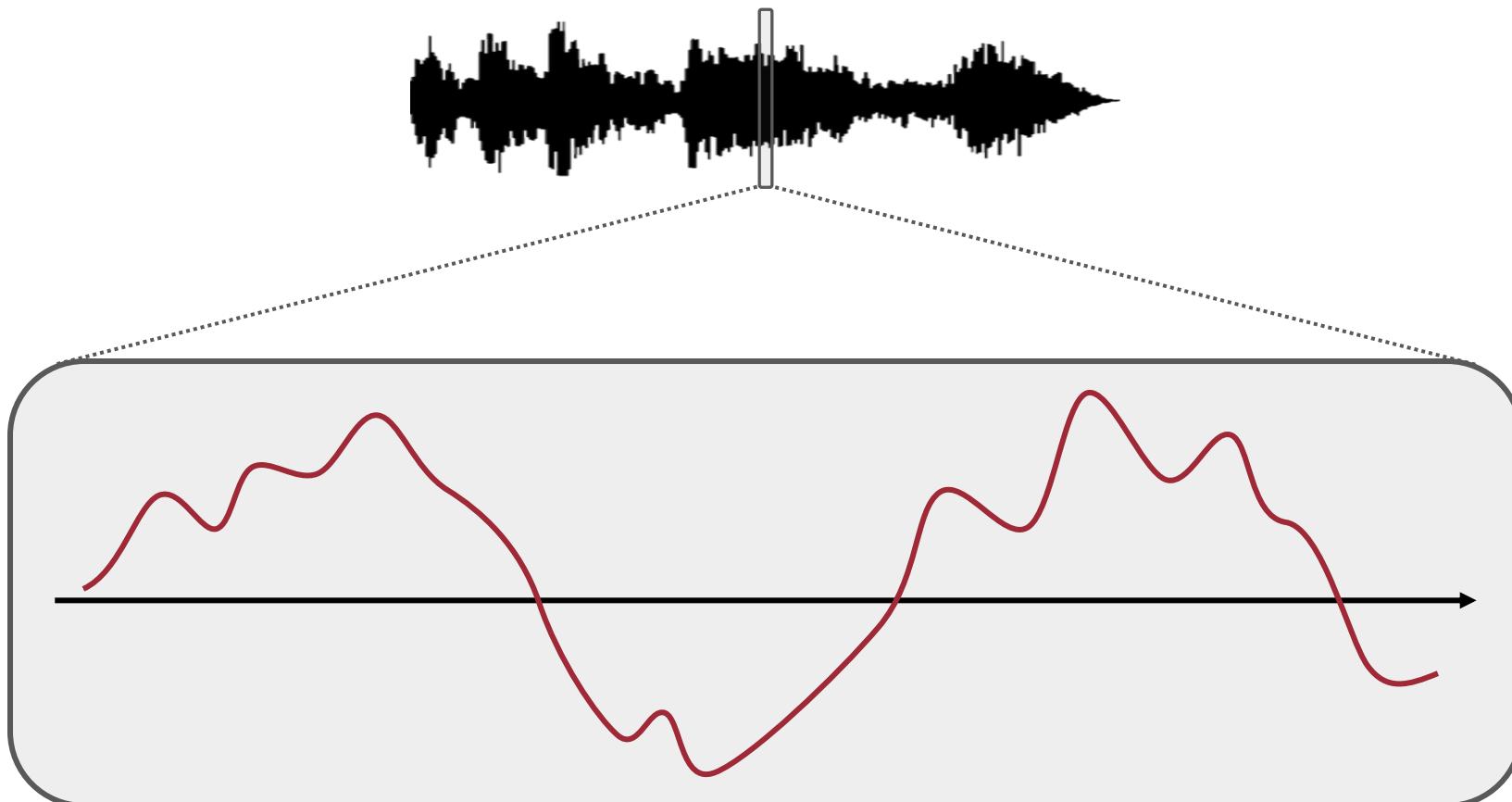
# Digital Audio

# Digital Audio

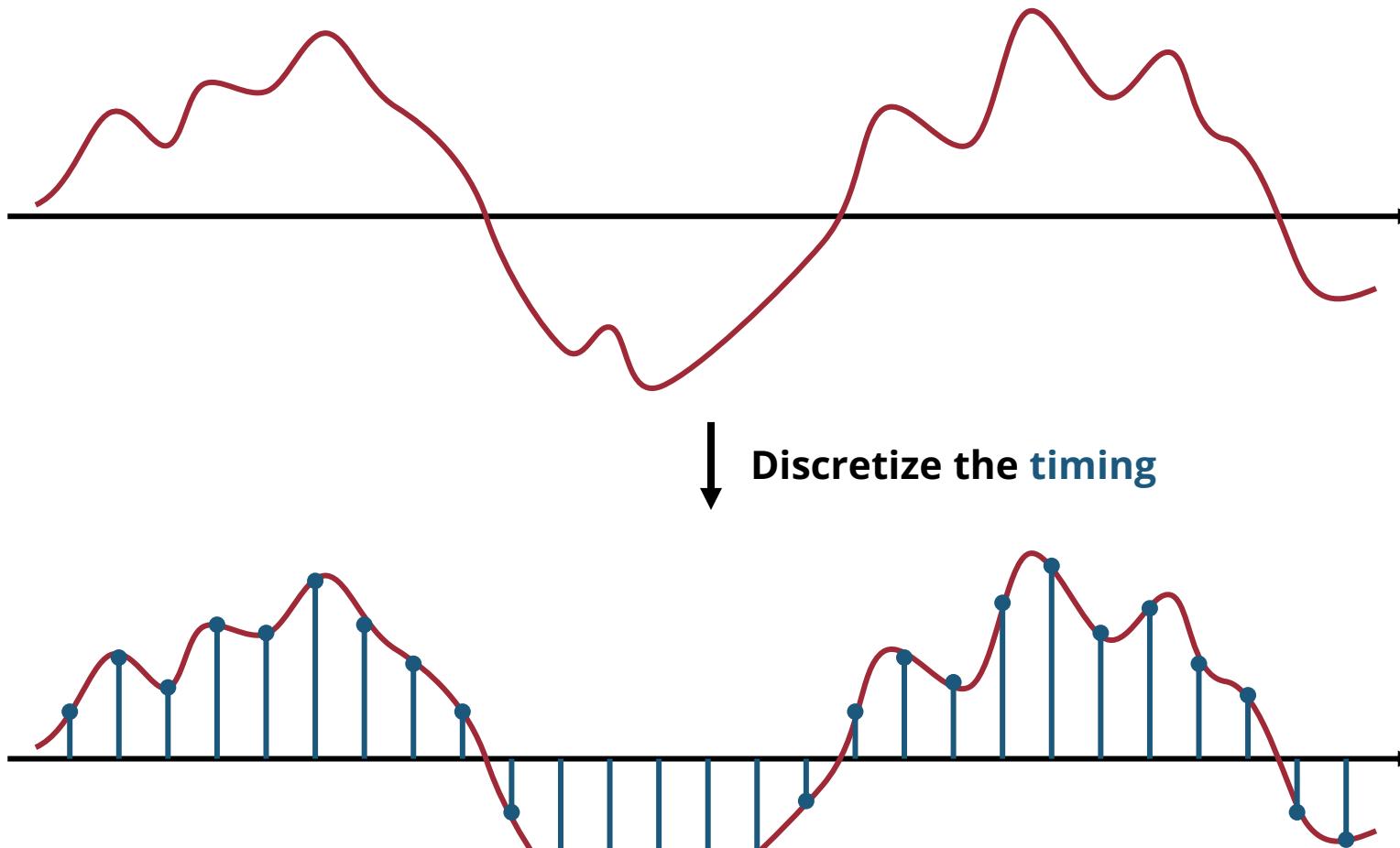


(Source: van den Oord et al., 2016)

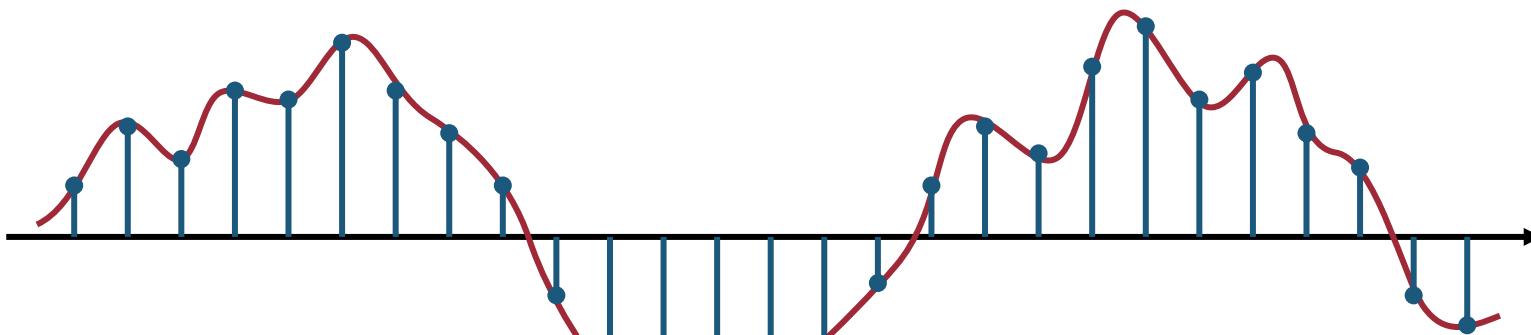
# Waveform



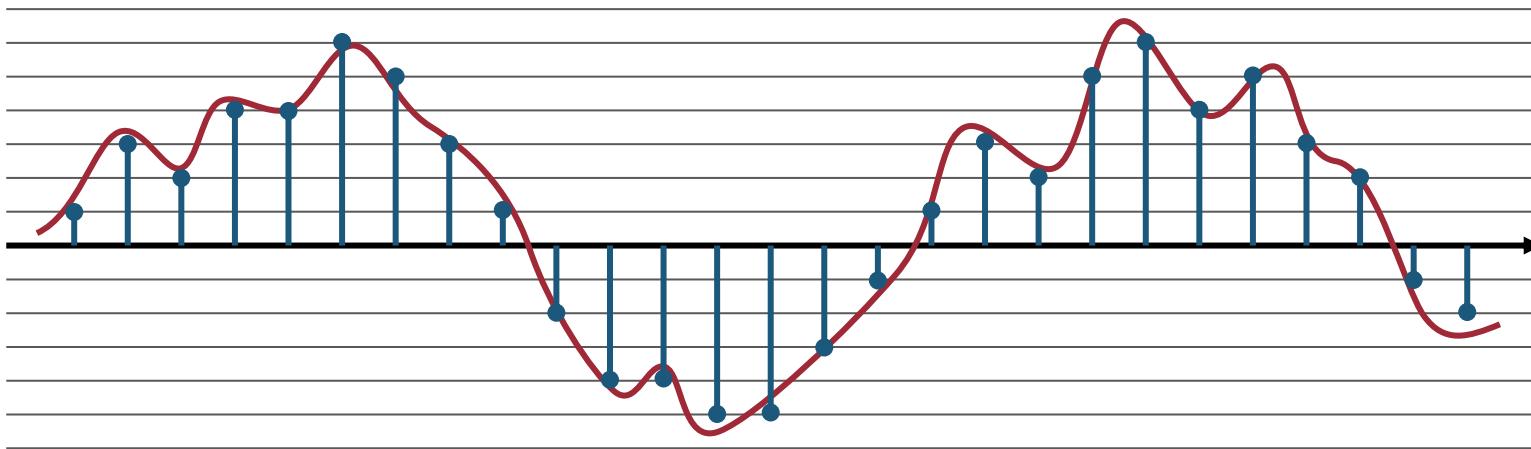
# Digitalizing Audio: Timing



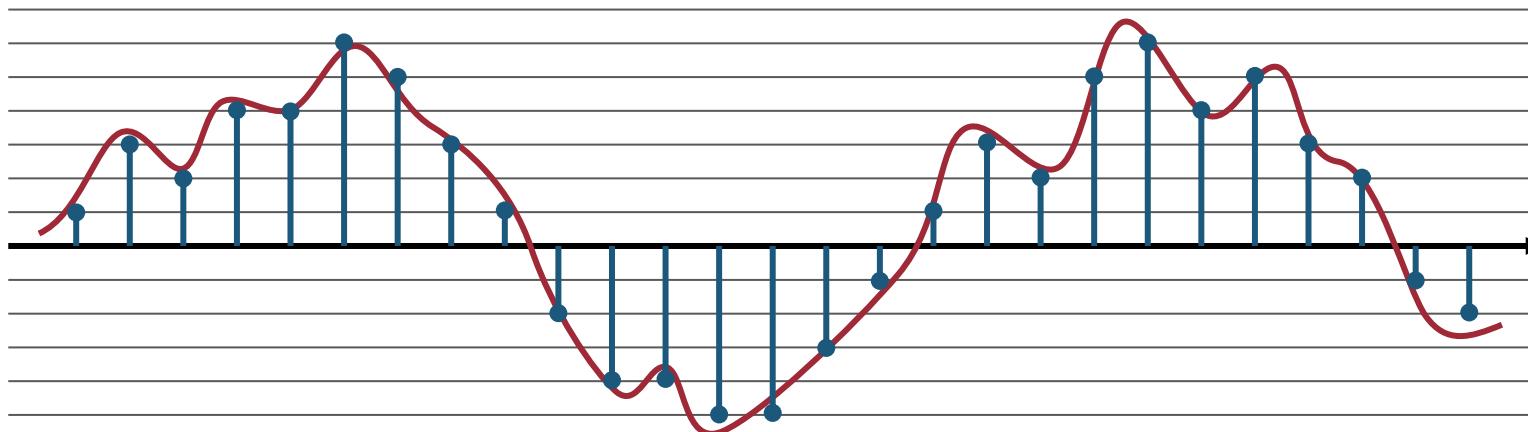
# Digitalizing Audio: Amplitude



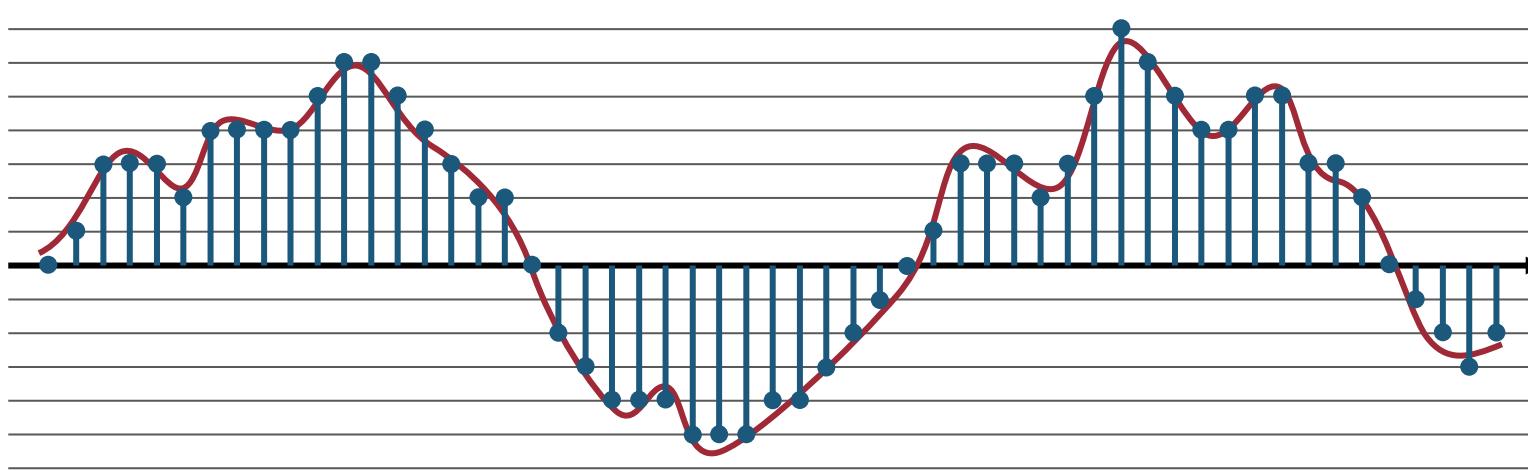
↓  
**Discretize the amplitude**



# Resolution: Sampling Rate



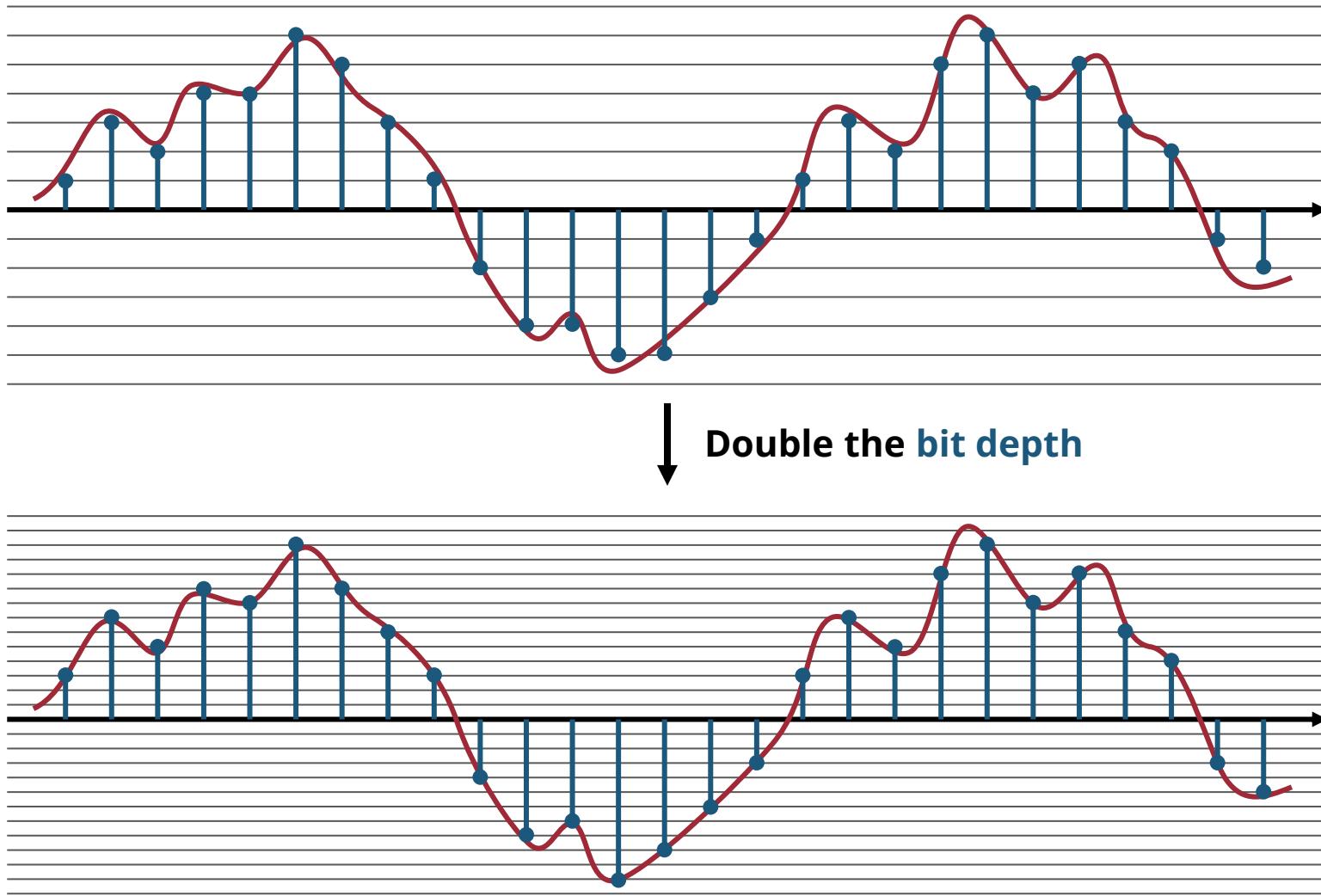
Double the sampling rate



# Sampling Rate

- **Definition:** **Number of samples per second**
  - How many times the “sound pressure” is measured per second
  - The higher the sampling rate, the lower the timing distortion
- **Common sampling rates**
  - **Telephone:** 8 kHz
  - **CD:** 44.1 kHz
  - **DVD:** 48 kHz
  - **Modern audio interfaces & DAWs:** 96 kHz, 192 kHz

# Resolution: Bit Depth



# Bit Depth

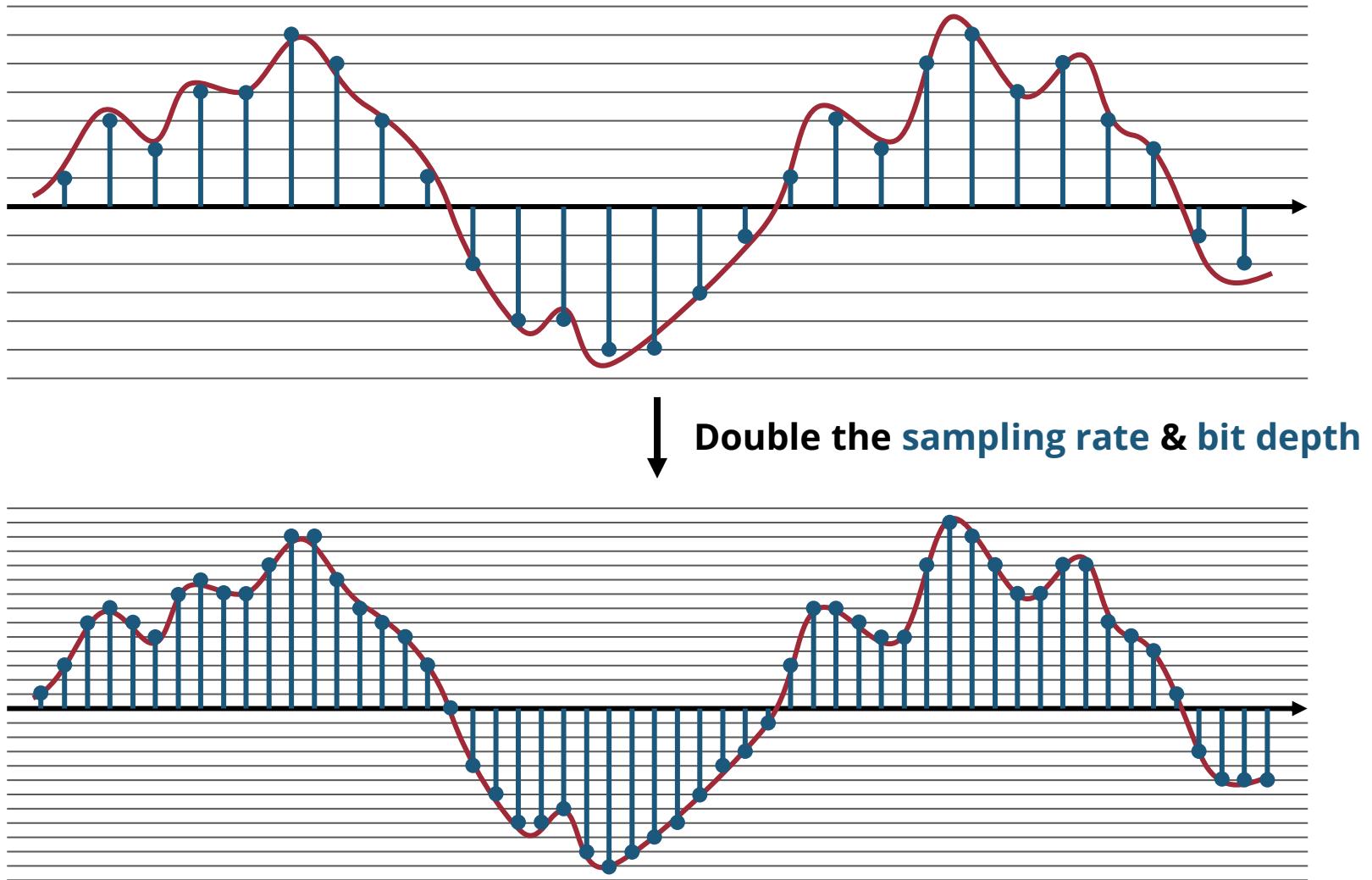
- **Definition:** **Number of bits used to store each sample**
  - How many bits used to store the amplitude
  - The higher the bit depth, the lower the amplitude distortion
- **Common bit depth**
  - **Chiptunes:** 8 bit
  - **CD:** 16 bit
  - **Modern audio interfaces & DAWs:** 24 bit, 32 bit



# Bit Depth

- **8 bit**: -128 to 127
- **16 bit**: -32,768 to 32,767
- **24 bit**: -8,388,608 to 8,388,607
- **32 bit**: 32-bit floating numbers

# Resolution: Sampling Rate & Bit Depth



# Bit Depth $\neq$ Bit Rate

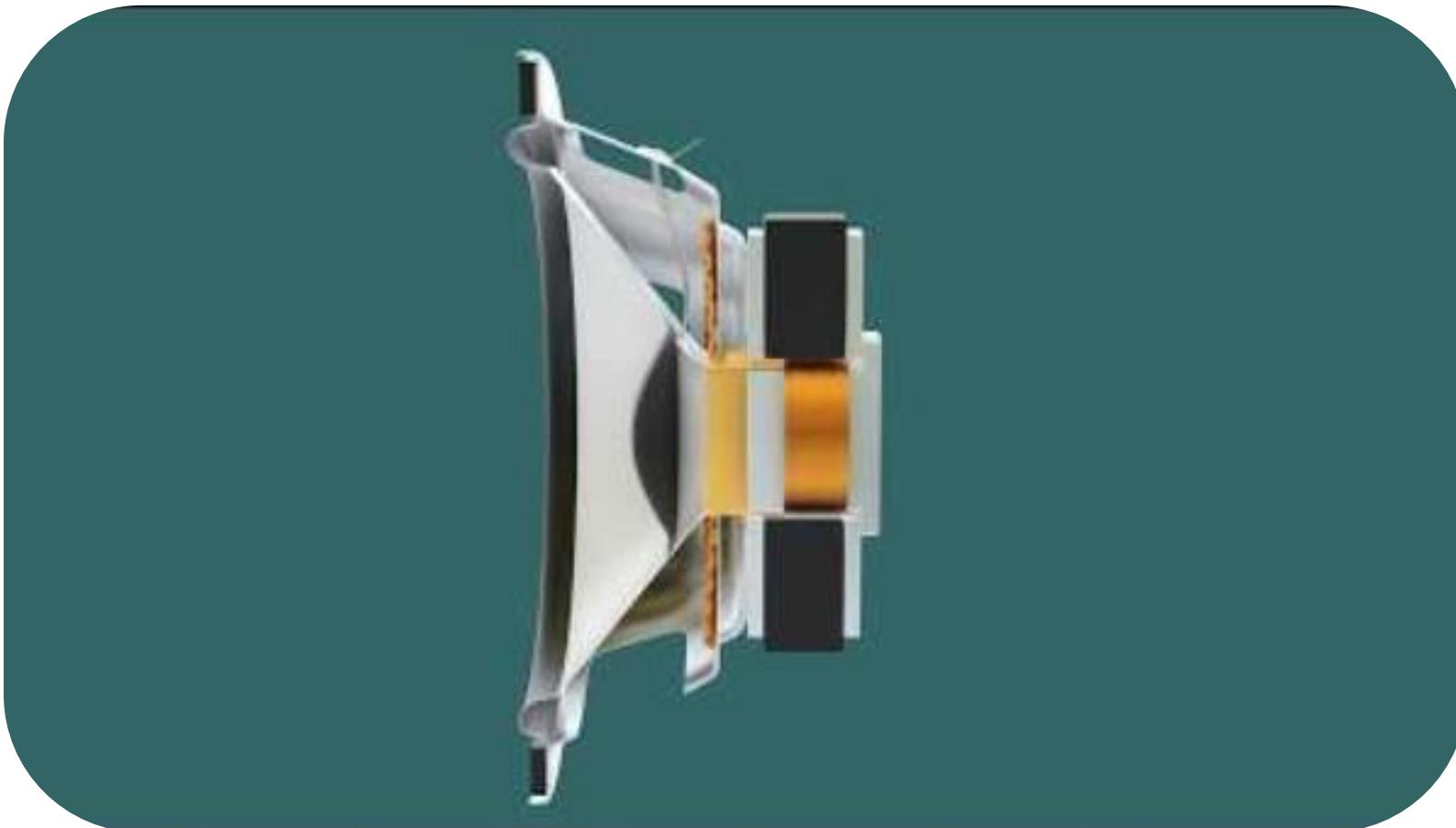
- **Bit Depth:** **Number of bits used to store each sample**
  - Example: **CD quality** is **16bit/44.1kHz**
- **Bit Rate:** **Amount of data transferred per second** (unit: bits/sec)
  - Example: **320K MP3** files  $\rightarrow$  **320kbps** (320,000 bits per second)
  - Example: **YouTube** recommendation  $\rightarrow$  **128 kbps** for mono and **384 kbps** for stereo
  - Determines the file size!

|  Reading: Microphones: Measuring Sound Pressure



[youtu.be/d\\_crXXbuEKE](https://youtu.be/d_crXXbuEKE)

# | Reading: Speakers: Reproducing Sound Pressure

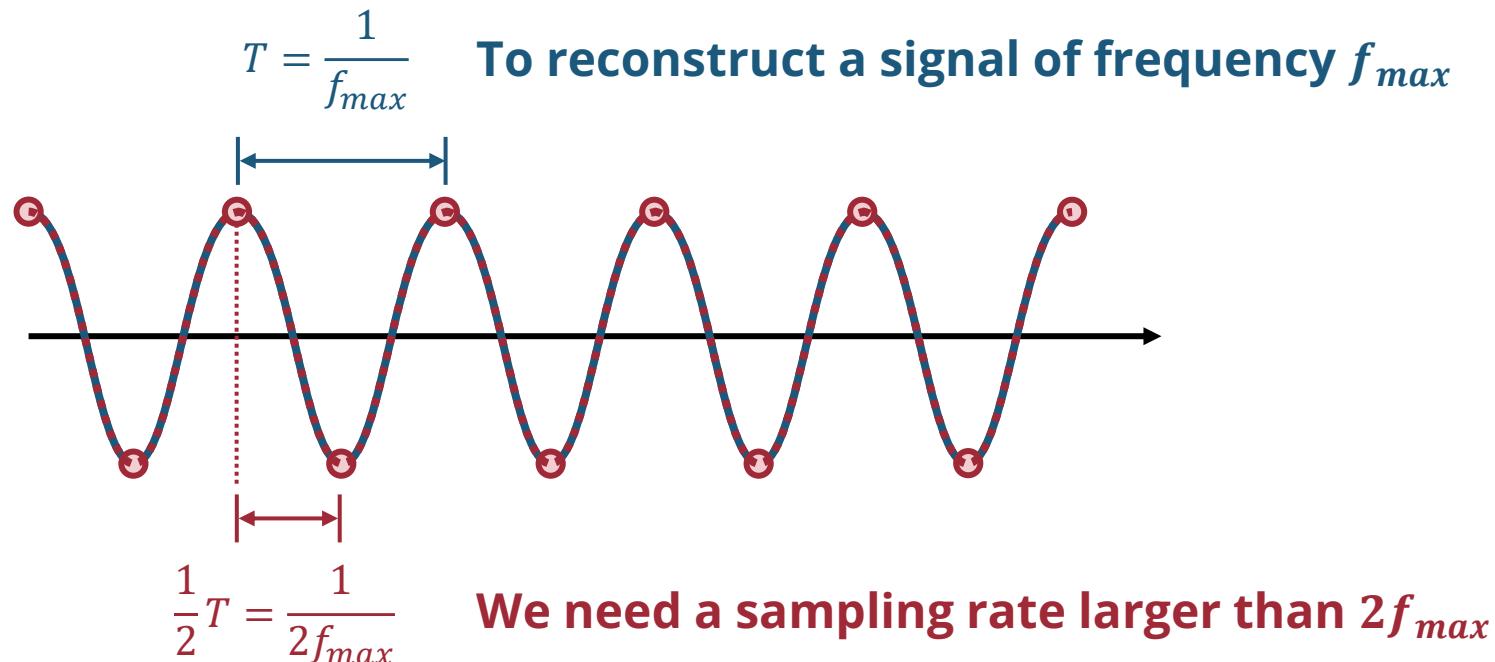


[youtu.be/RxdFP31QYAg](https://youtu.be/RxdFP31QYAg)

# Sampling Theorem

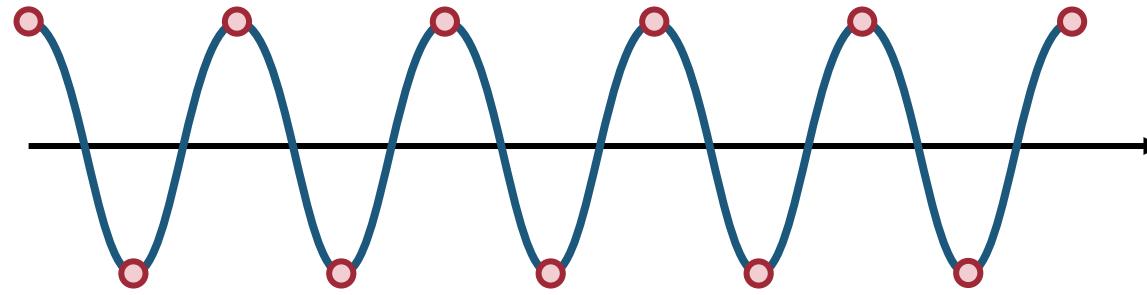
# Nyquist–Shannon Sampling Theorem

- **Theorem:** If a signal contains no frequencies higher than  $f_{max}$ , then the signal can be perfectly reconstructed when sampled at a rate  $f_s > 2f_{max}$ 
  - $2f_{max}$  is usually referred to as the **Nyquist rate**

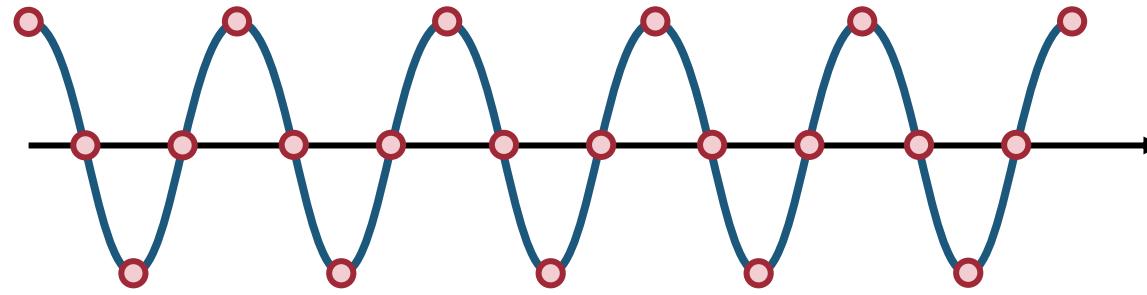


# Sampling Theorem: Oversampling

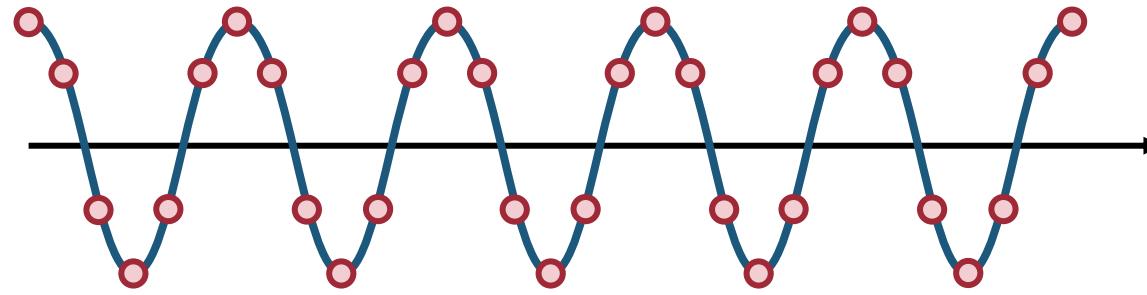
**Critically sampled**  
( $f_s = 2f_{max}$ )



**Oversampled**  
( $f_s = 4f_{max}$ )



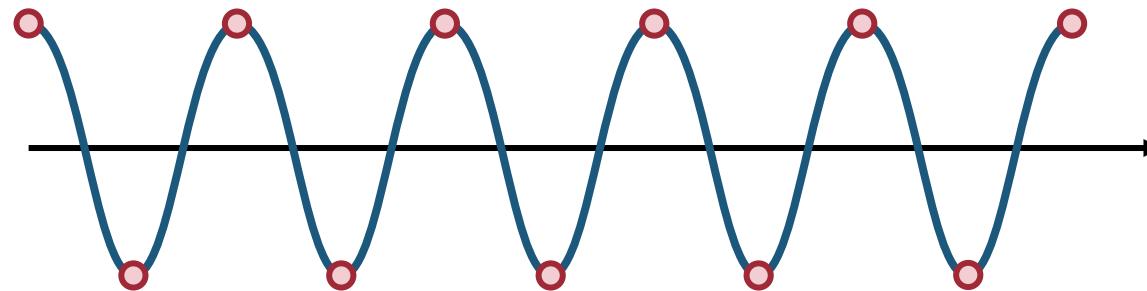
**Oversampled**  
( $f_s = 6f_{max}$ )



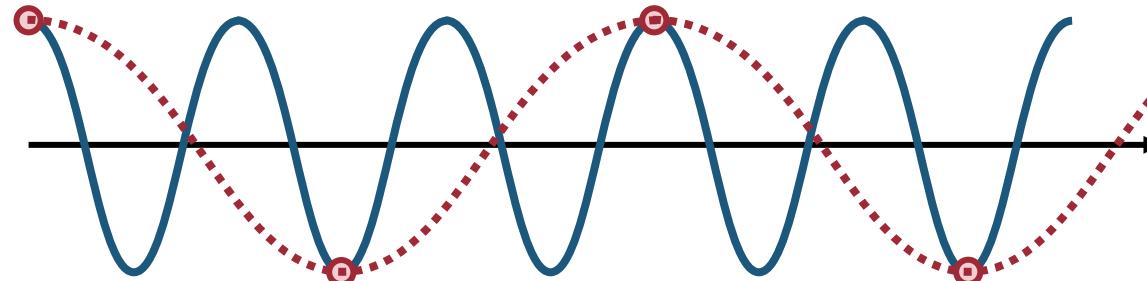
→ **Reconstruction is possible!**

# Sampling Theorem: Undersampling

**Critically sampled**  
( $f_s = 2f_{max}$ )

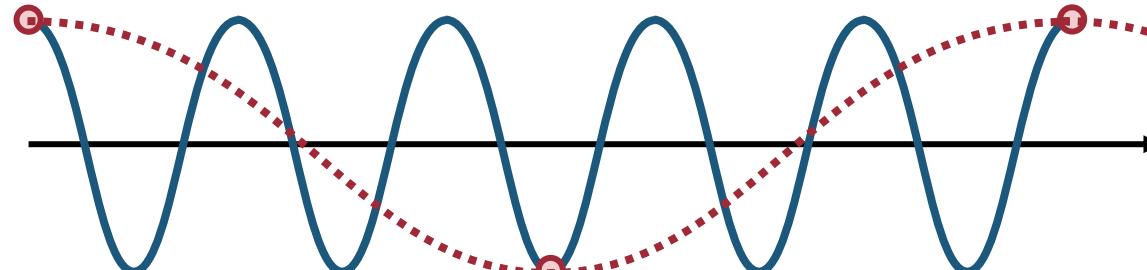


**Undersampled**  
( $f_s = \frac{2}{3}f_{max}$ )



Can only reconstruct frequency up to  $\frac{1}{3}f_{max}$

**Undersampled**  
( $f_s = \frac{2}{5}f_{max}$ )



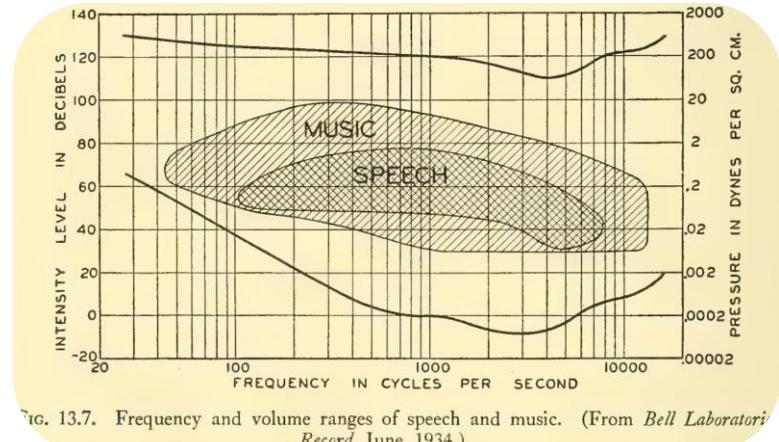
Can only reconstruct frequency up to  $\frac{1}{3}f_{max}$



## Sampling Theorem

- **Telephone audio** is sampled at **8 kHz**. What is the maximum frequency it can reconstruct?
  - **4 kHz**
- To cover the **human hearing range of 20 Hz to 20 kHz**, what is the minimum sampling rate required?
  - **40 kHz**

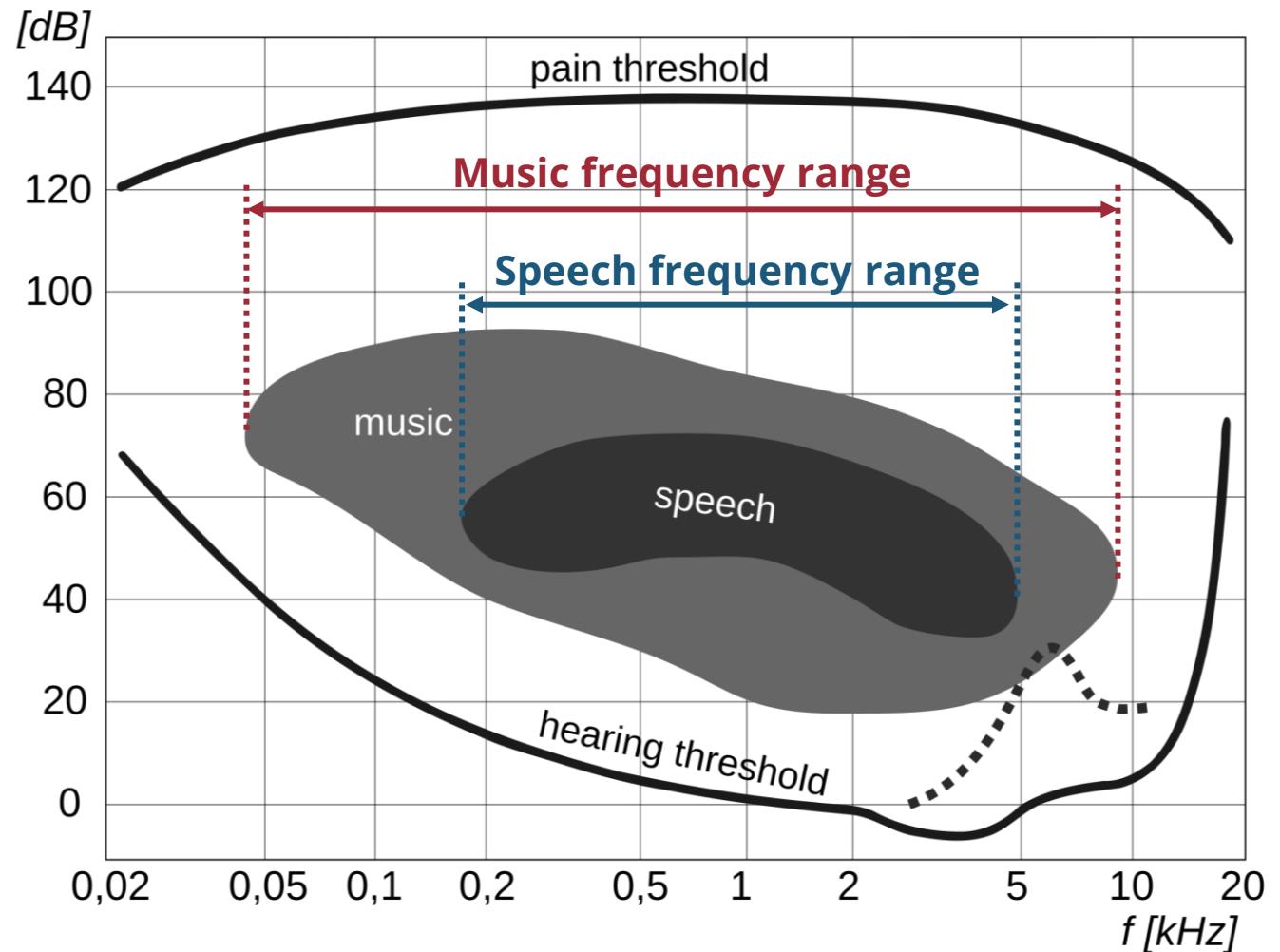
# Sampling Rate & Frequency Range



(Source: Bell Laboratories Record 1934 & Olson 1947)

*Bell Laboratories Record*, 12(6):314, 1934.

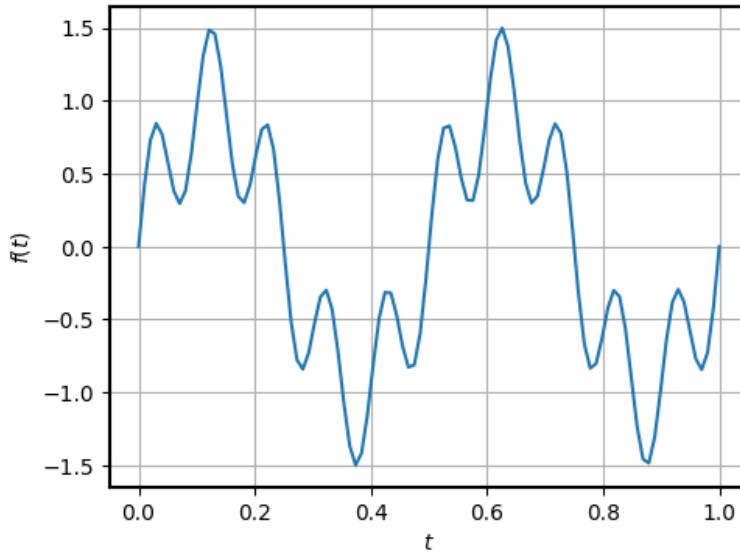
Harry Ferdinand Olson, "Speech, Music and Hearing," *Elements of acoustical engineering Hardcover*, p. 326, 1947.  
[en.wikipedia.org/wiki/Hearing\\_range](https://en.wikipedia.org/wiki/Hearing_range)



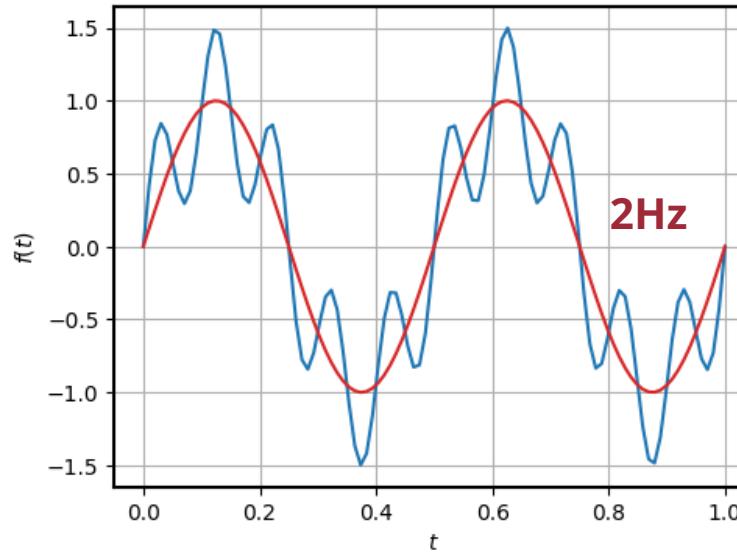
# Spectral Analysis

# Spectral Analysis

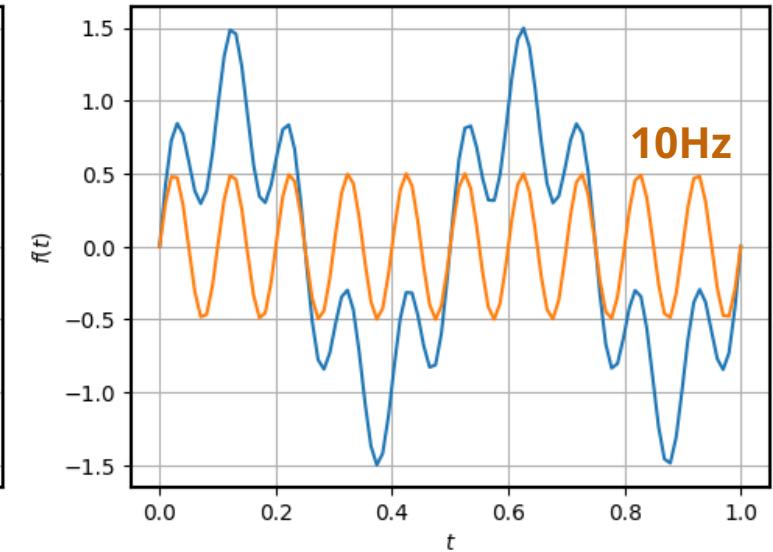
- **Goal:** Analyze the **frequency components** of a signal



$$\sin(2 \cdot 2\pi t) + \frac{1}{2} \sin(10 \cdot 2\pi t)$$

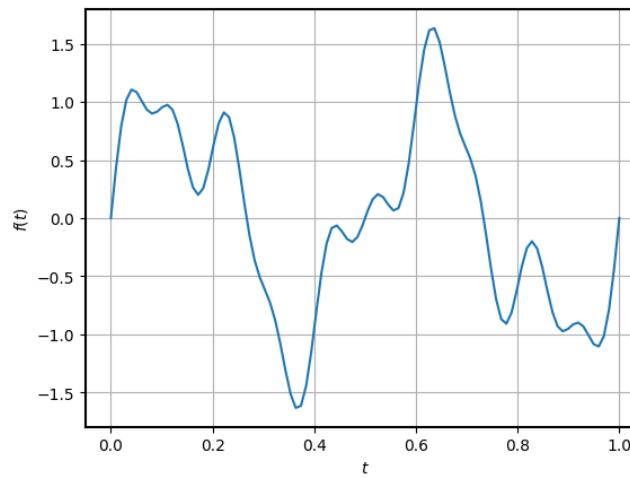
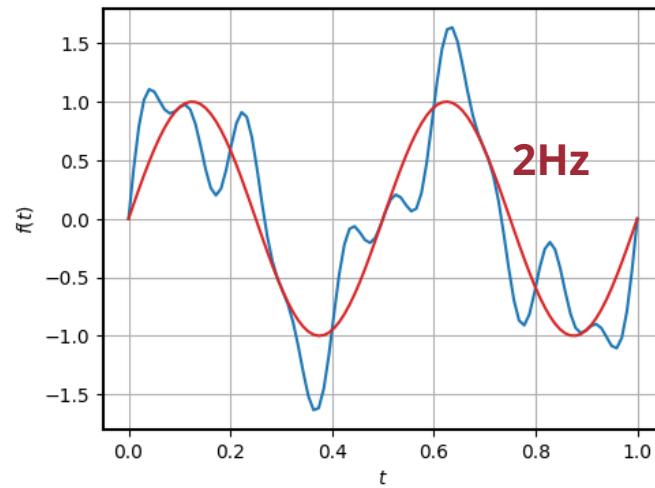
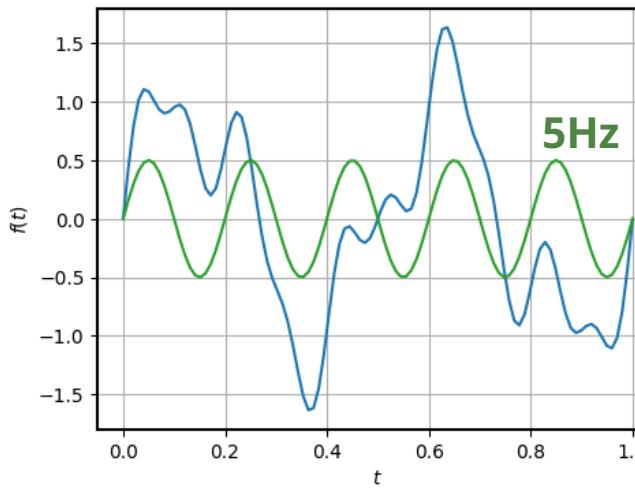
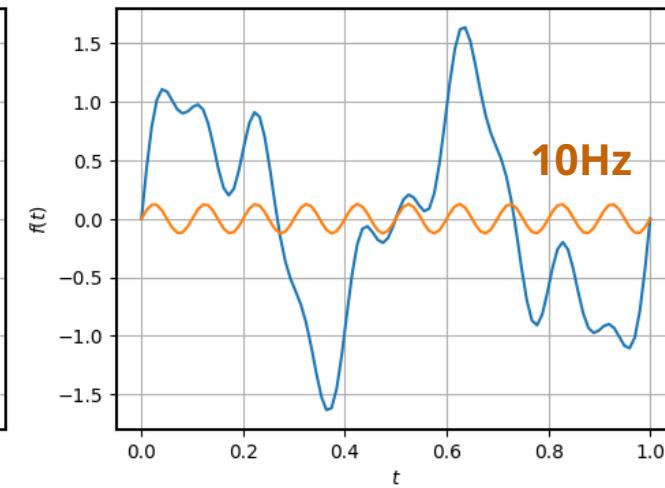


$$\sin(2 \cdot 2\pi t)$$

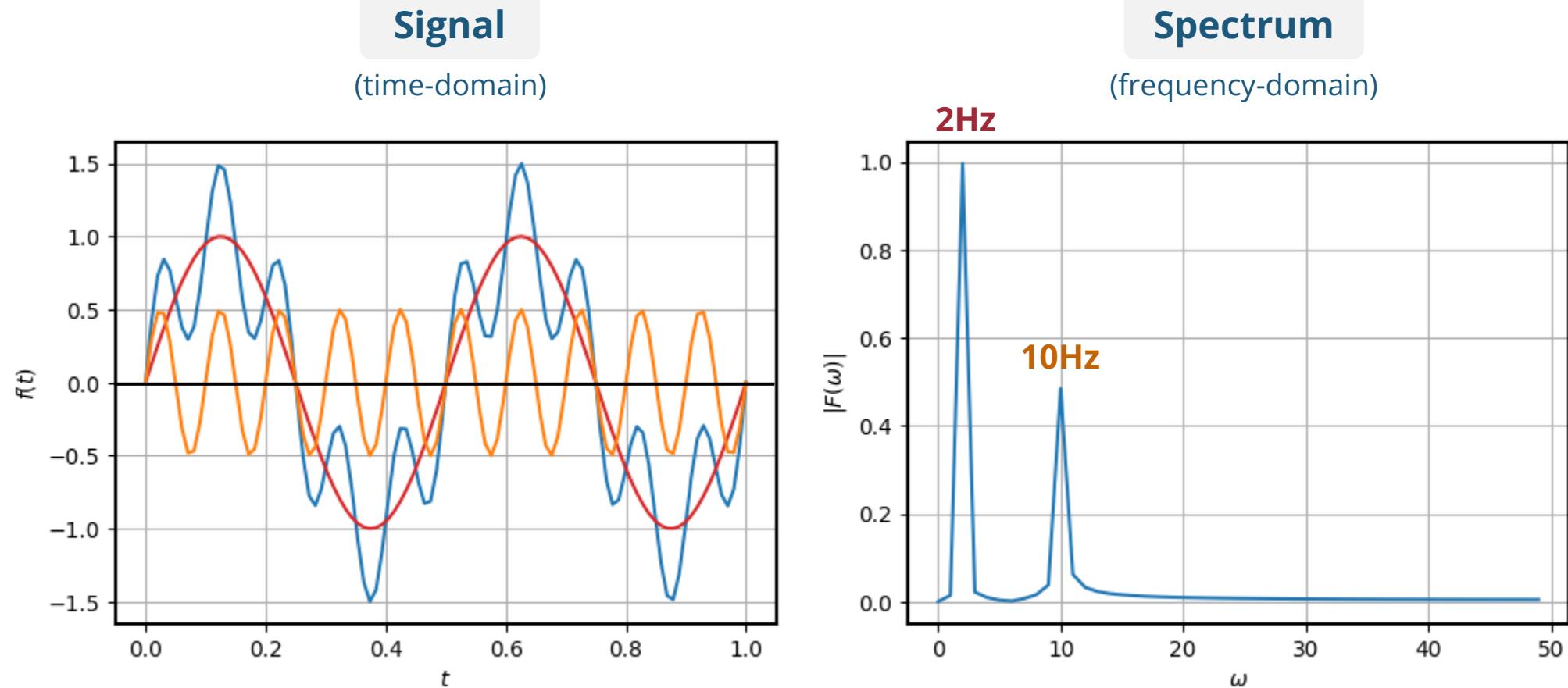


$$\frac{1}{2} \sin(10 \cdot 2\pi t)$$

# Spectral Analysis

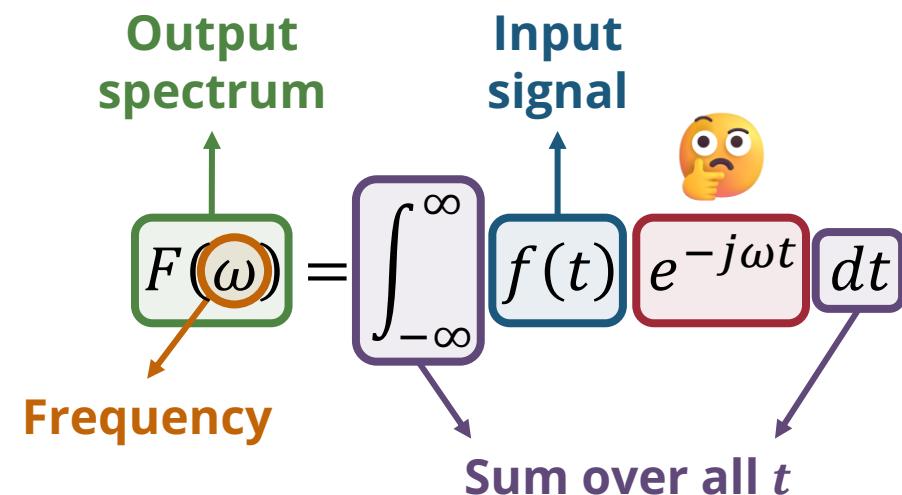


# Fourier Transform



# Fourier Transform

- **Intuition:** Decompose time-domain signals into **frequency components**
- Math formulation:



# Demystifying Fourier Transform

$$F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt$$

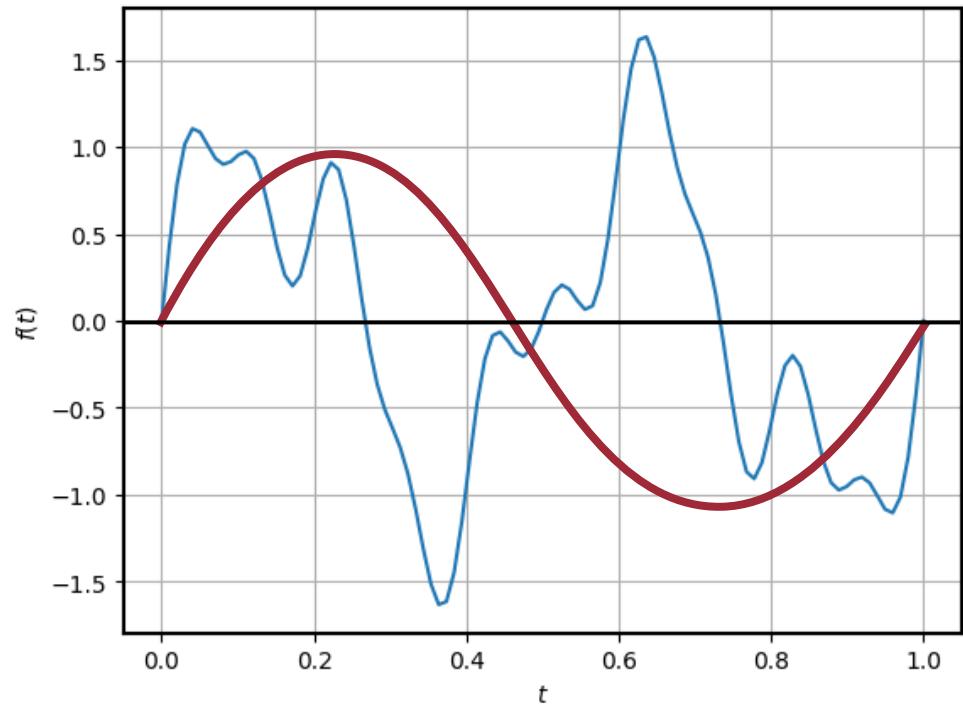
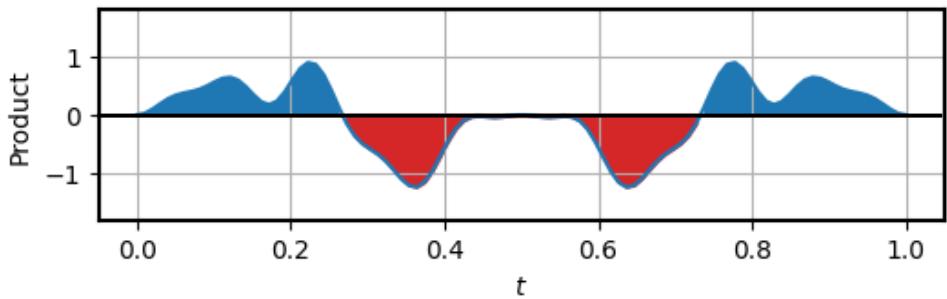


↓ **Euler's formula**

$$e^{-j\theta} = \cos \theta + j \sin \theta$$

$$F(\omega) = \int_{-\infty}^{\infty} f(t) \cos(-\omega t) + j f(t) \sin(-\omega t) dt$$

# Demystifying Fourier Transform



Candidate frequency components

1Hz

2Hz

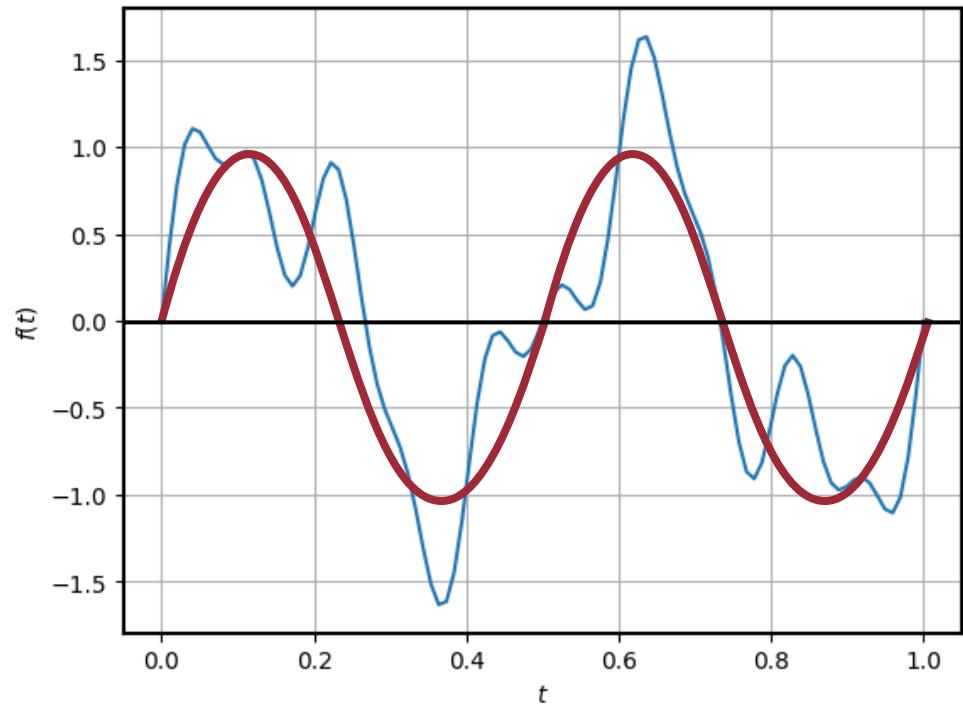
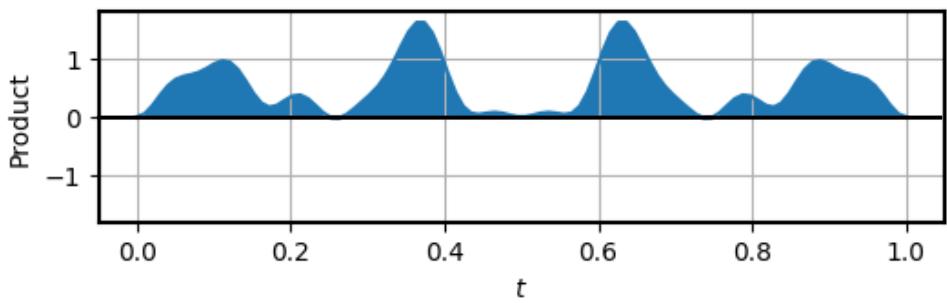
3Hz

4Hz

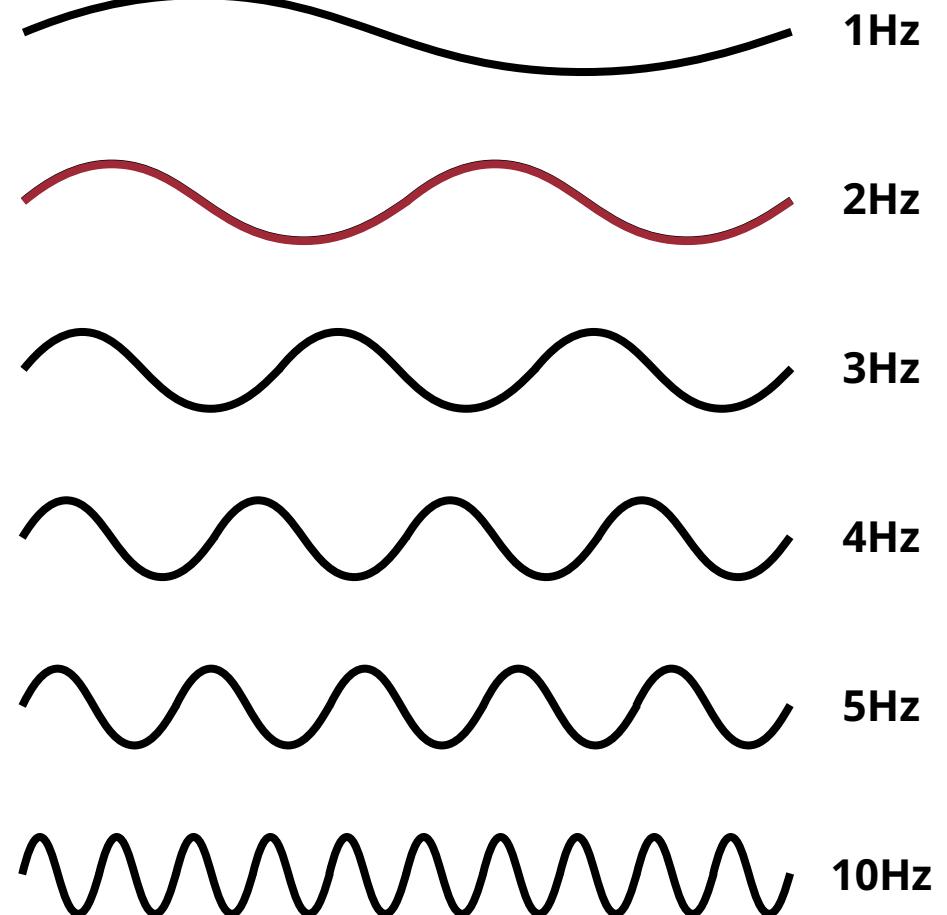
5Hz

10Hz

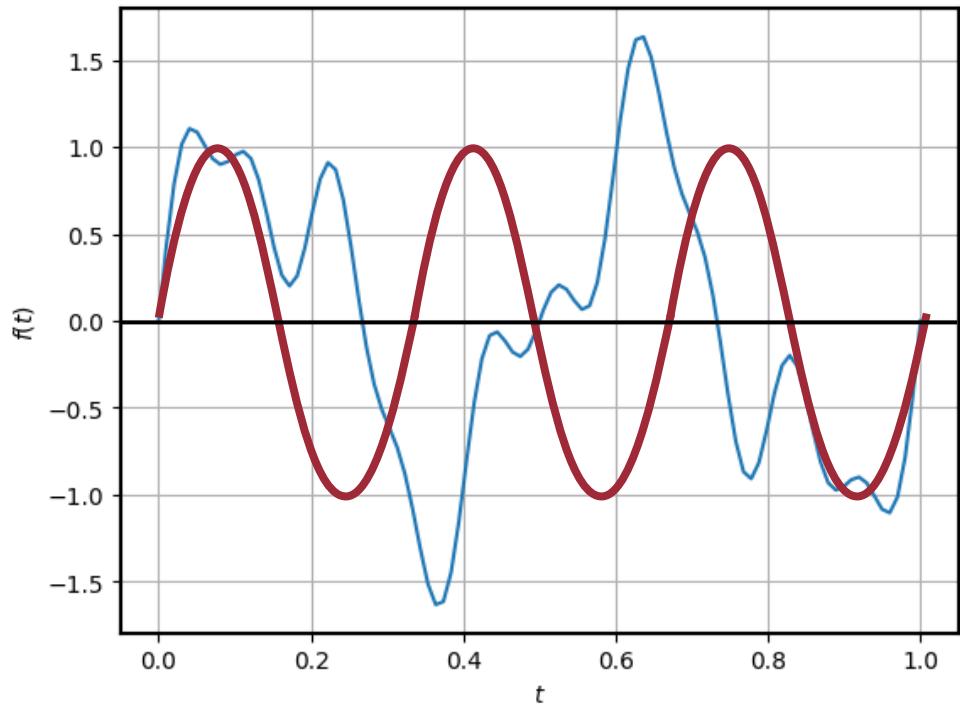
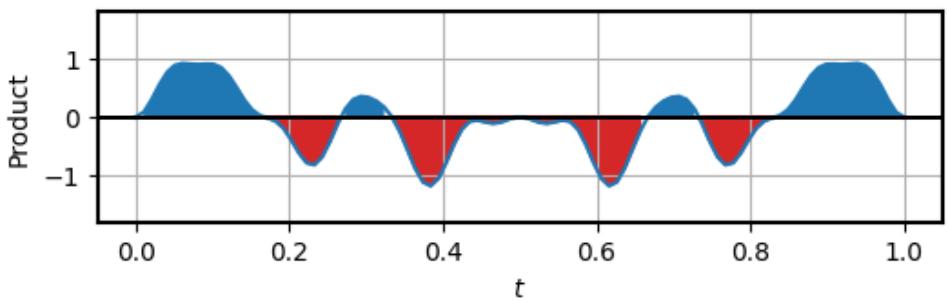
# Demystifying Fourier Transform



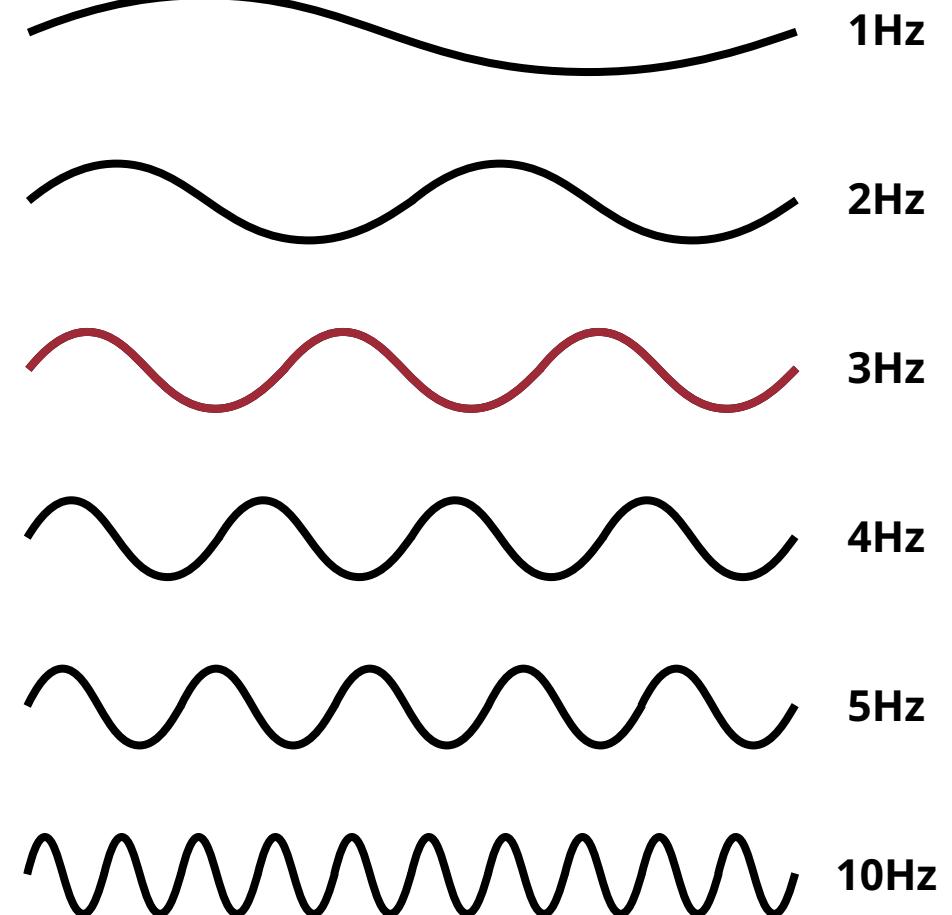
## Candidate frequency components



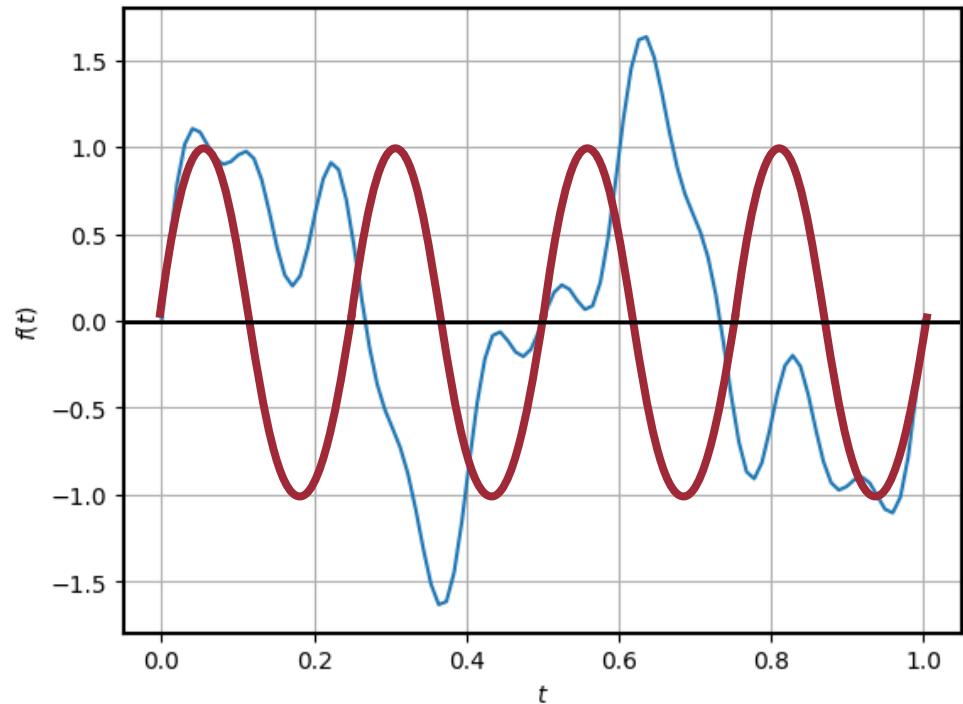
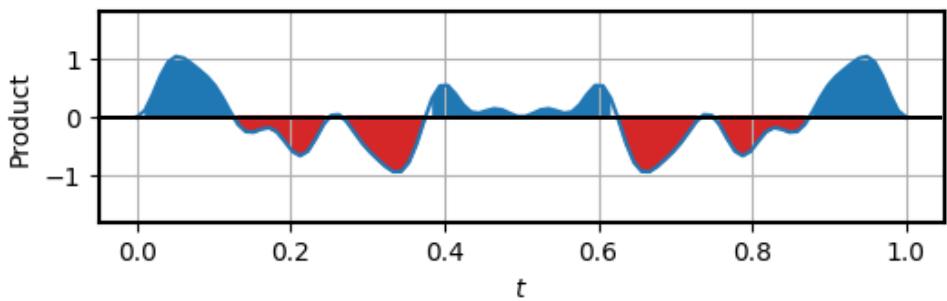
# Demystifying Fourier Transform



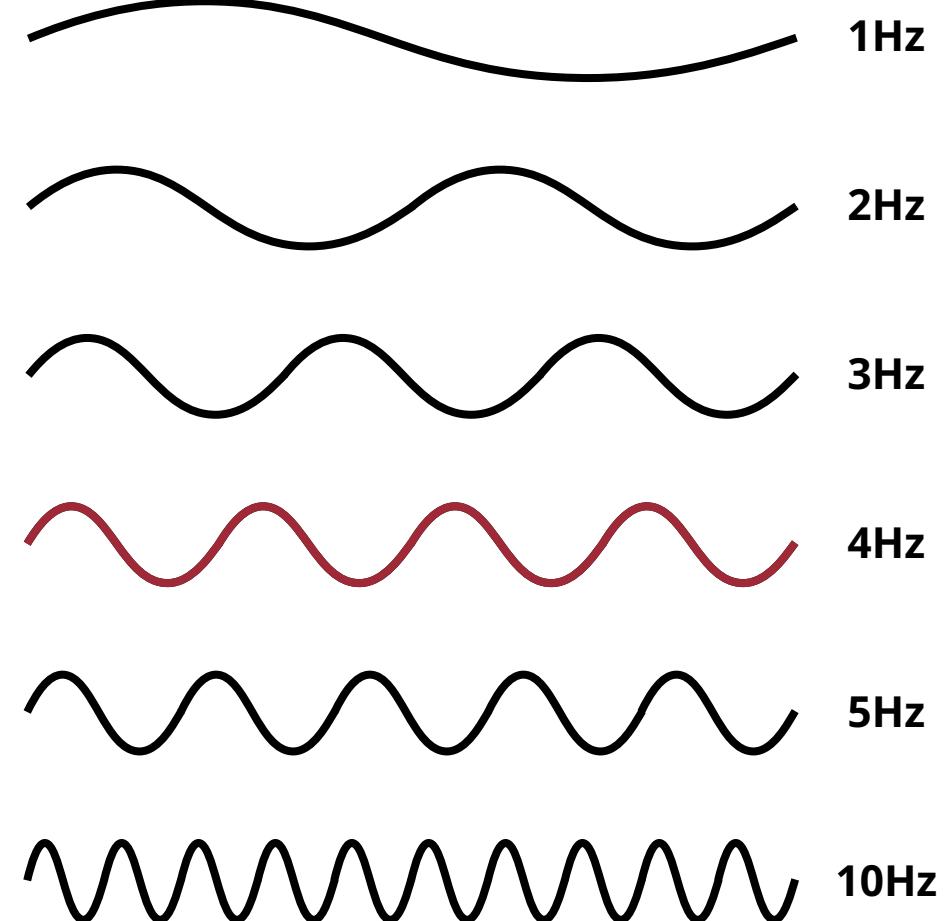
Candidate frequency components



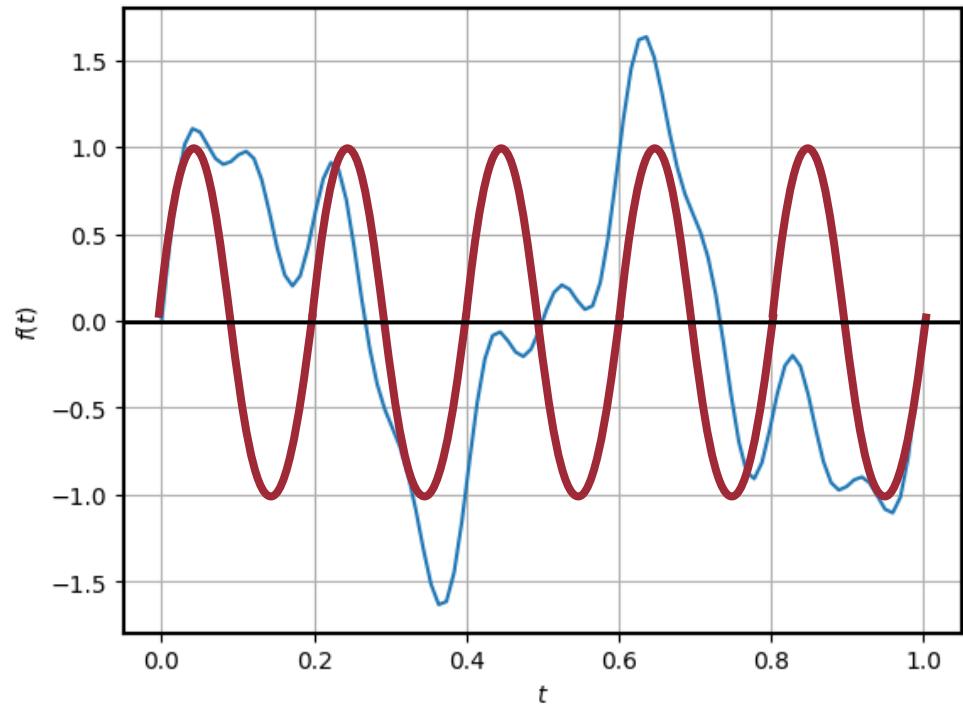
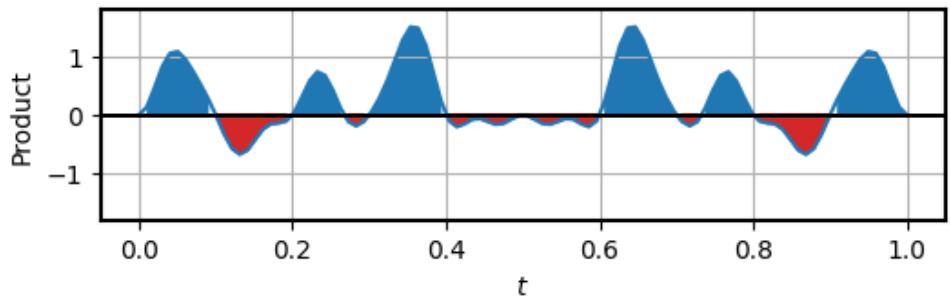
# Demystifying Fourier Transform



Candidate frequency components



# Demystifying Fourier Transform



Candidate frequency components

1Hz

2Hz

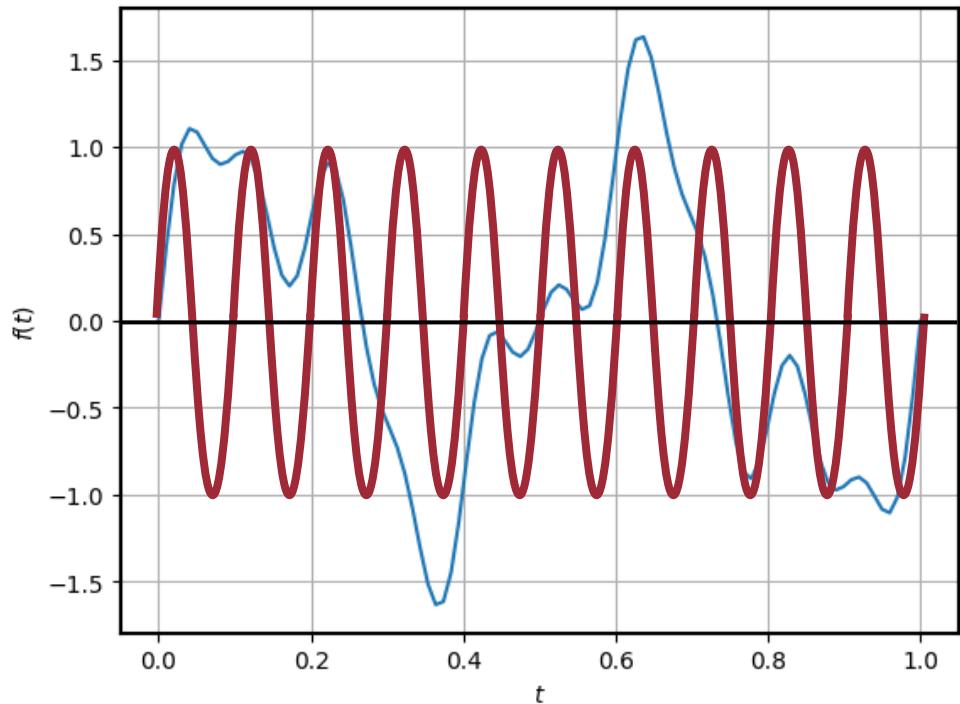
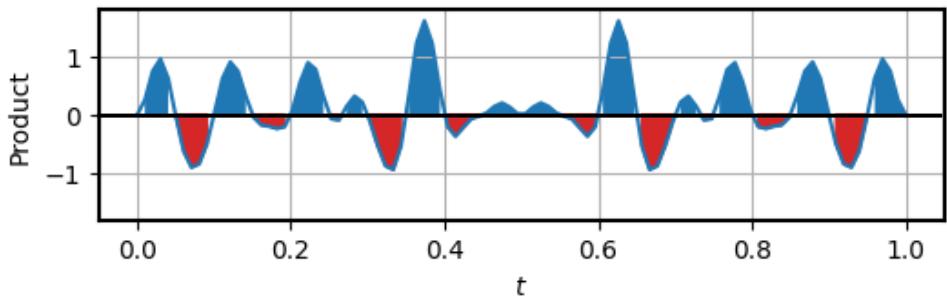
3Hz

4Hz

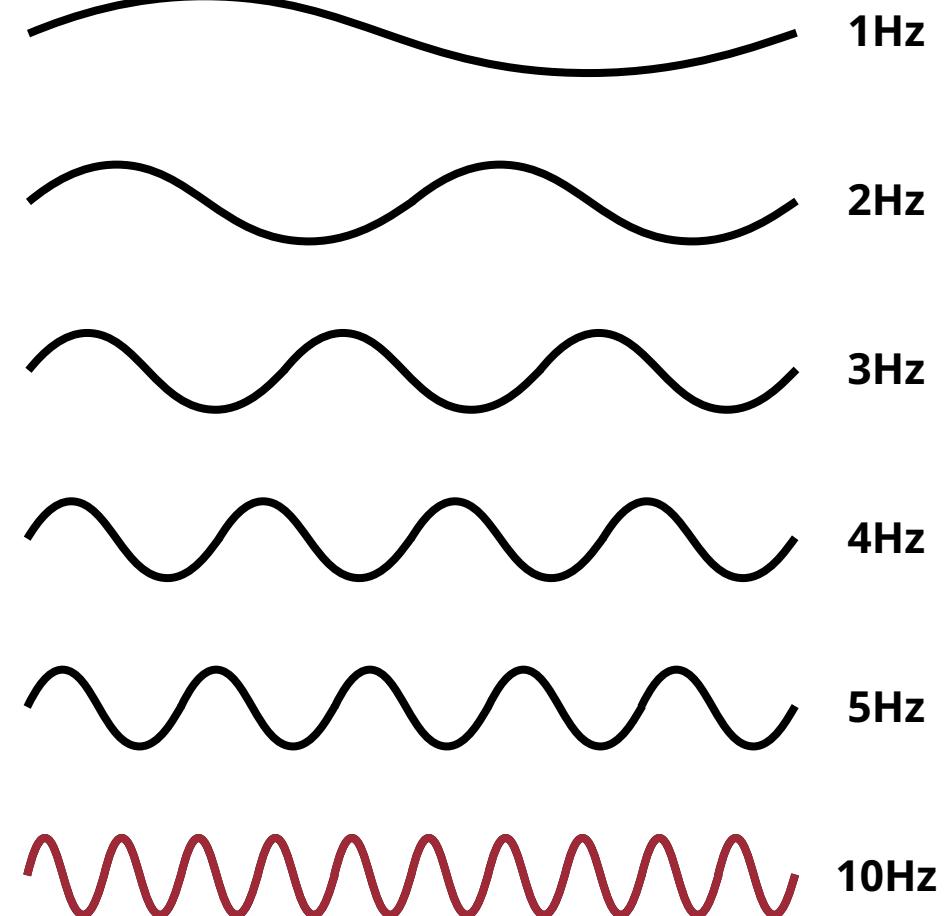
5Hz

10Hz

# Demystifying Fourier Transform



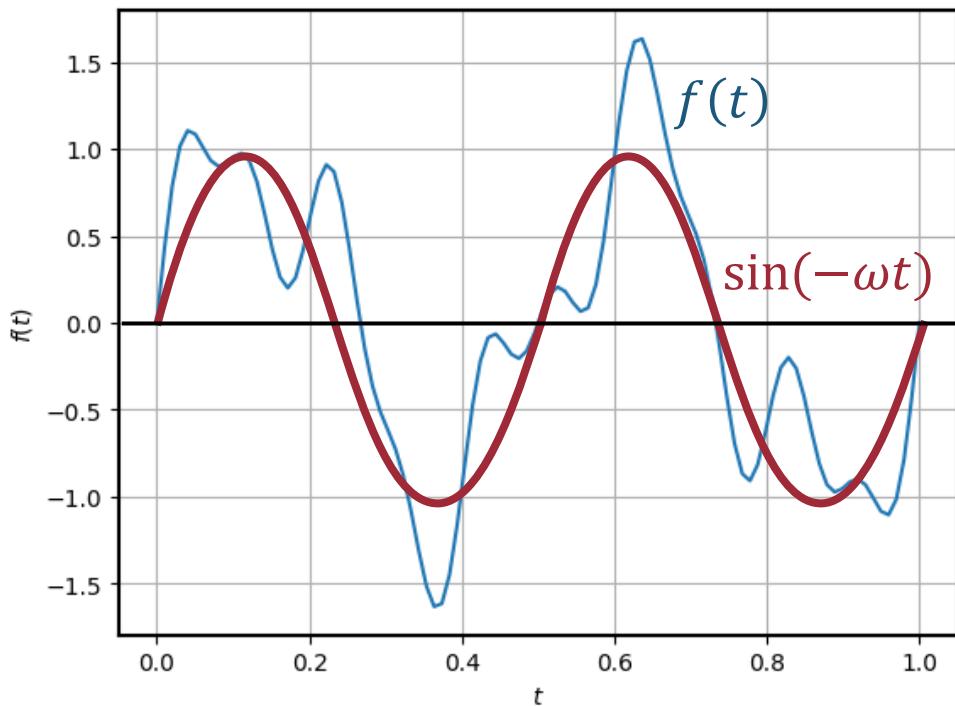
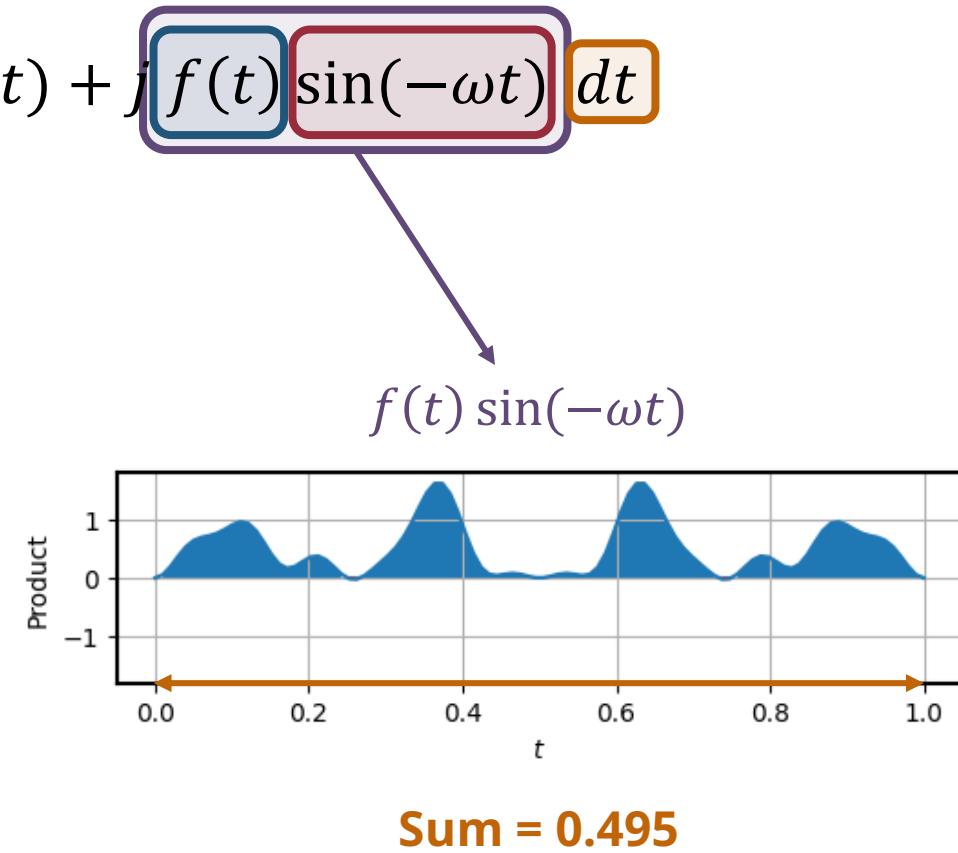
Candidate frequency components



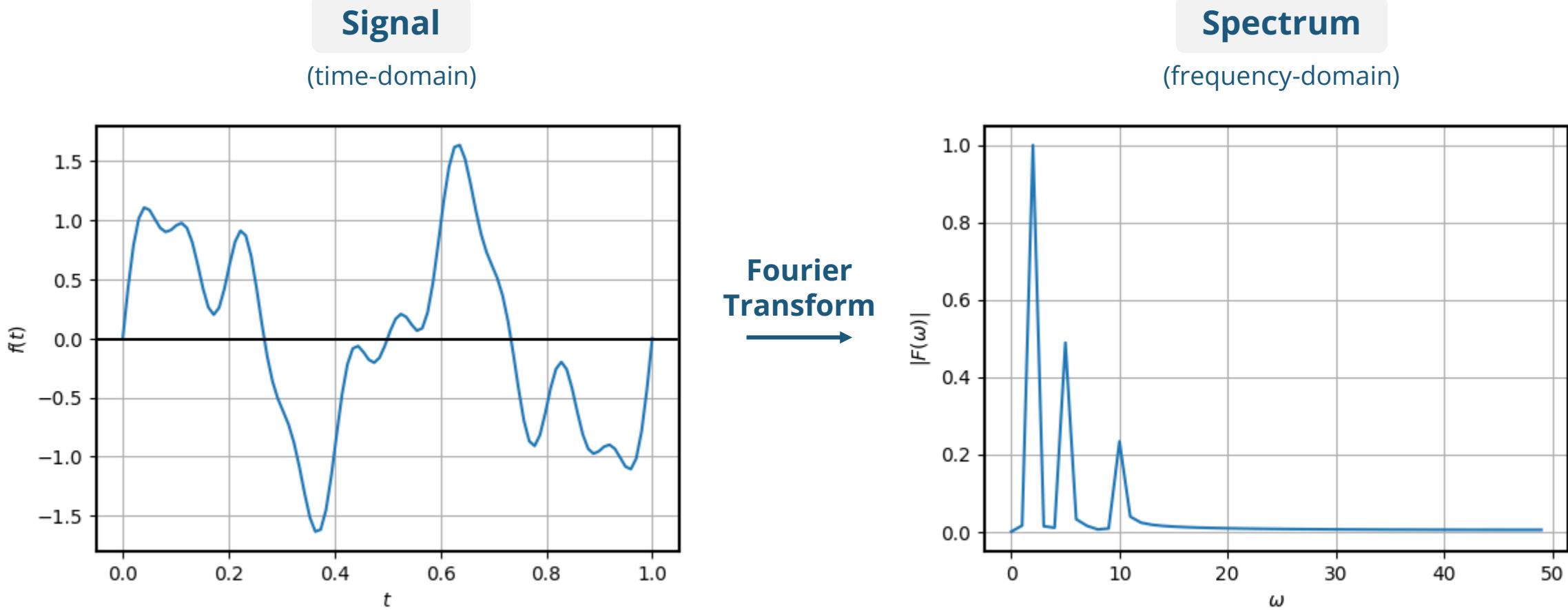
# Demystifying Fourier Transform

$$F(\omega) = \int_{-\infty}^{\infty} f(t) \cos(-\omega t) + j \int_{-\infty}^{\infty} f(t) \sin(-\omega t) dt$$

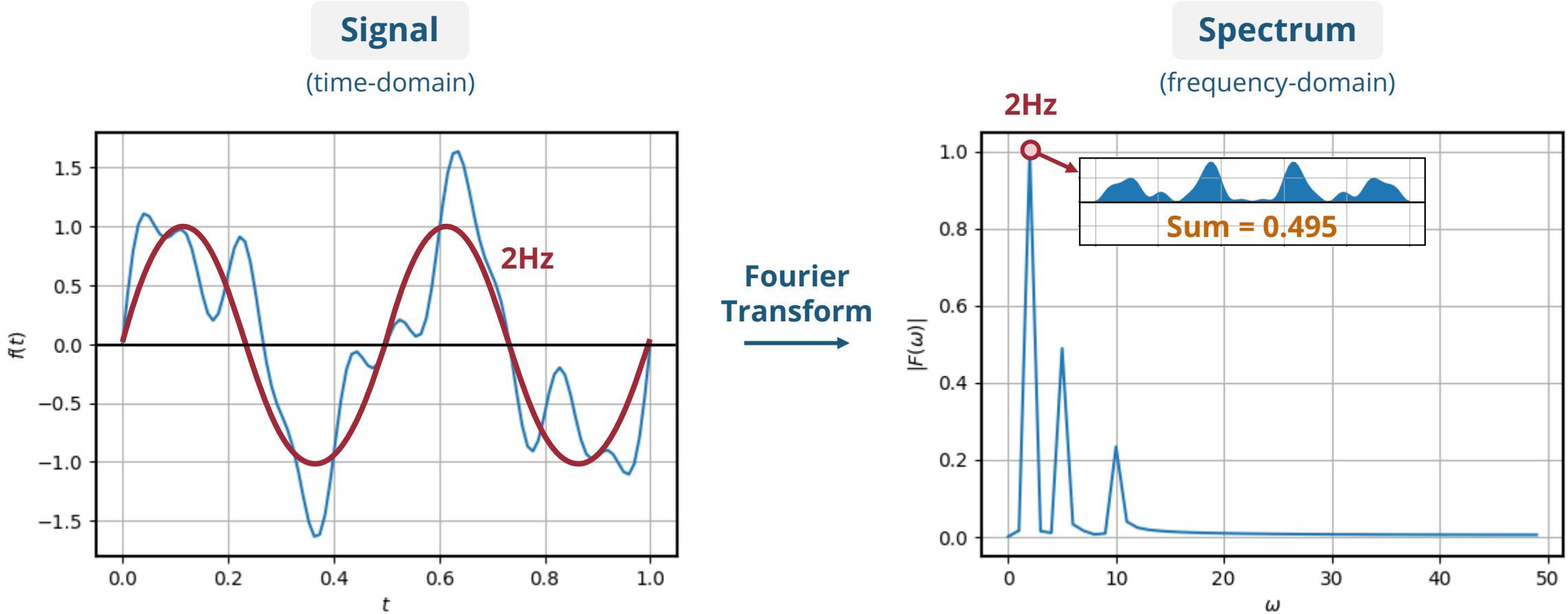
**Sum over all  $t$**



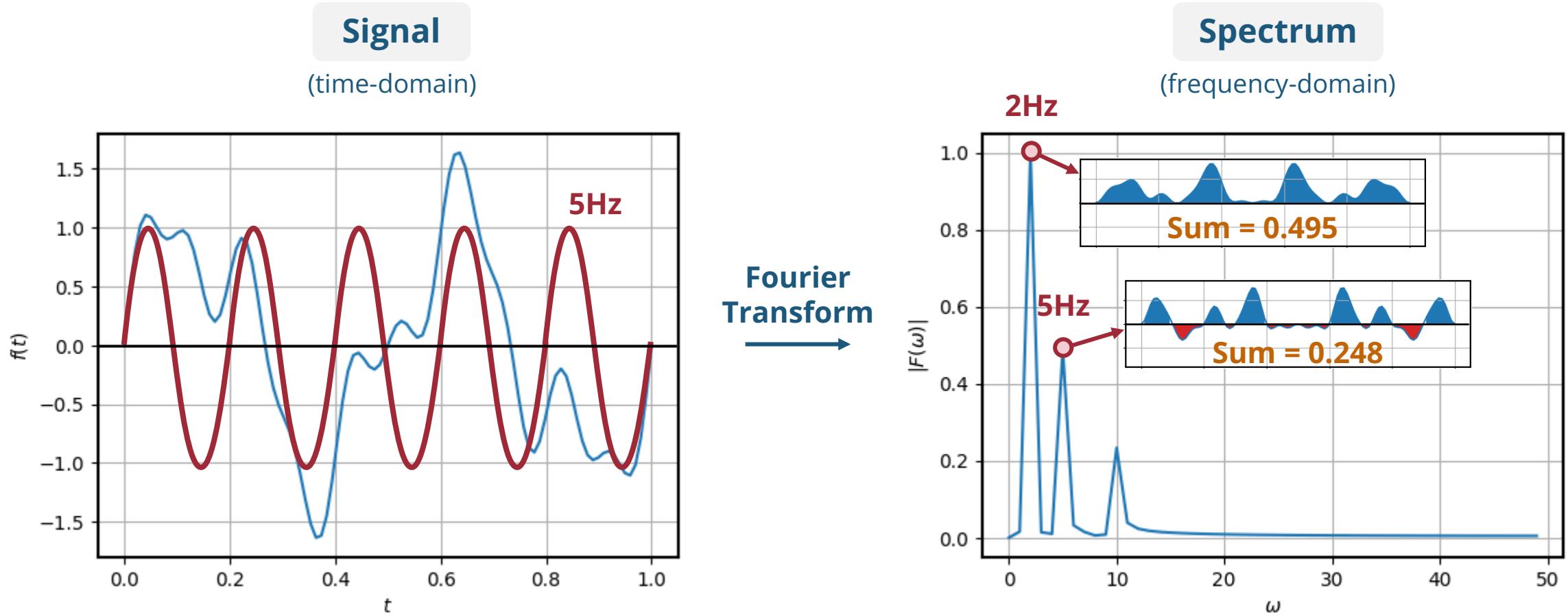
# Demystifying Fourier Transform



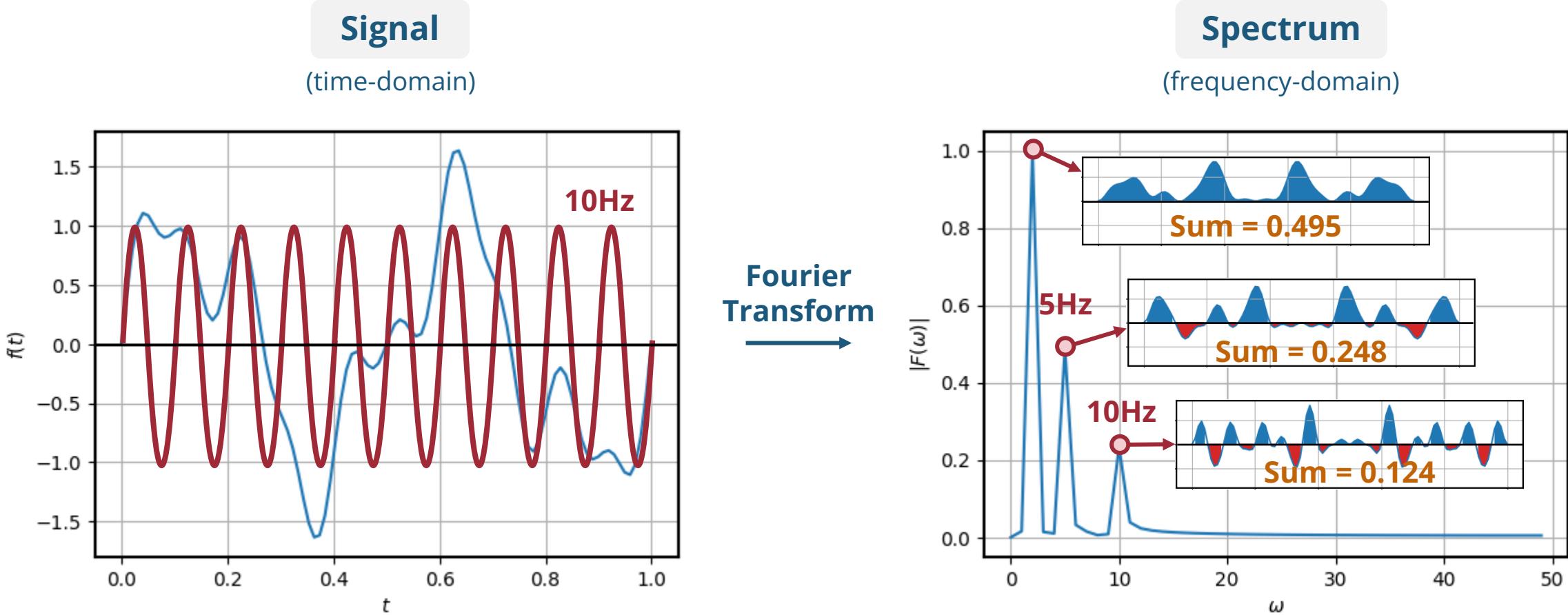
# Demystifying Fourier Transform



# Demystifying Fourier Transform



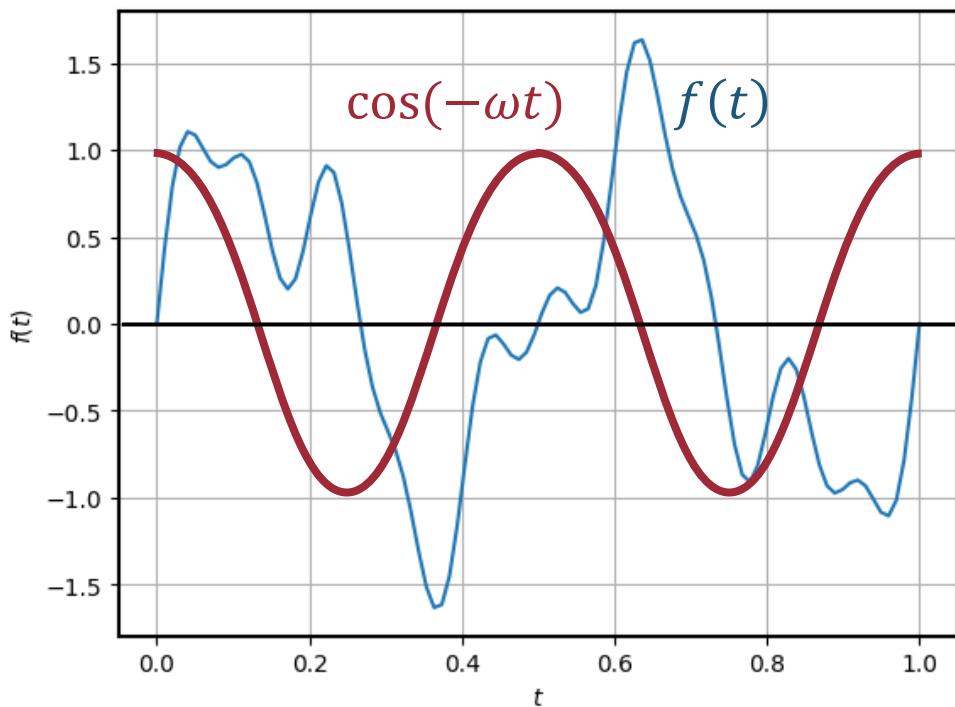
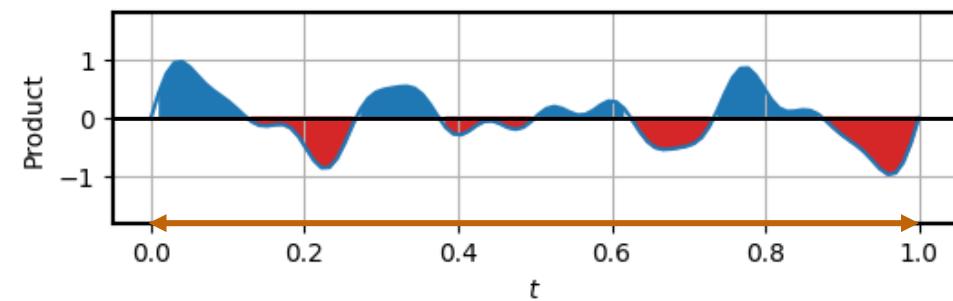
# Demystifying Fourier Transform



# Demystifying Fourier Transform

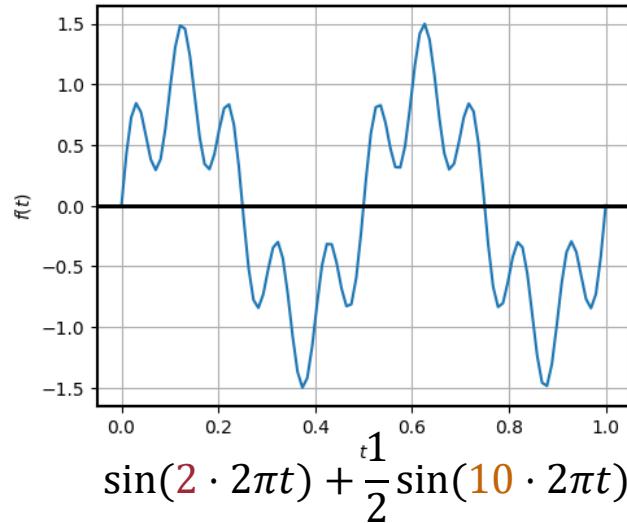
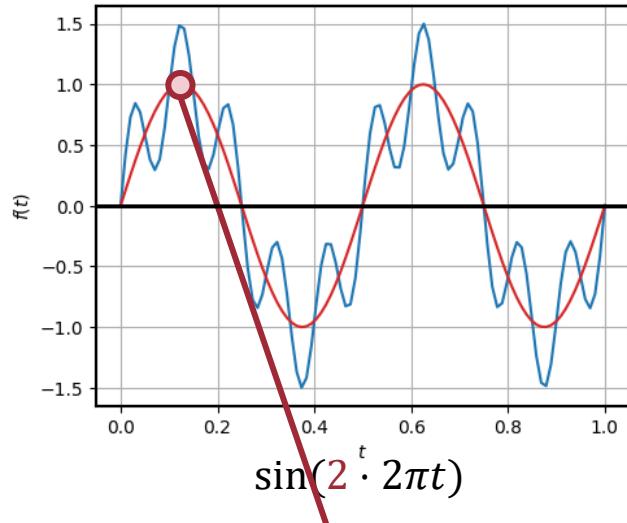
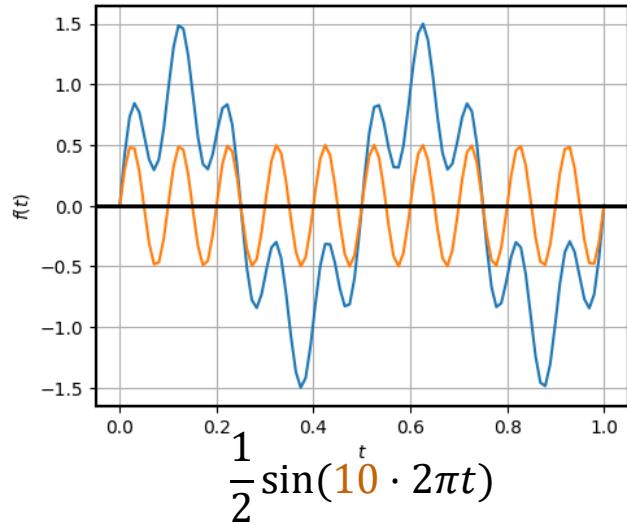
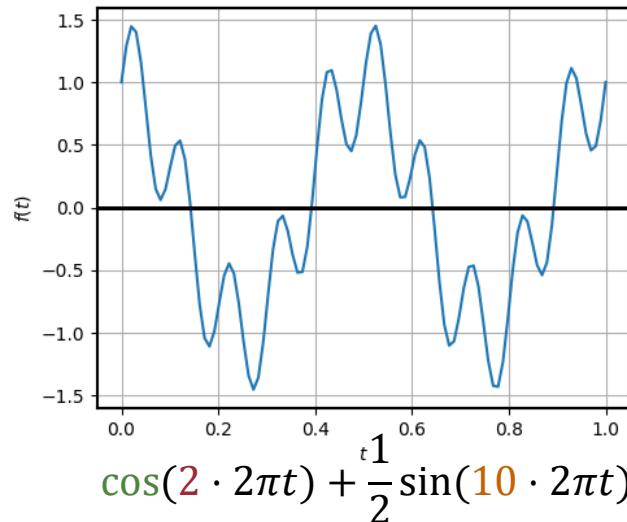
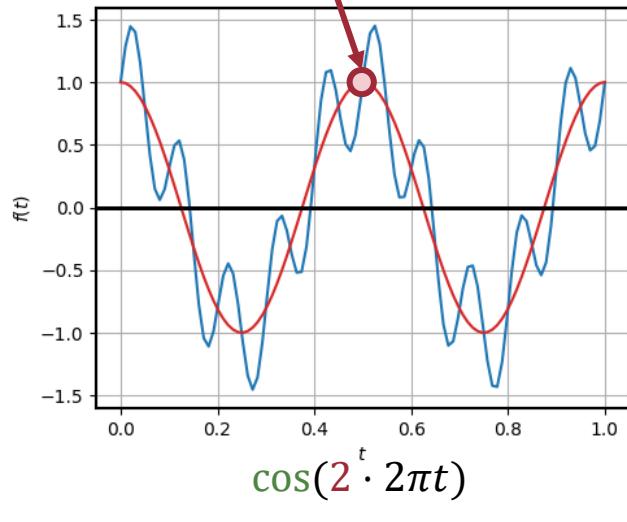
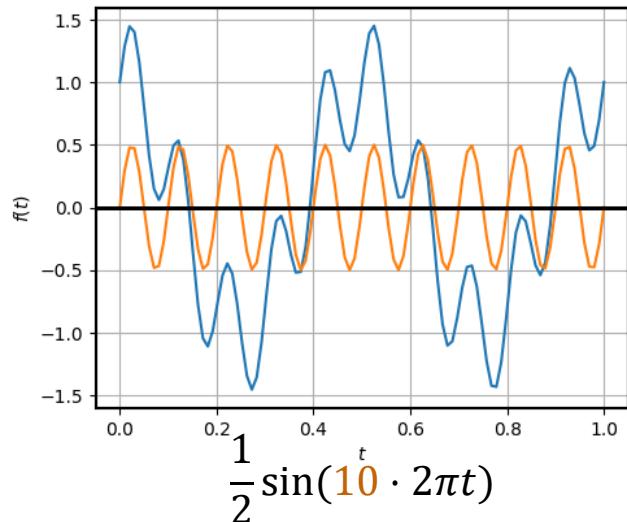
$$F(\omega) = \int_{-\infty}^{\infty} f(t) \cos(-\omega t) + j f(t) \sin(-\omega t) dt$$

**Sum over all  $t$**



**Sum = 0**

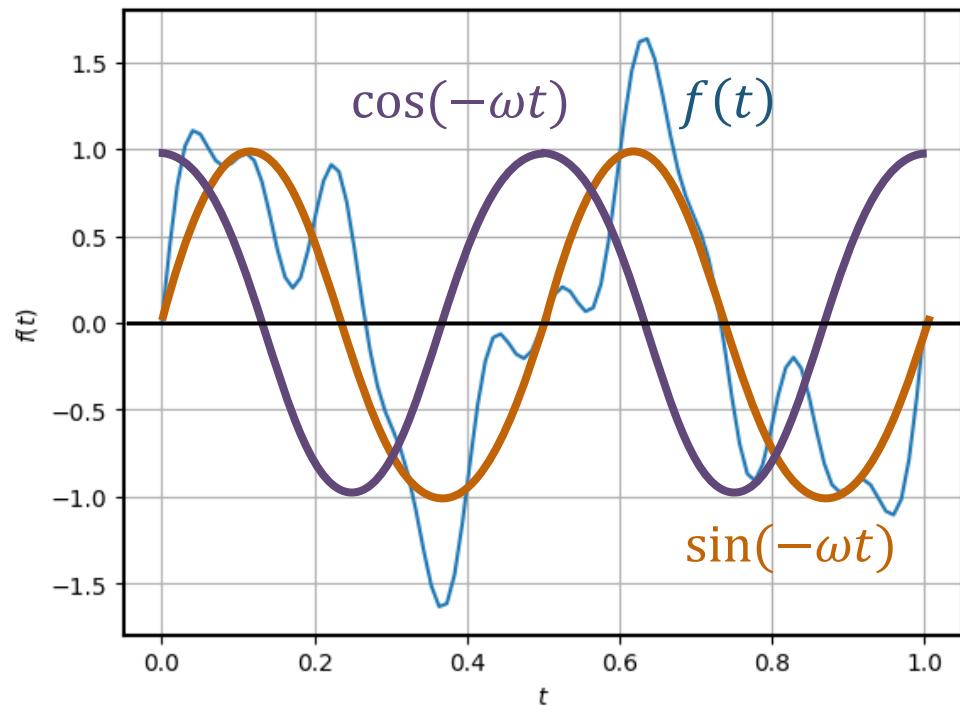
# Phase



# Demystifying Fourier Transform

$$F(\omega) = \int_{-\infty}^{\infty} f(t) \cos(-\omega t) + j f(t) \sin(-\omega t) dt$$

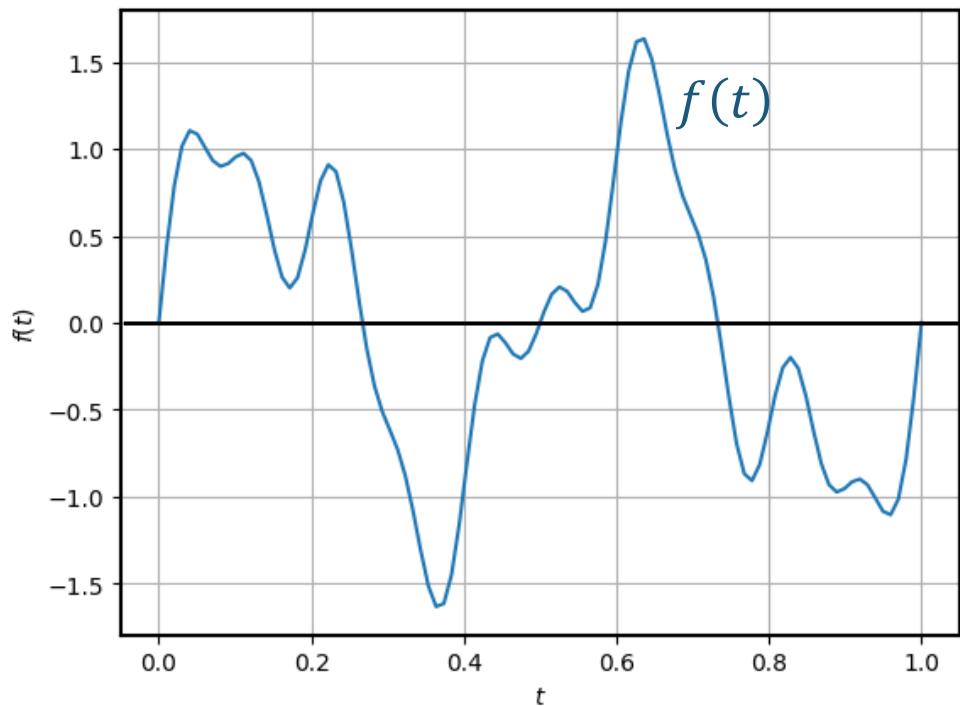
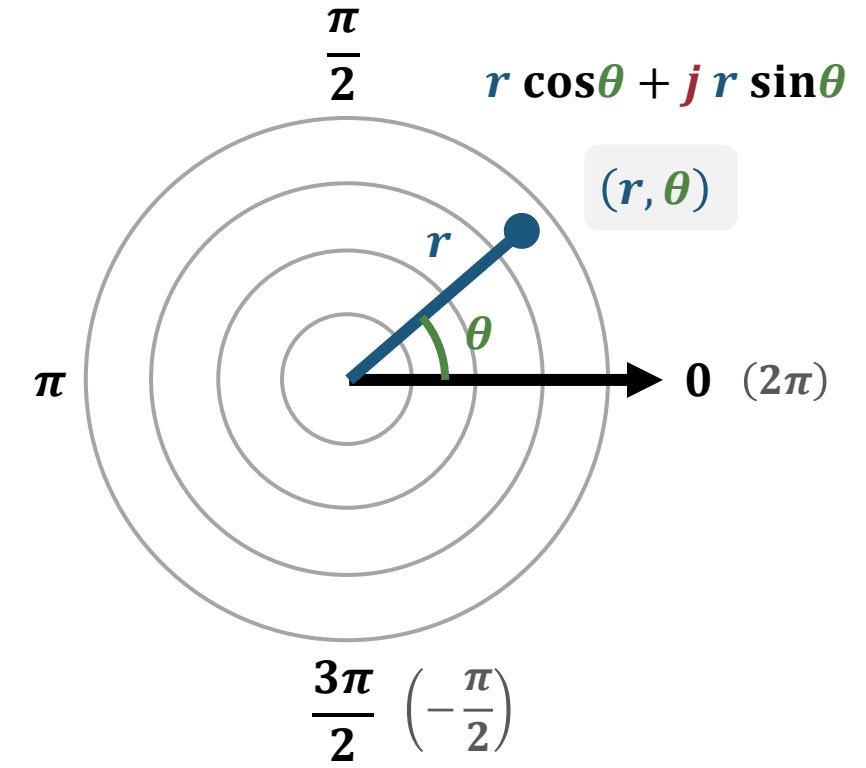
**Real part**      **Imaginary part**



# Demystifying Fourier Transform

$$F(\omega) = \int_{-\infty}^{\infty} f(t) \cos(-\omega t) + j f(t) \sin(-\omega t) dt$$

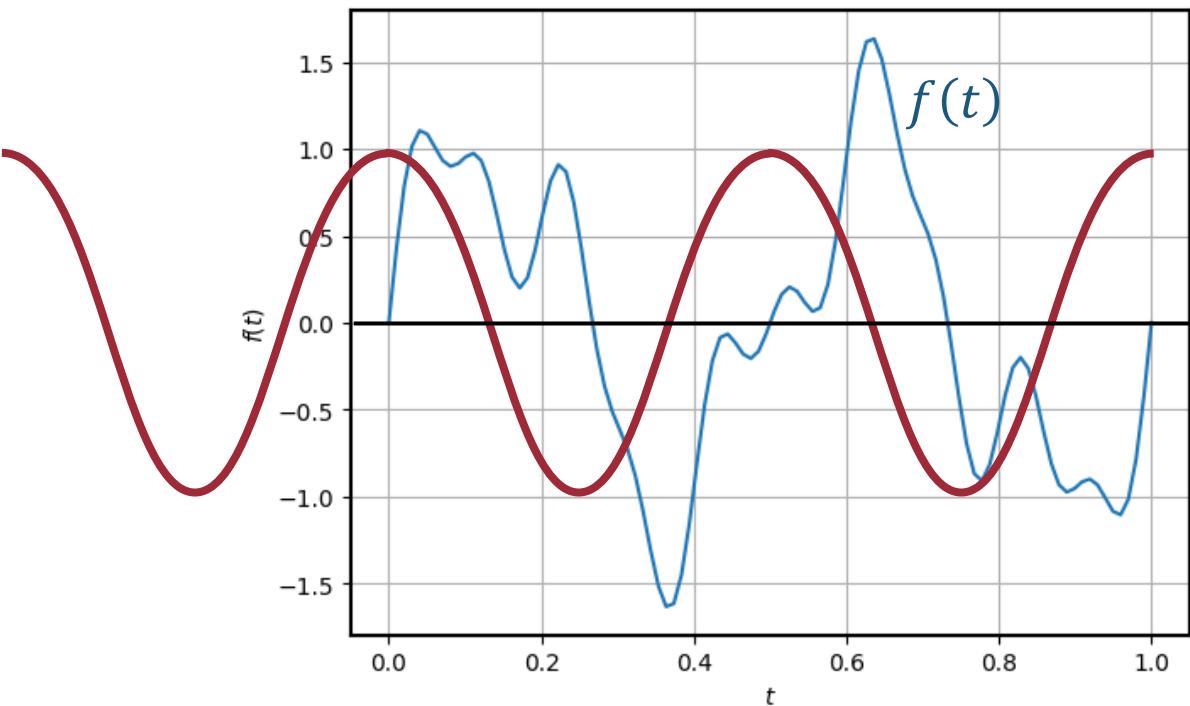
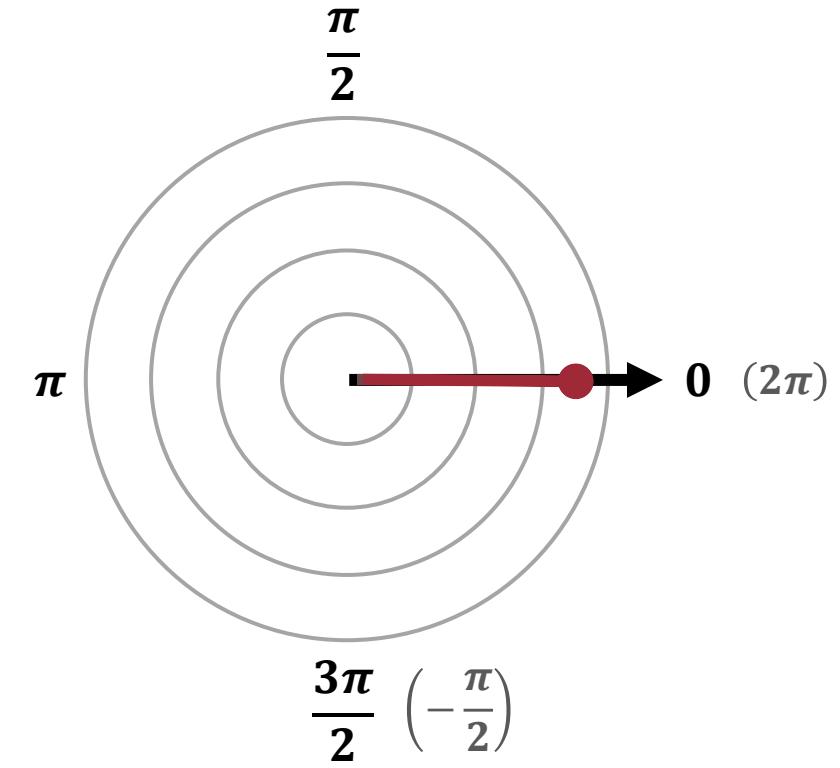
**Real part**      **Imaginary part**



# Demystifying Fourier Transform

$$F(\omega) = \int_{-\infty}^{\infty} f(t) \cos(-\omega t) + j f(t) \sin(-\omega t) dt$$

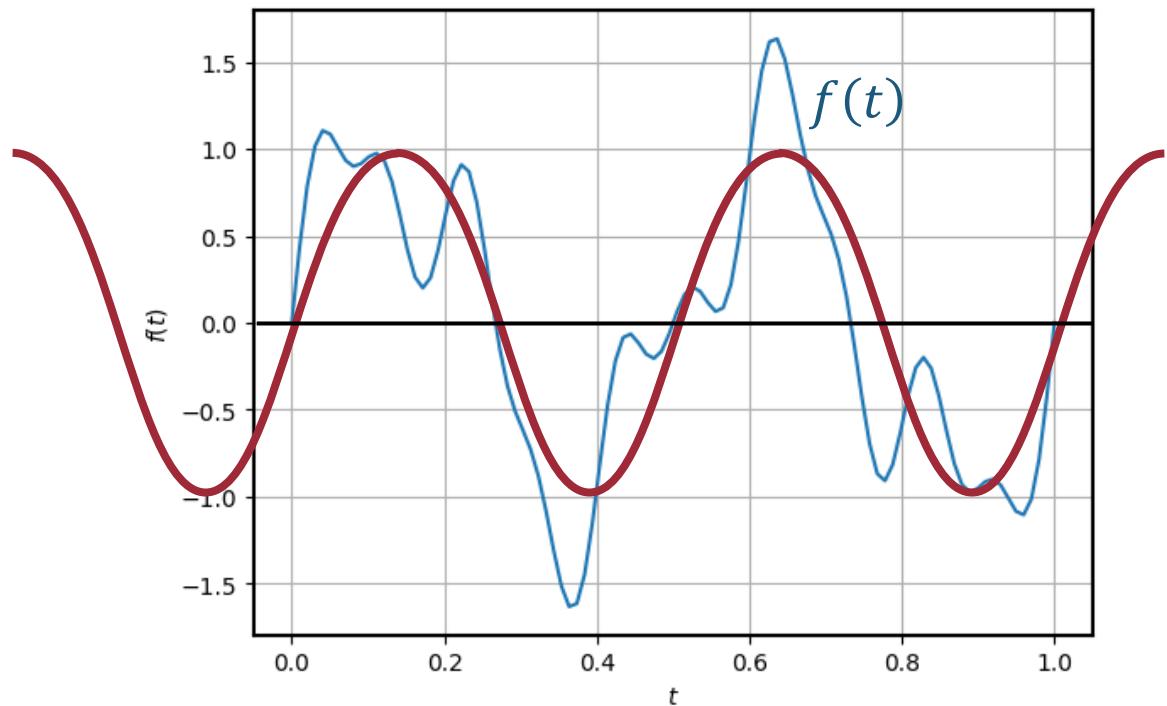
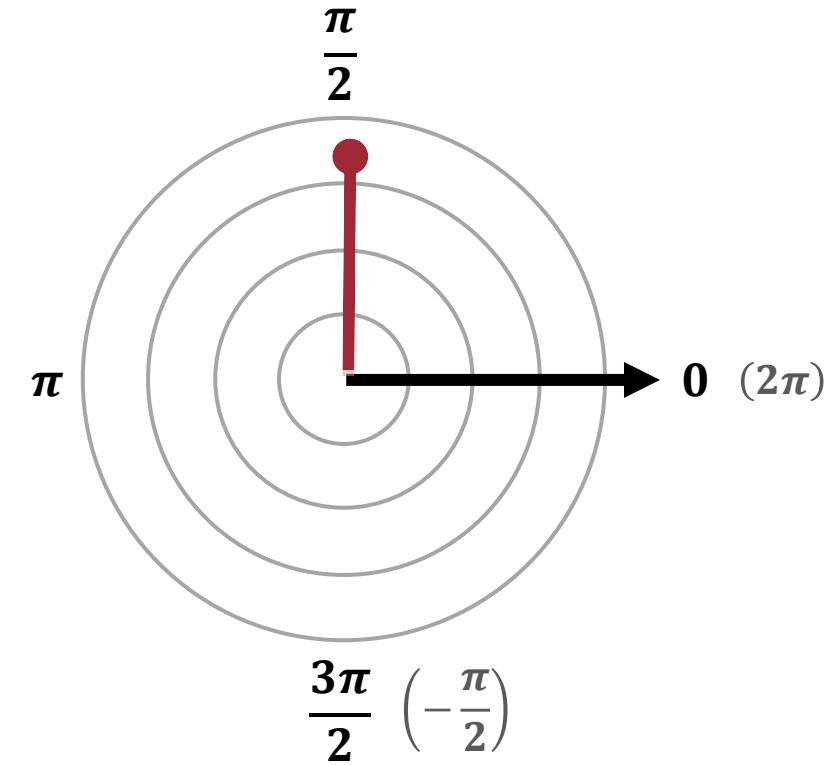
**Real part**      **Imaginary part**



# Demystifying Fourier Transform

$$F(\omega) = \int_{-\infty}^{\infty} f(t) \cos(-\omega t) + j f(t) \sin(-\omega t) dt$$

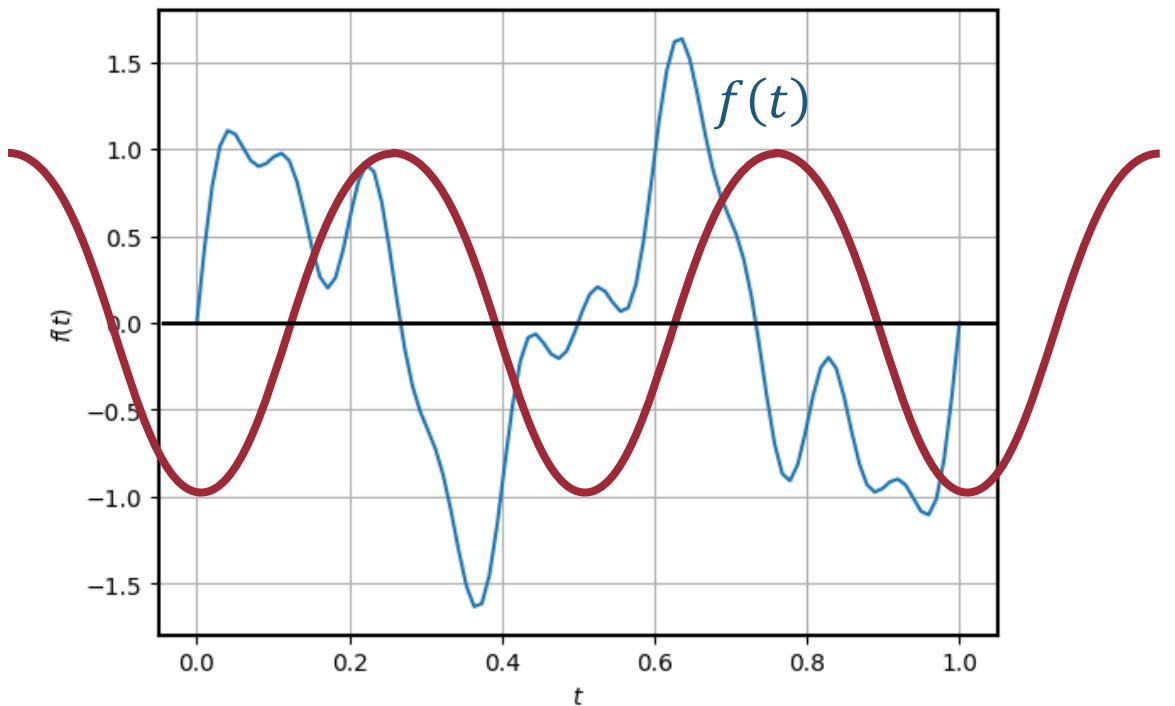
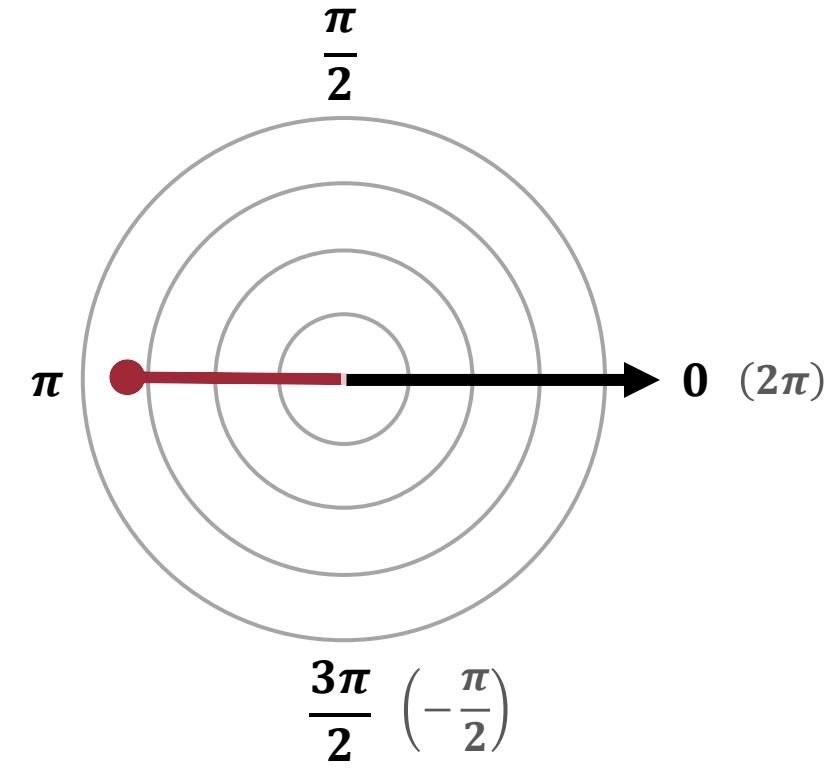
**Real part**      **Imaginary part**



# Demystifying Fourier Transform

$$F(\omega) = \int_{-\infty}^{\infty} f(t) \cos(-\omega t) + j f(t) \sin(-\omega t) dt$$

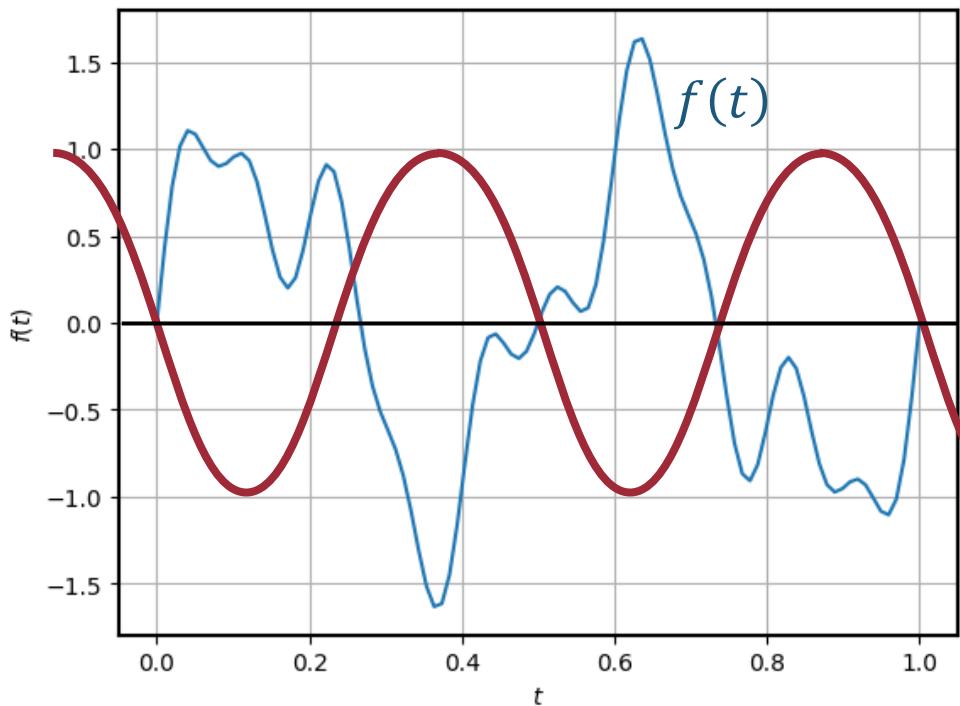
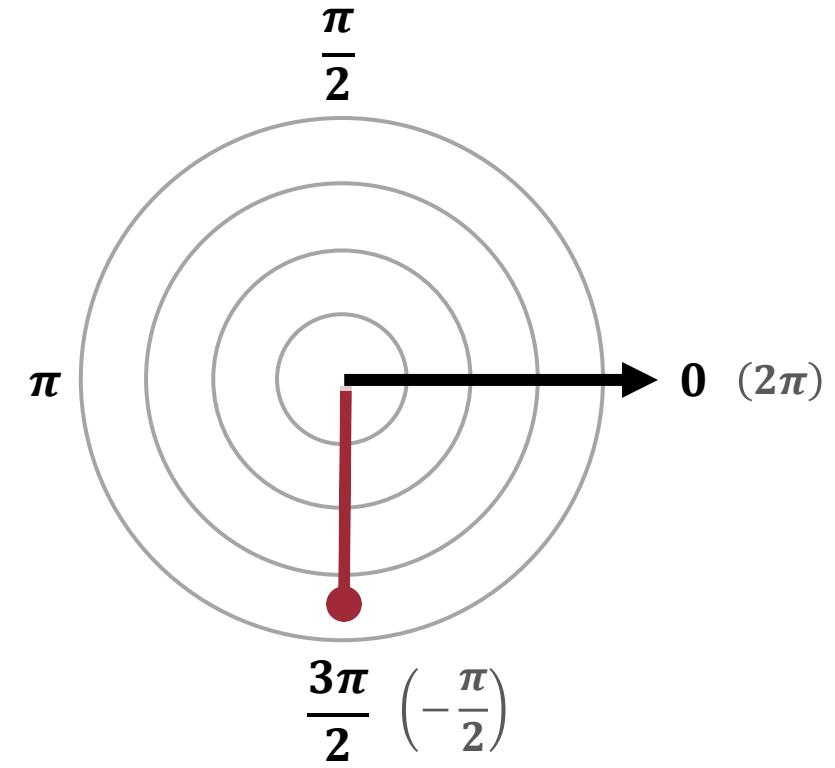
**Real part**      **Imaginary part**



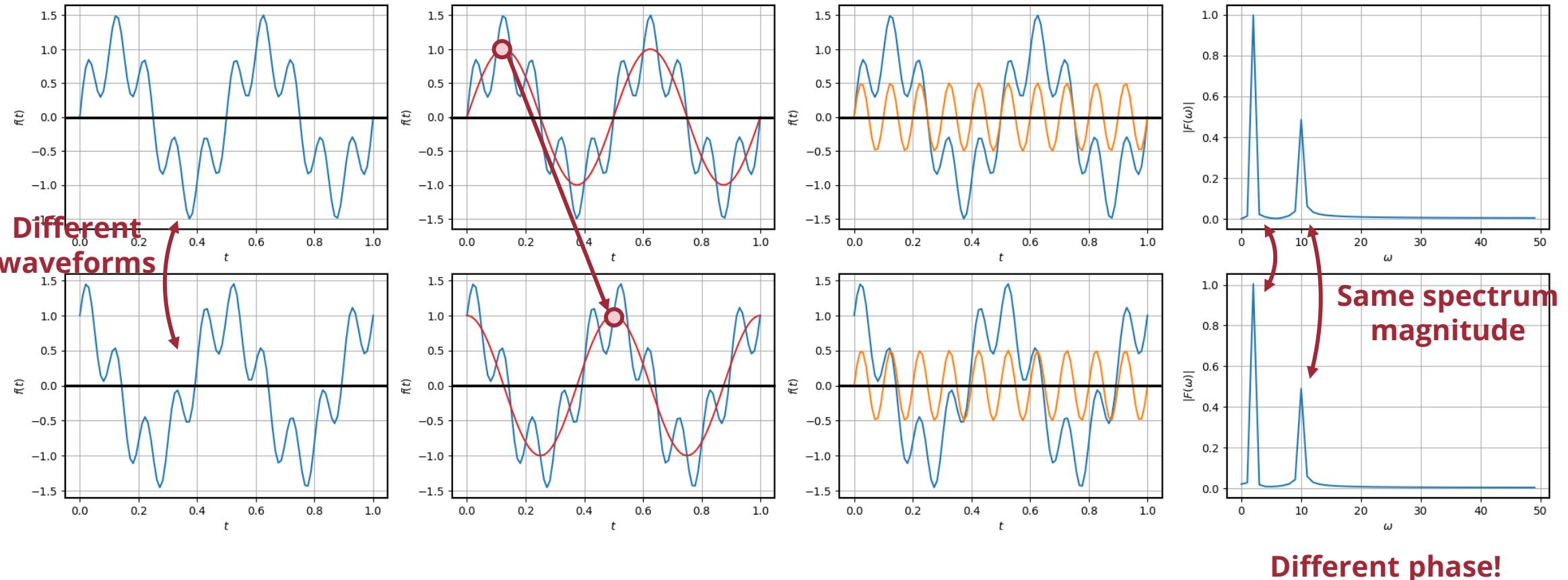
# Demystifying Fourier Transform

$$F(\omega) = \int_{-\infty}^{\infty} f(t) \cos(-\omega t) + j f(t) \sin(-\omega t) dt$$

**Real part**      **Imaginary part**



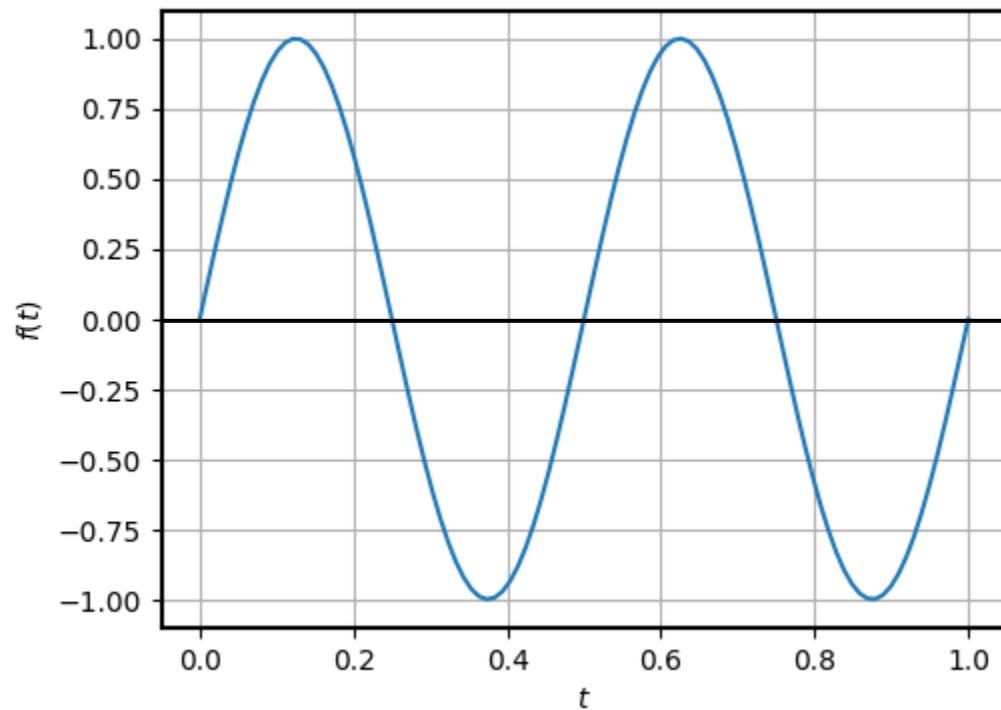
# Magnitude & Phase



# Example: A 2Hz Sine Wave

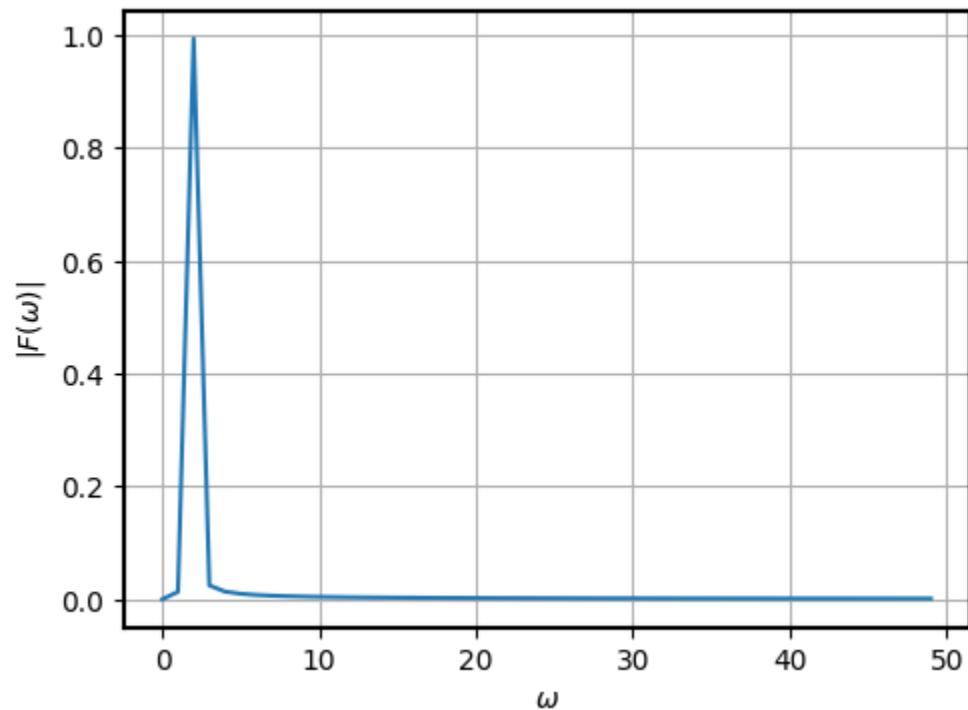
Signal

(time-domain)

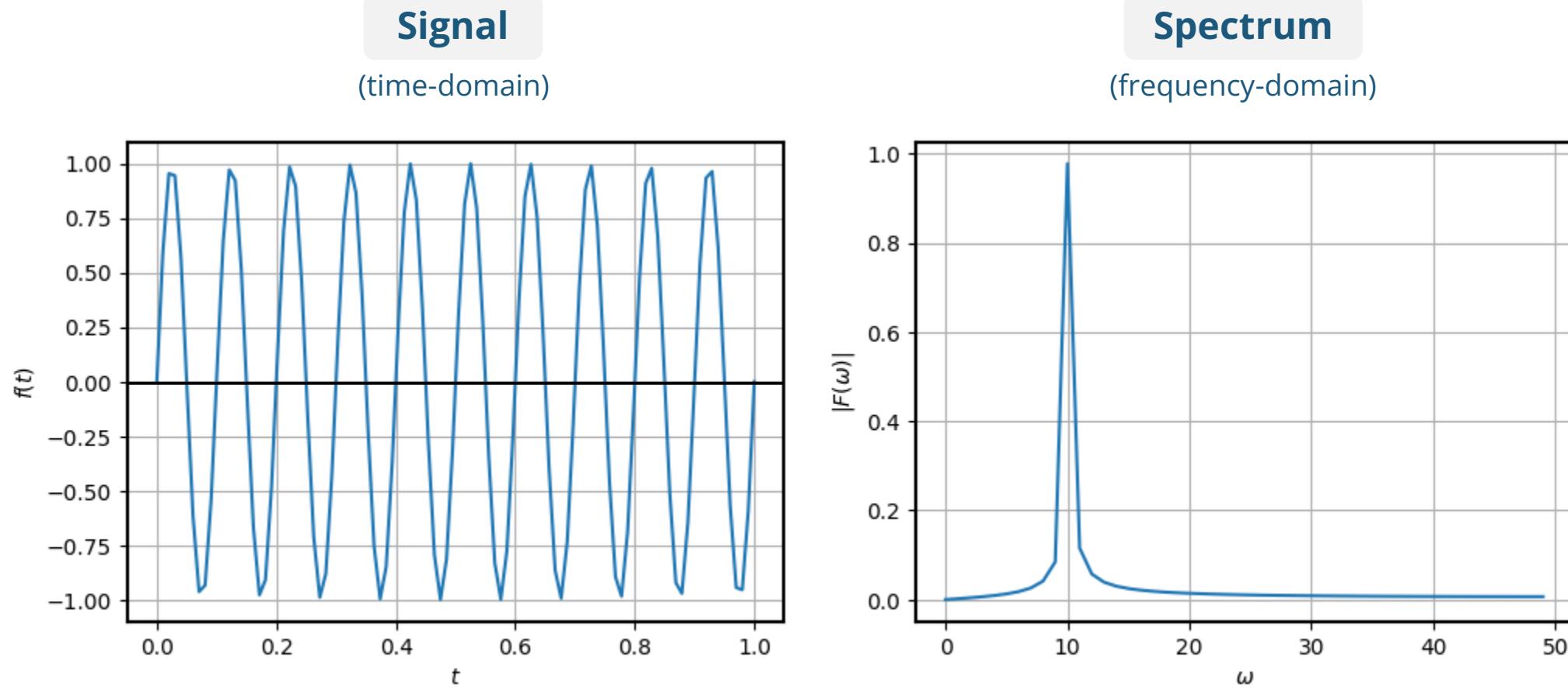


Spectrum

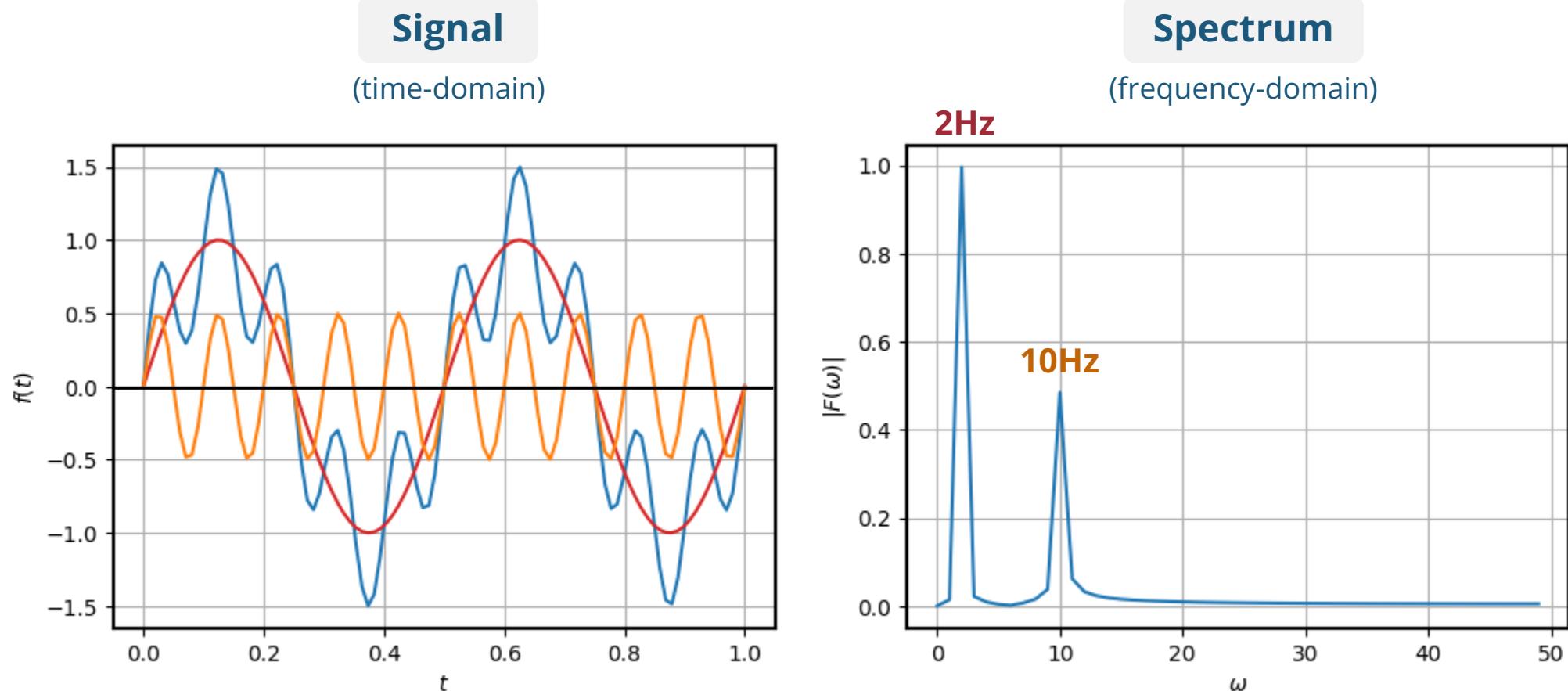
(frequency-domain)



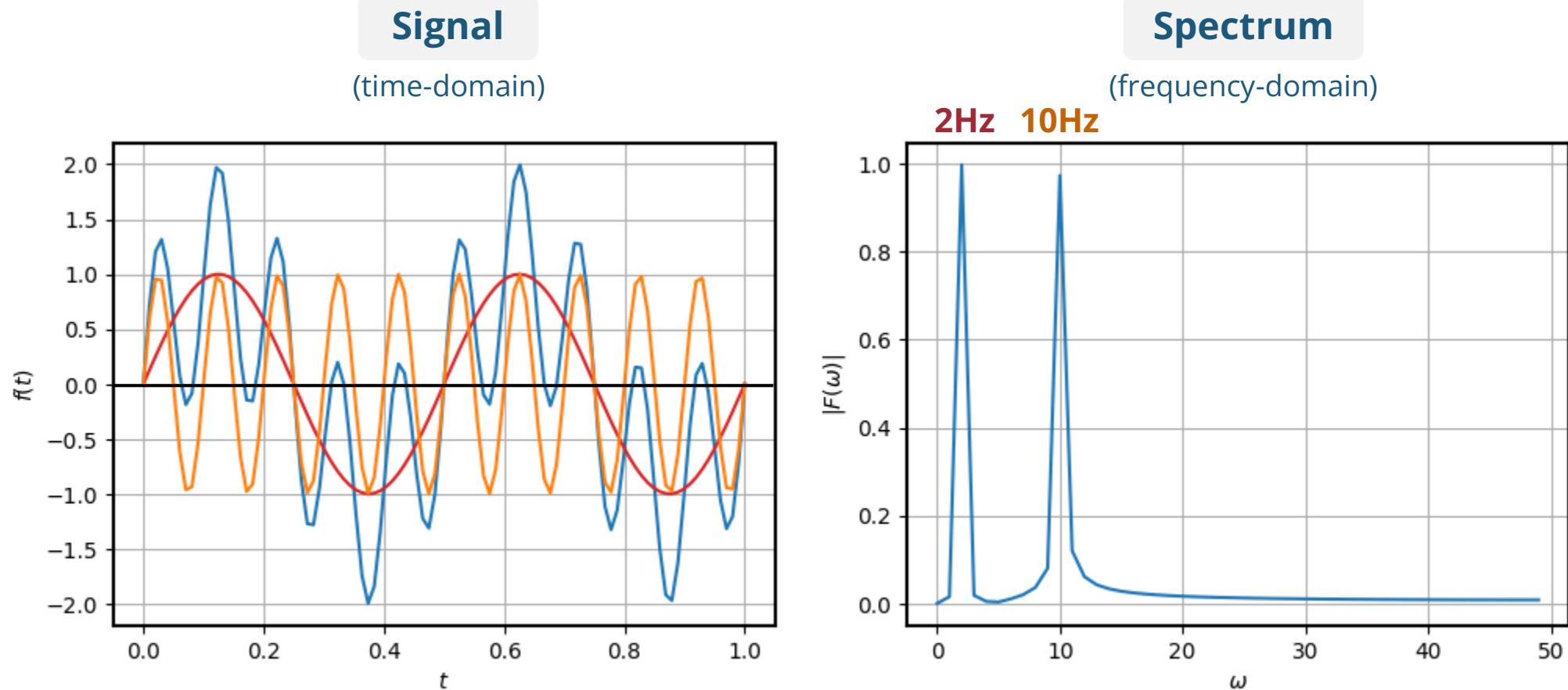
# Example: A 10Hz Sine Wave



# Example: Sum of 2Hz & 10Hz Sine Waves



# How about this?



# Fourier Transform

- **Intuition:** Decompose time-domain signals into **frequency components**
- Math formulation:

$$F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt$$

Output spectrum

Frequency

Input signal

Sine and cosine waves of frequency  $\omega$

Sum over all  $t$

The diagram illustrates the Fourier Transform formula. On the left, the output spectrum  $F(\omega)$  is shown in a green box with a frequency label below it. An arrow points from the green box to the  $F(\omega)$  term in the formula. The formula itself is  $\int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt$ . To the right of the integral, the input signal  $f(t)$  is in a blue box,  $e^{-j\omega t}$  is in a red box, and  $dt$  is in a purple box. Arrows point from these three boxes to their respective terms in the integral. A red arrow points from the text 'Sine and cosine waves of frequency  $\omega$ ' to the  $e^{-j\omega t}$  term. A purple arrow points from the text 'Sum over all  $t$ ' to the  $dt$  term.

# Fourier Transform

- **Intuition: Analysis through resynthesis!**

$$F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt$$

Analysis

Synthesis

The diagram illustrates the Fourier Transform equation  $F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt$ . The integral symbol is highlighted with a purple box and labeled 'Analysis' above it. The term  $e^{-j\omega t}$  is highlighted with a red box and labeled 'Analysis' above it. The differential  $dt$  is highlighted with a purple box and labeled 'Synthesis' below it. Arrows point from the labels to their respective highlighted terms.

# Discrete Fourier Transform (DFT)

- **Intuition:** Fourier transform with **discrete time and frequency**
  - Used for **digital audio** → we cannot achieve an infinite sampling rate...
- Math formulation:

$$X_k = \sum_{n=0}^{N-1} x_n e^{-j2\pi \frac{k}{N}n}$$

# Fourier Transform vs. Discrete Fourier Transform

## Fourier Transform

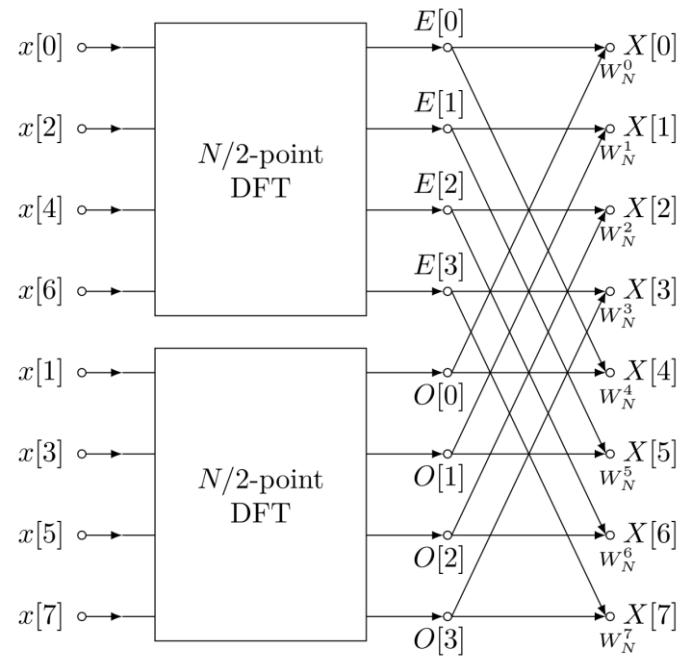
$$F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt$$

## Discrete Fourier Transform

$$X_k = \sum_{n=0}^{N-1} x_n e^{-j2\pi \frac{k}{N} n}$$

# In Practice: Fast Fourier Transform (FFT)

- An **efficient implementation** of discrete Fourier transform
  - Reduce the complexity from  $O(n^2)$  to  $O(n \log n)$



(Source: Yangwenbo99 via Wikimedia)

Top 10 algorithms from the 20<sup>th</sup> century

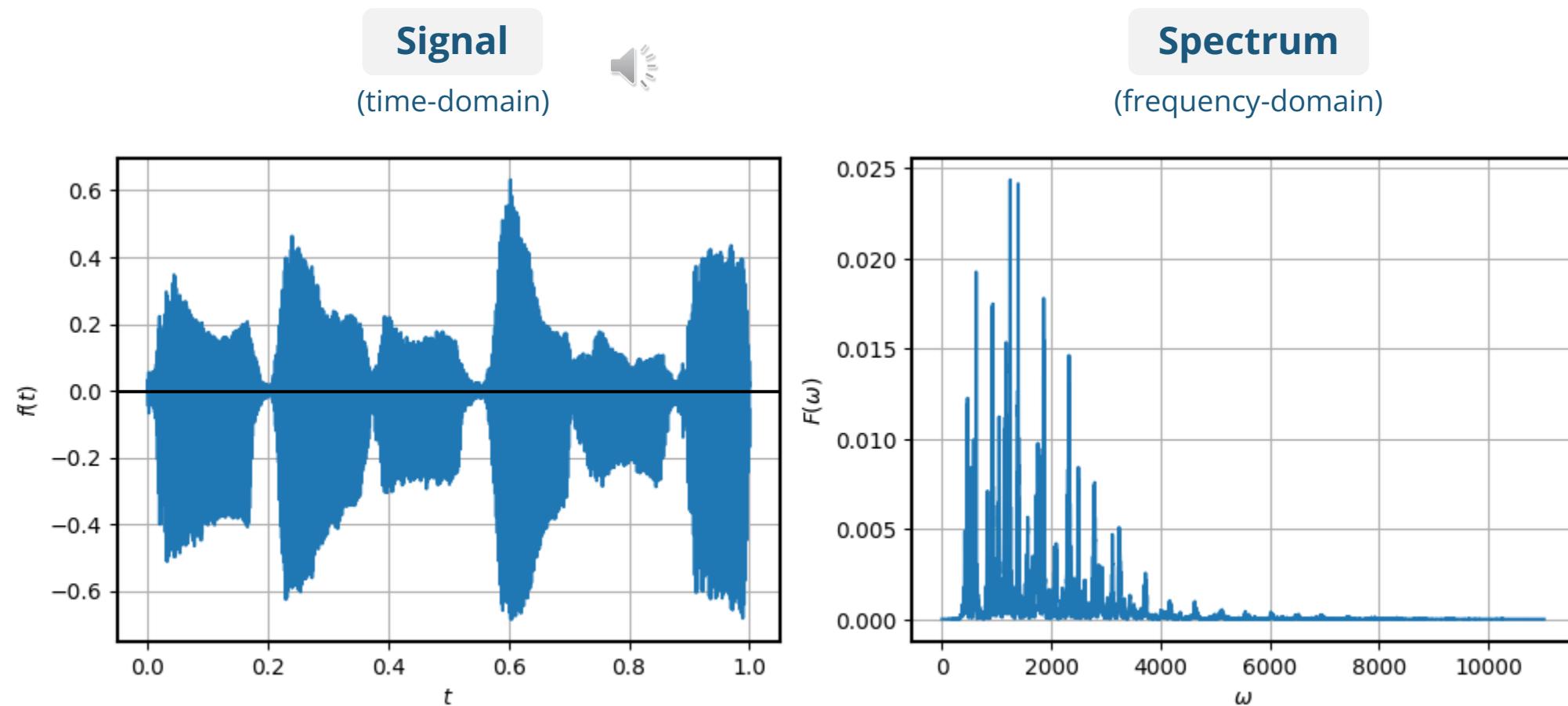
Computing  
in SCIENCE & ENGINEERING



IEEE  
COMPUTER SOCIETY  
www.computer.org/cise

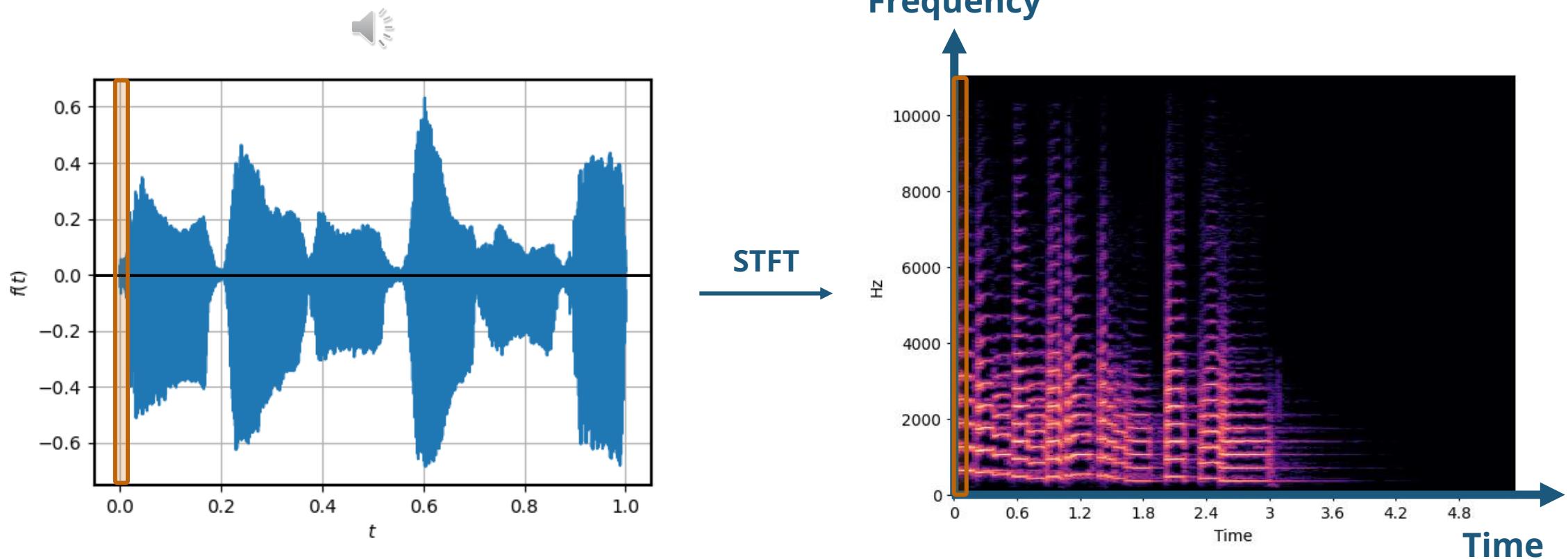
# Time-Frequency Analysis

# Fourier Transform of a Trumpet Sound

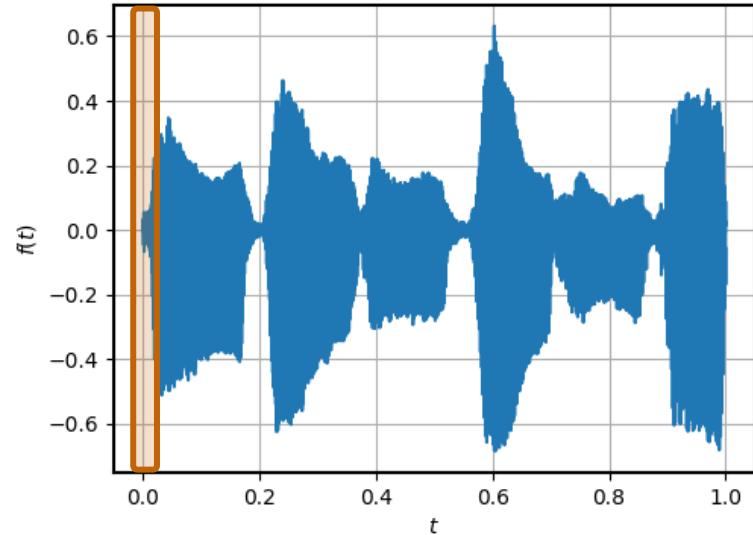
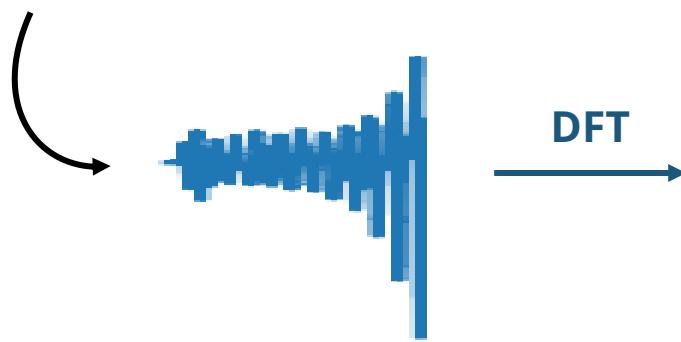
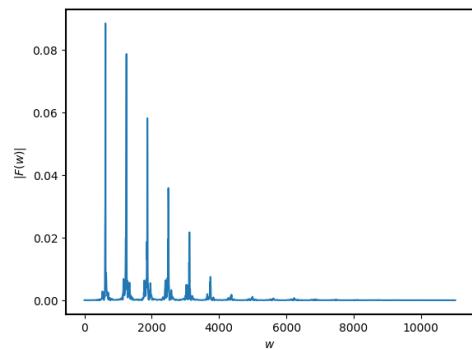
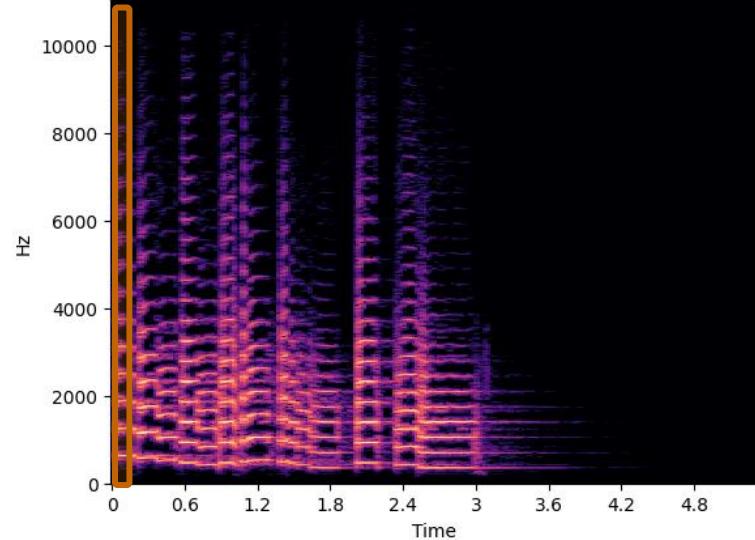


# Short-Time Fourier Transform (STFT)

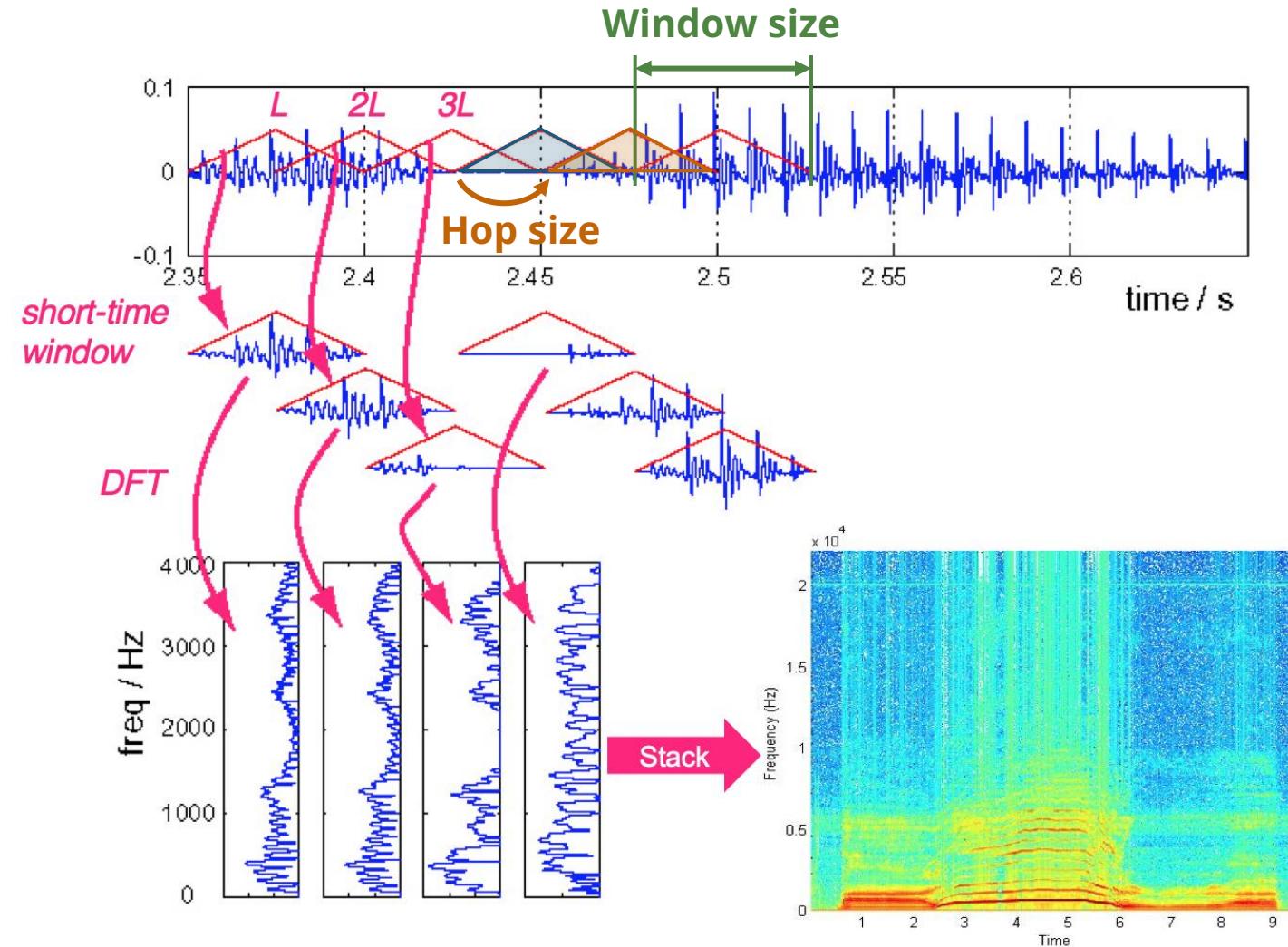
- **Intuition:** Slice the audio into chunks and apply Fourier transform



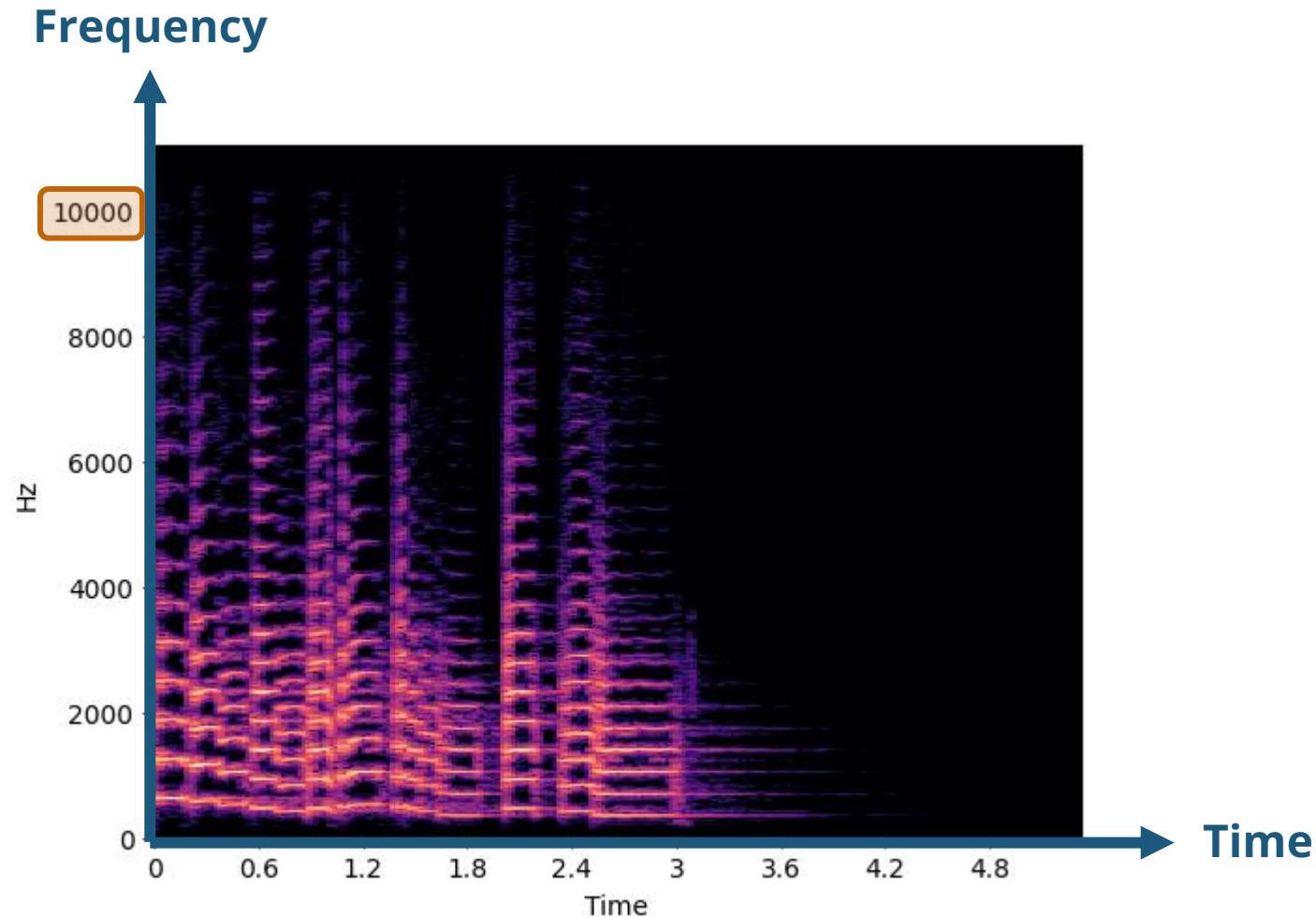
# Short-Time Fourier Transform (STFT)



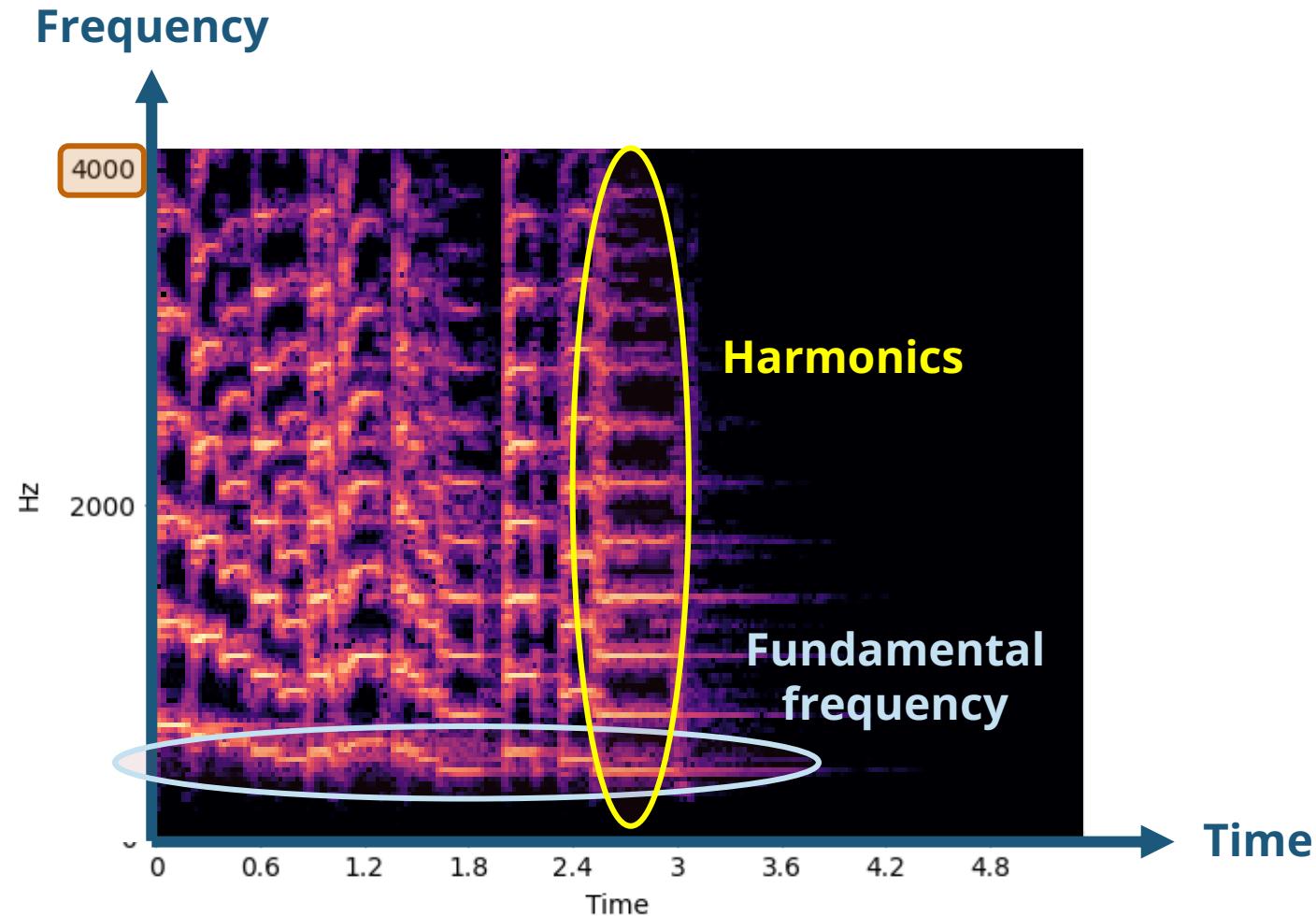
# Short-Time Fourier Transform (STFT)



# Spectrogram



# Spectrogram



# Timbre

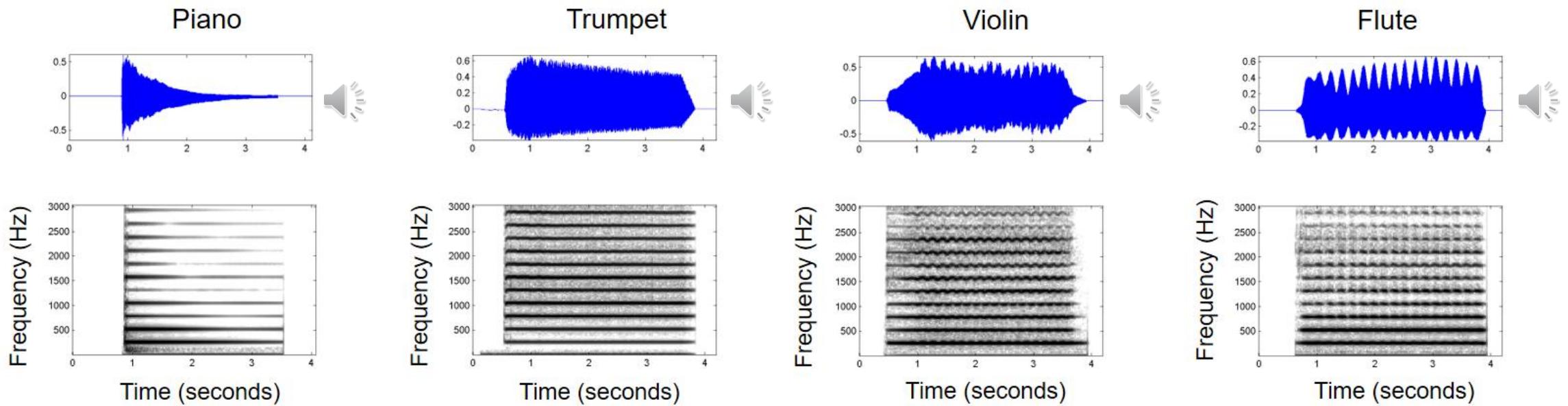
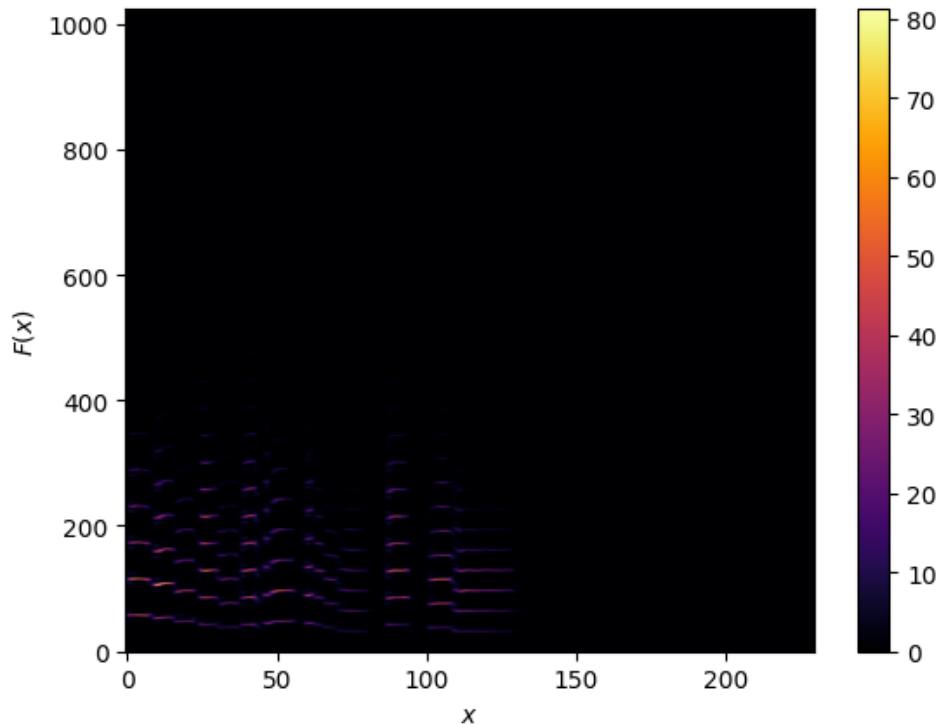


Figure 1.23 from [Müller, FMP, Springer 2015]

(Source: Müller et al., 2021)

# Example: `librosa.stft`

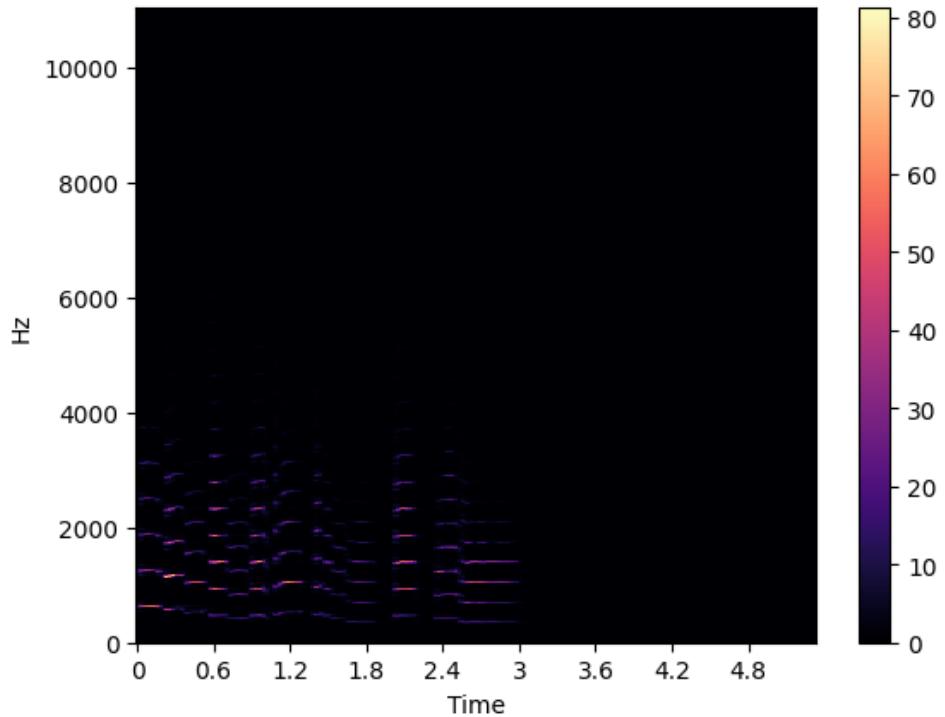


```
# Load the example audio in librosa
y, sr = librosa.load(librosa.example("trumpet"))

# Compute the spectrogram
S = np.abs(librosa.stft(y))

# Plot the spectrogram
im = plt.imshow(S, cmap="inferno", aspect="auto",
                 origin="lower")
plt.colorbar(im)
plt.xlabel("Time (sec)")
plt.ylabel("Frequency (Hz)")
plt.show()
```

# Example: `librosa.display.specshow`

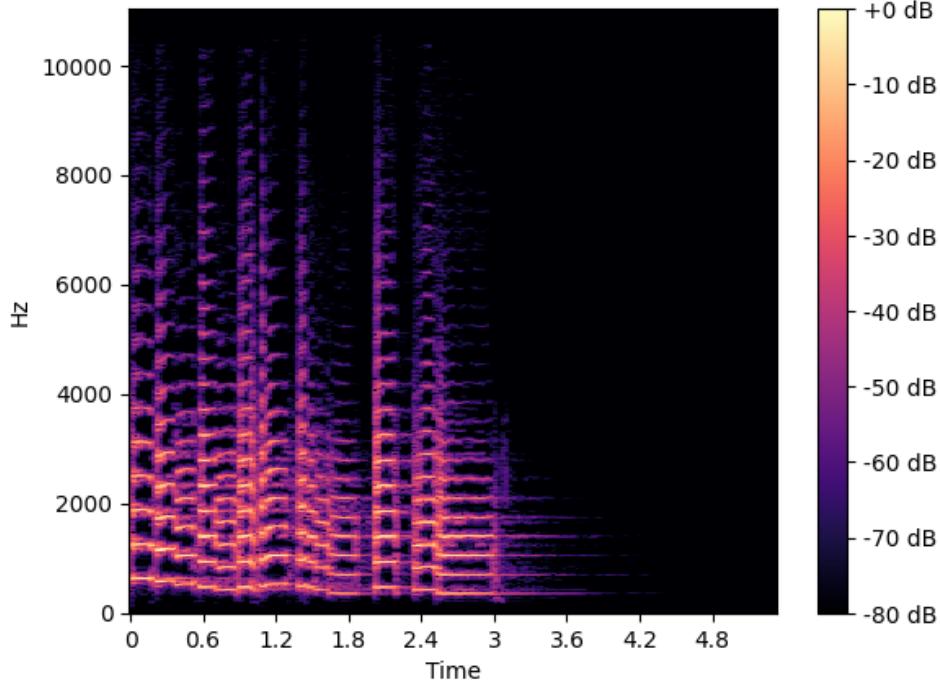


```
# Load the example audio in librosa
y, sr = librosa.load(librosa.example("trumpet"))

# Compute the spectrogram
S = np.abs(librosa.stft(y))

# Plot the spectrogram
im = librosa.display.specshow(S, x_axis="time",
                               y_axis="linear")
plt.colorbar(im)
plt.show()
```

## Example: `librosa.amplitude_to_db`



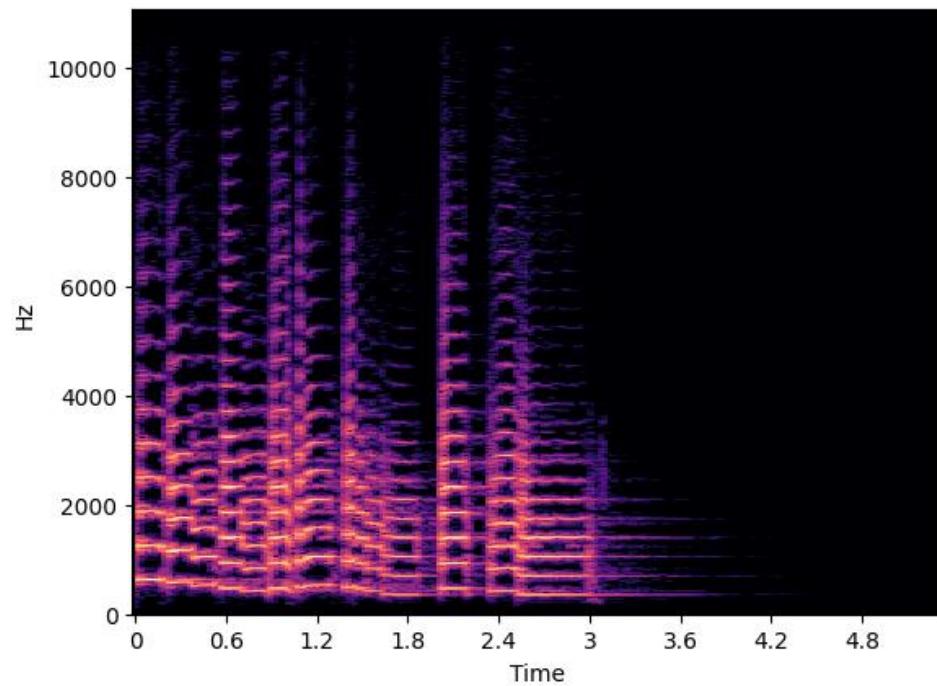
```
# Load the example audio in librosa
y, sr = librosa.load(librosa.example("trumpet"))

# Compute the spectrogram
S = np.abs(librosa.stft(y))
S_db = librosa.amplitude_to_db(S, ref=np.max)

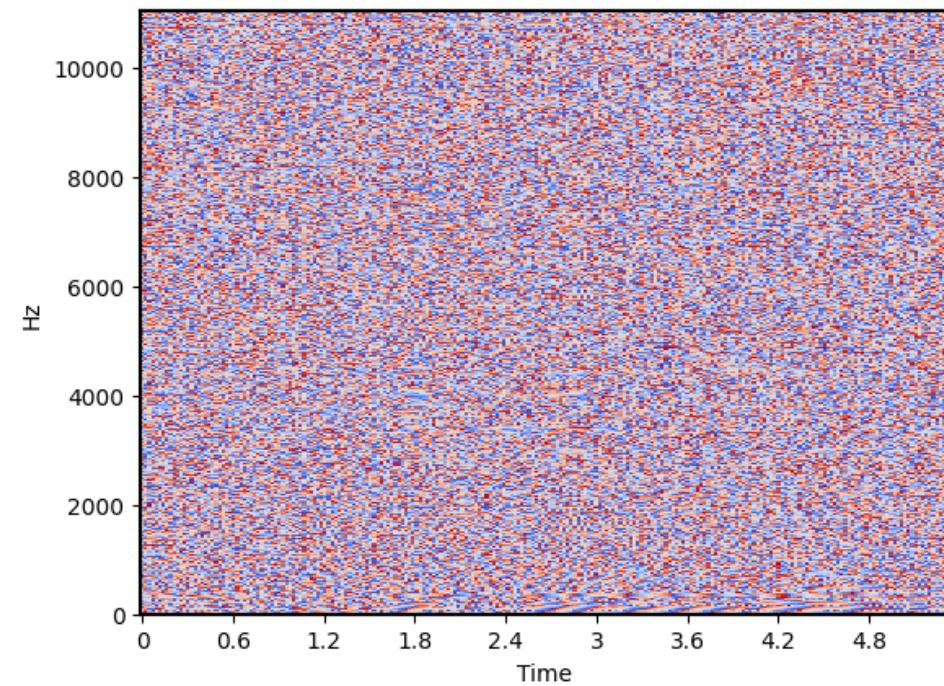
# Plot the spectrogram
im = librosa.display.specshow(S_db, x_axis="time",
                               y_axis="linear")
plt.colorbar(im, format="%+2.0f dB")
plt.show()
```

# Example: Magnitude & Phase

Magnitude

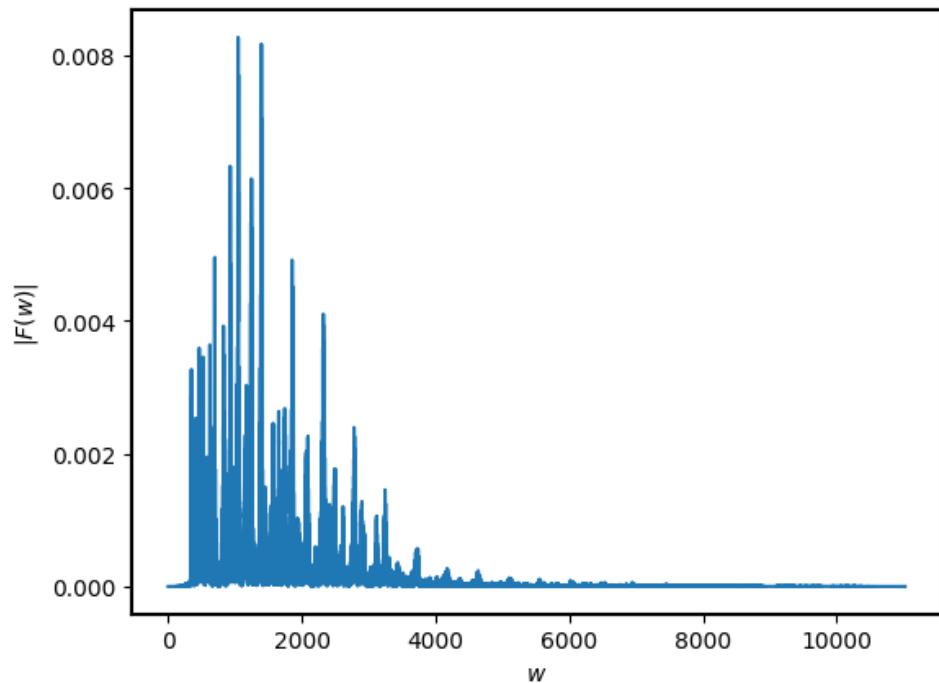
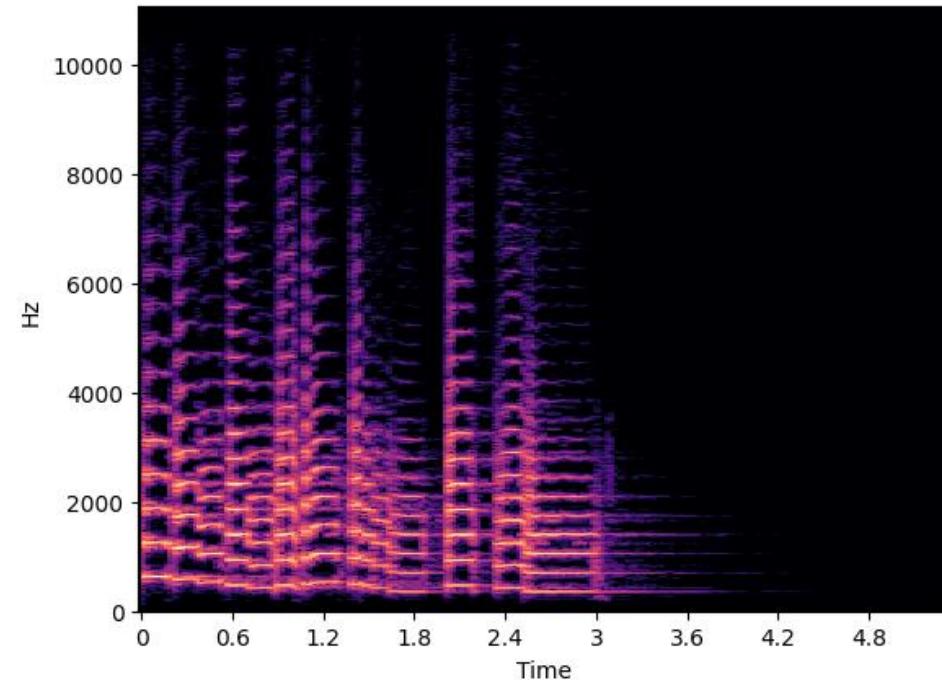


Phase



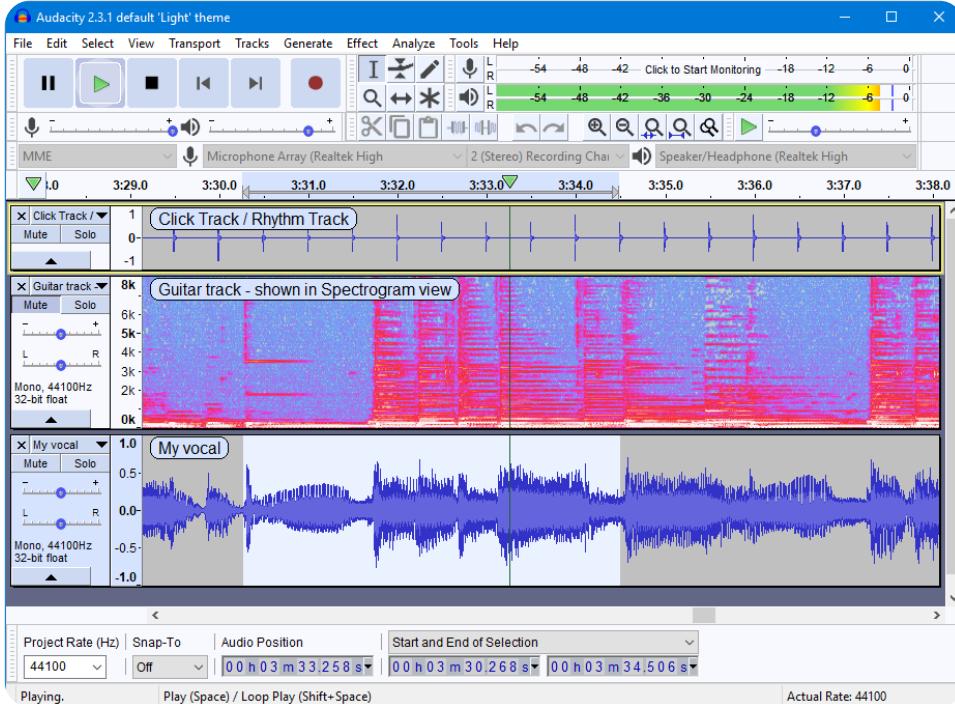
# 🔥 PA2: Spectral Analysis

- Use librosa to process audio files
  - Fast Fourier transform (**FFT**)
  - Short-time Fourier transform (**STFT**)



# Software

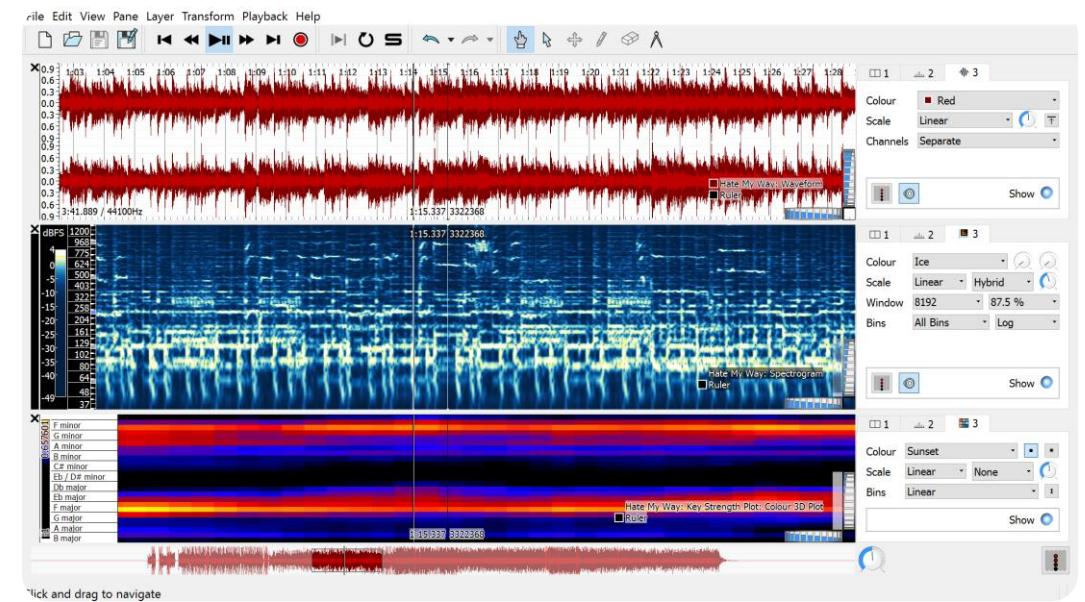
## Audacity



(Source: audacity-2.3.1 via Internet Archive)

[archive.org/details/audacity-2.3.1](https://archive.org/details/audacity-2.3.1)  
[sonicvisualiser.org](https://sonicvisualiser.org)

## Sonic Visualiser



(Source: sonicvisualizer.org)

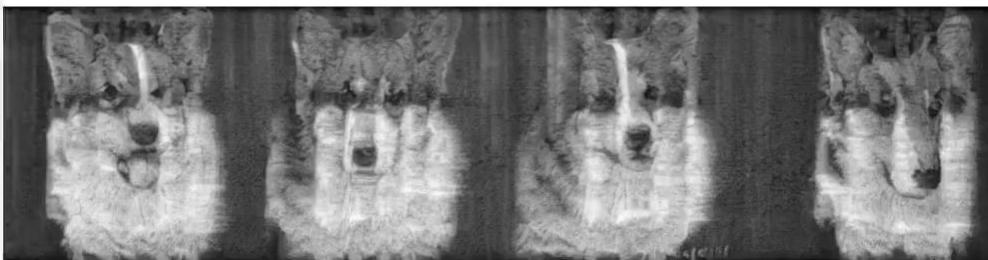
# Images that Sound (Chen et al., 2024)

Using diffusion models to generate visual spectrograms that look like images but can also be played as sound.

Image prompt: a colorful photo of corgis



Audio prompt: dog barking



(Source: Chen et al., 2024)

Image prompt: a colorful photo of tigers



Audio prompt: tiger growling



(Source: Chen et al., 2024)

# Images that Sound (Chen et al., 2024)

**Using diffusion models to generate visual spectrograms that look like images but can also be played as sound.**

Image prompt: a colorful photo of an auto racing game

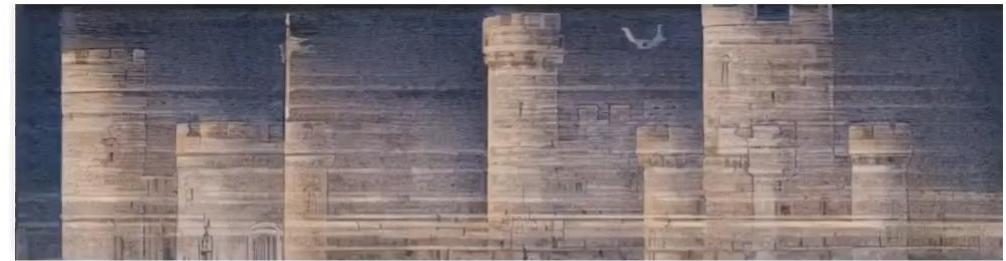


Audio prompt: a race car passing by and disappearing



(Source: Chen et al., 2024)

Image prompt: a colorful photo of a castle with bell towers



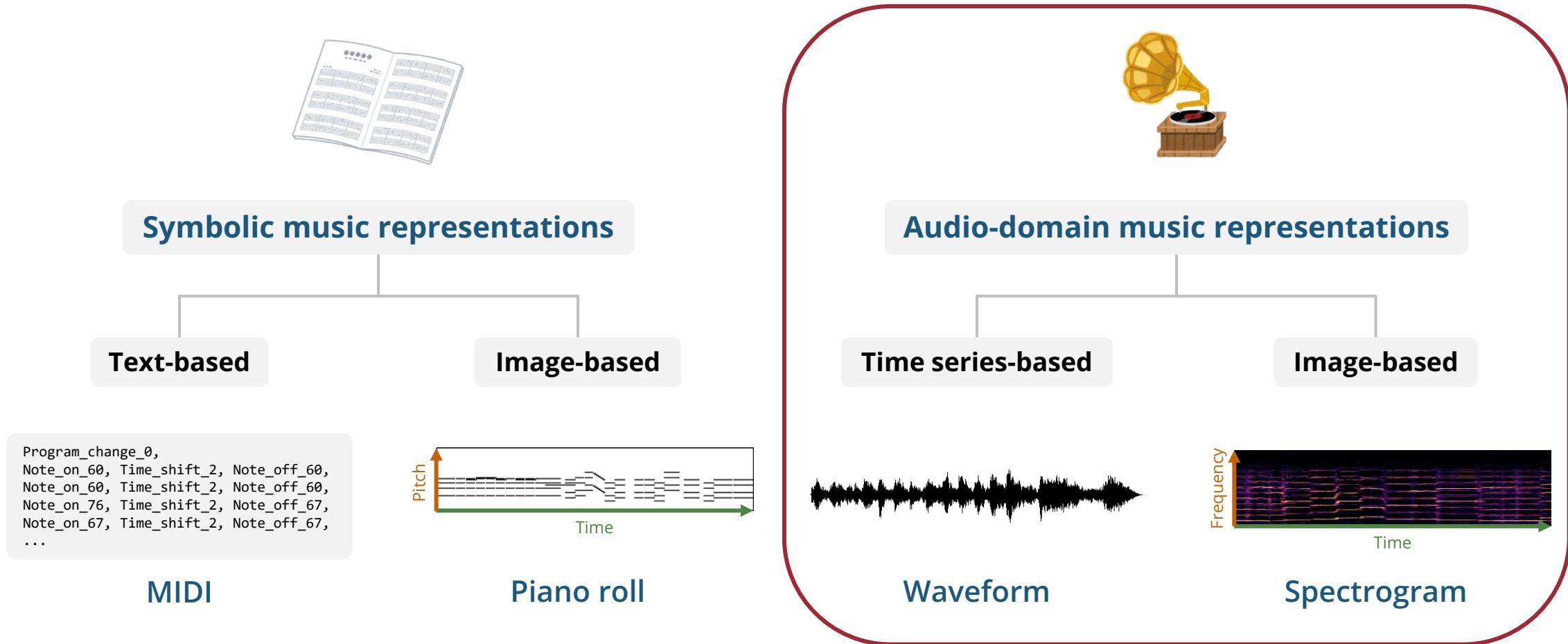
Audio prompt: bell ringing



(Source: Chen et al., 2024)

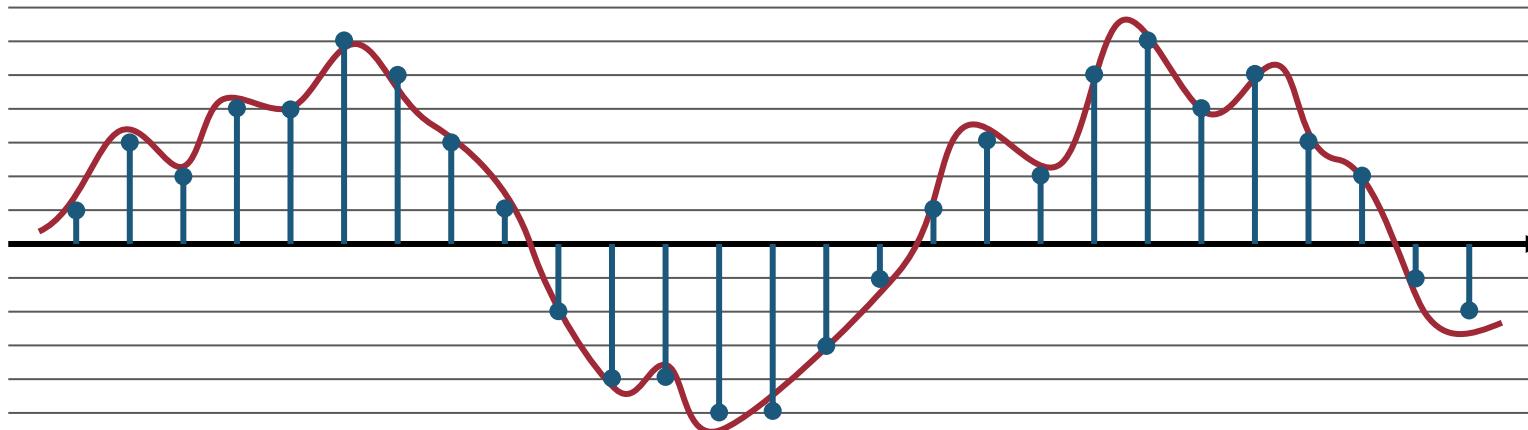
# Recap

# Four Representative Music Representations

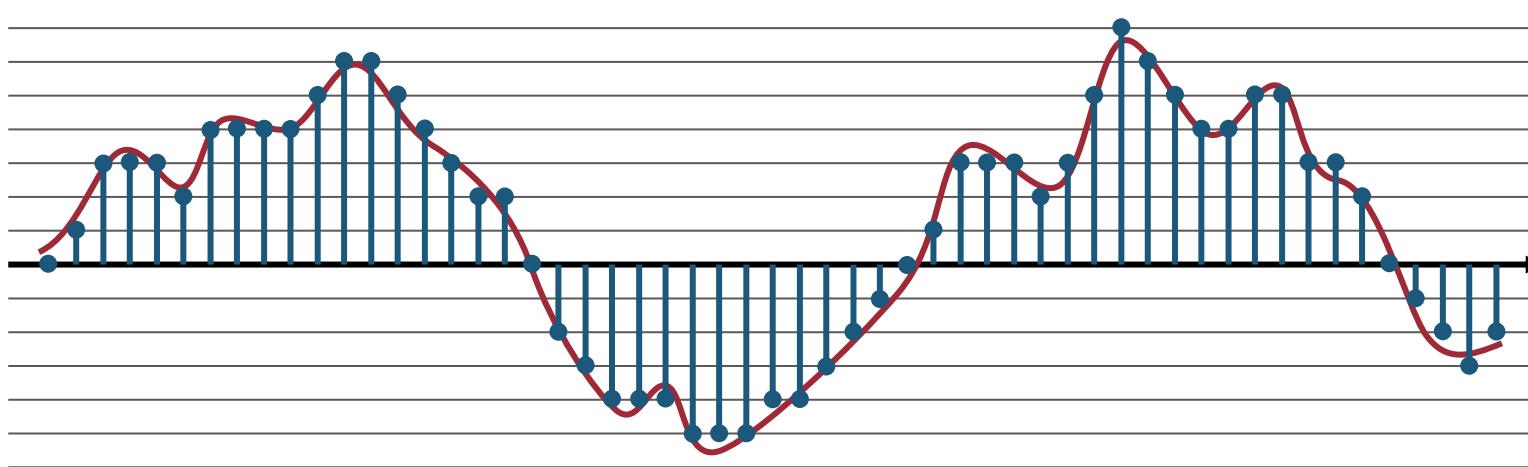


**Today's topic!**

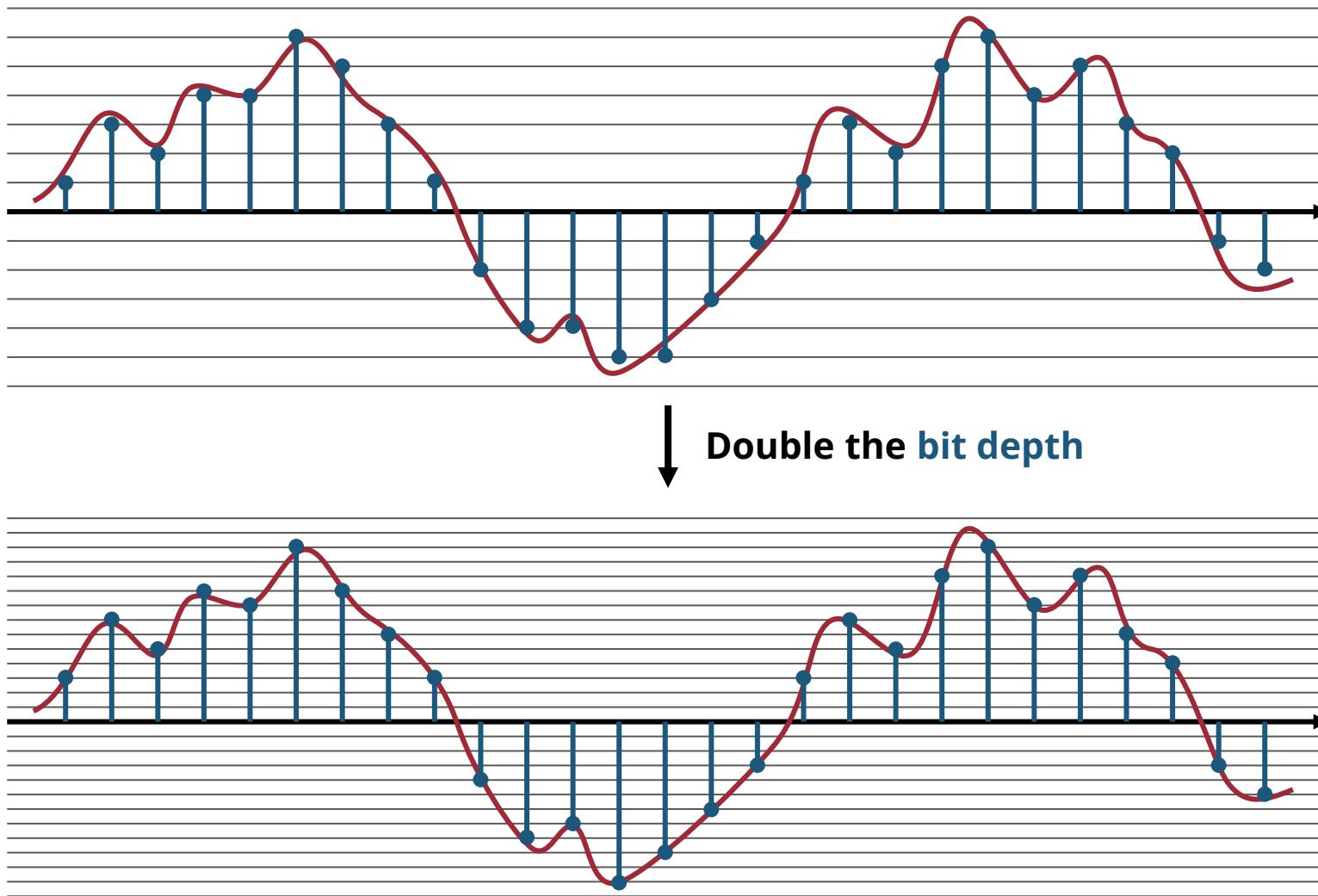
# Resolution: Sampling Rate



Double the sampling rate

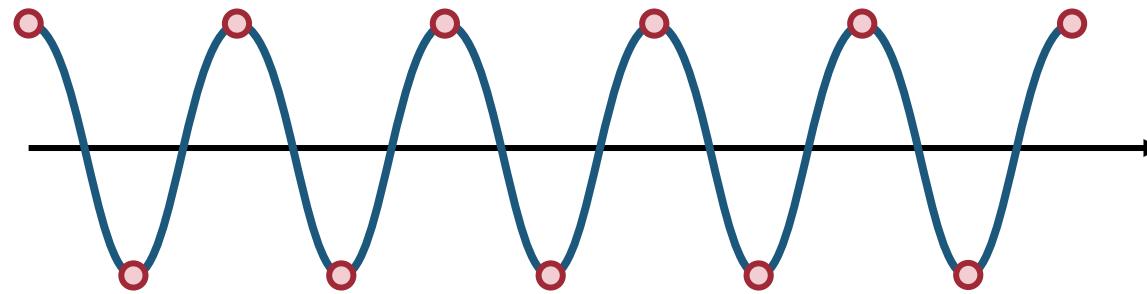


# Resolution: Bit Depth

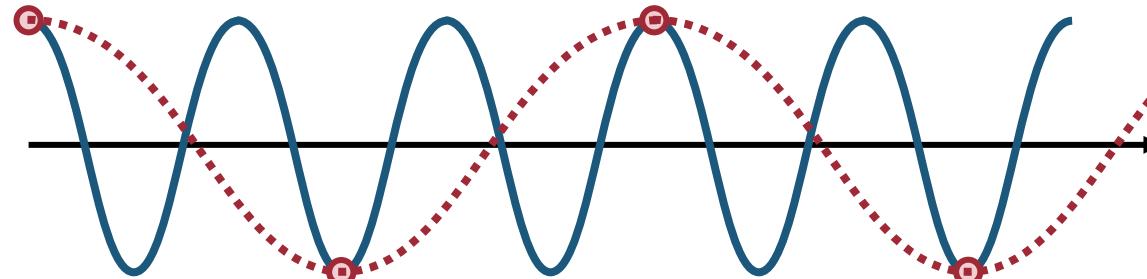


# Sampling Theorem: Undersampling

**Critically sampled**  
( $f_s = 2f_{max}$ )

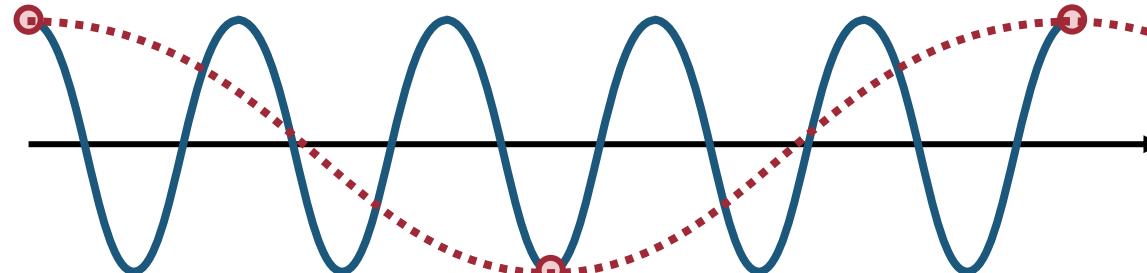


**Undersampled**  
( $f_s = \frac{2}{3}f_{max}$ )



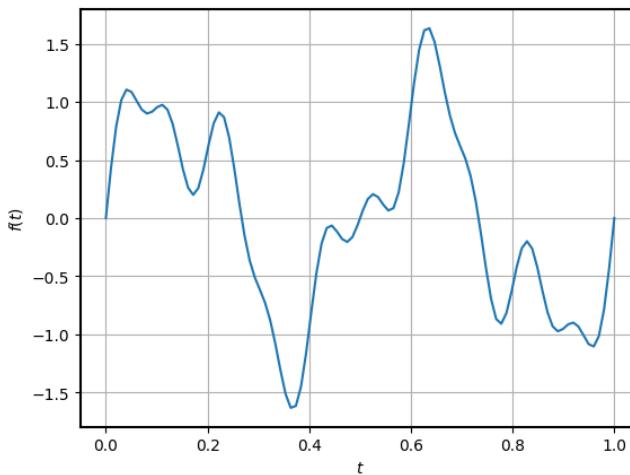
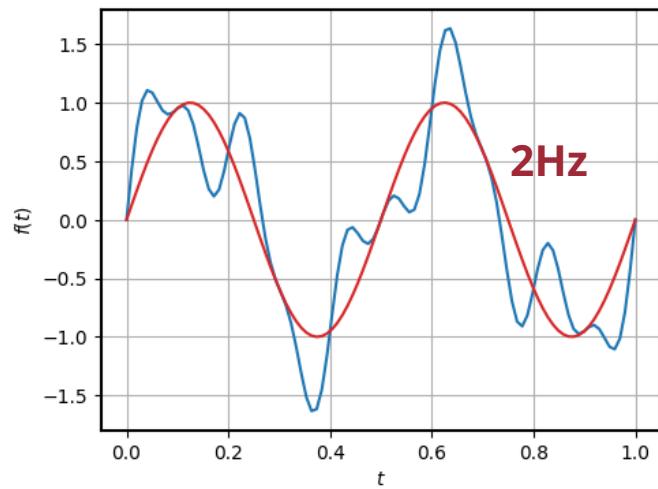
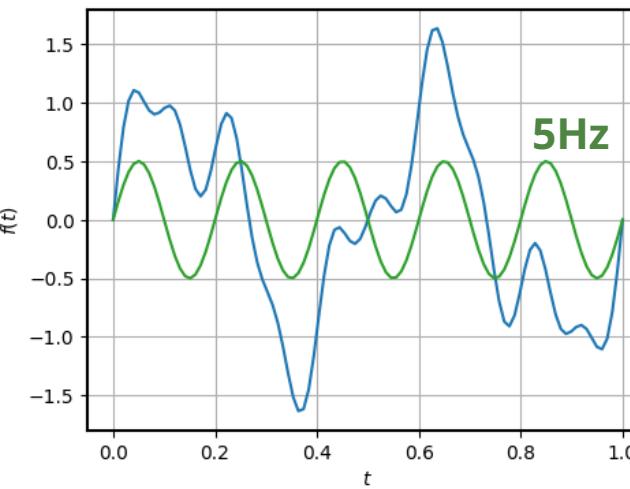
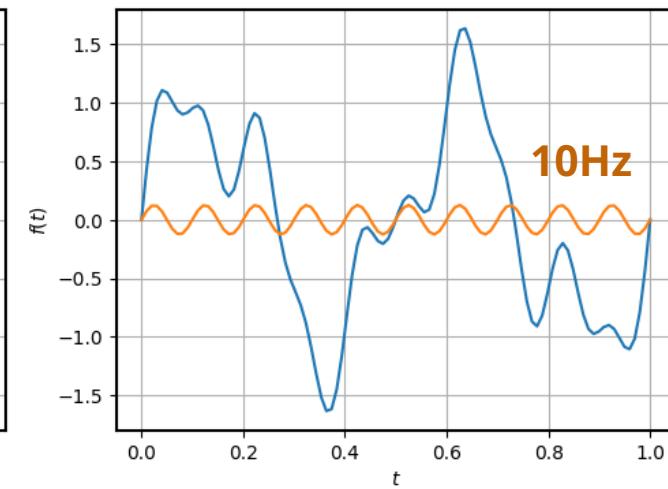
Can only reconstruct frequency up to  $\frac{1}{3}f_{max}$

**Undersampled**  
( $f_s = \frac{2}{5}f_{max}$ )

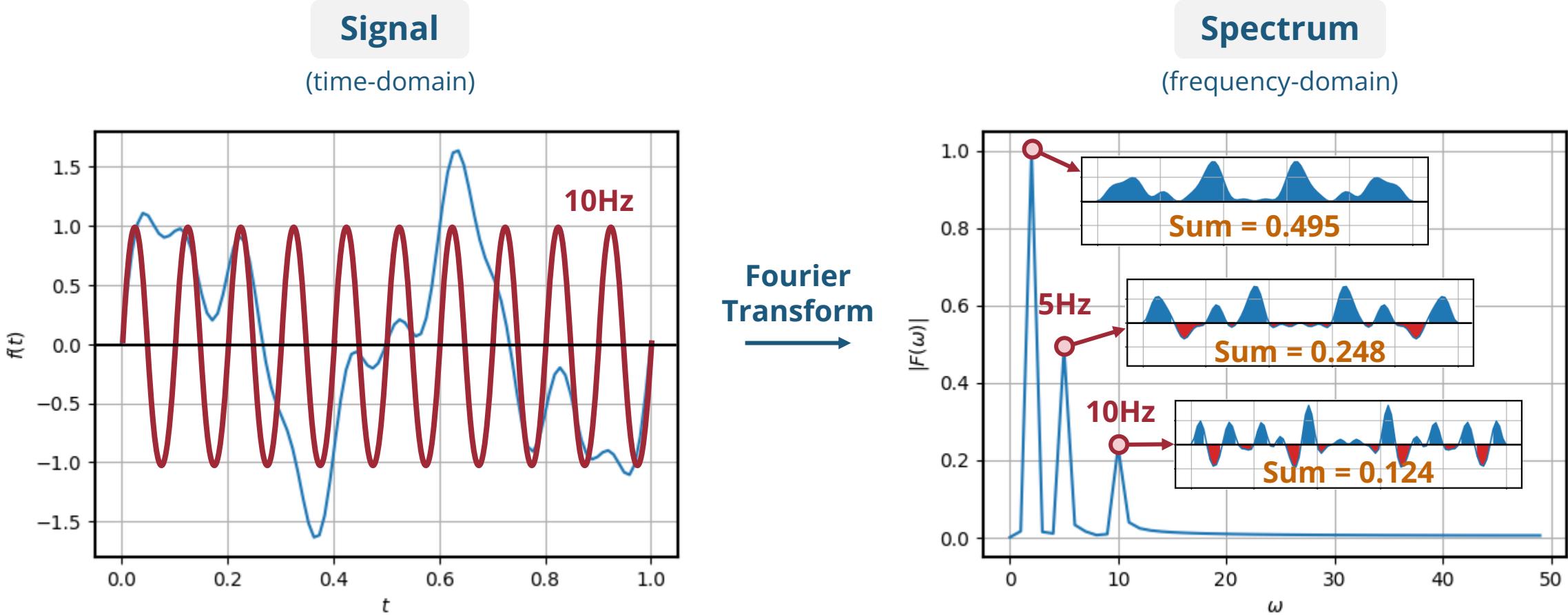


Can only reconstruct frequency up to  $\frac{1}{3}f_{max}$

# Spectral Analysis

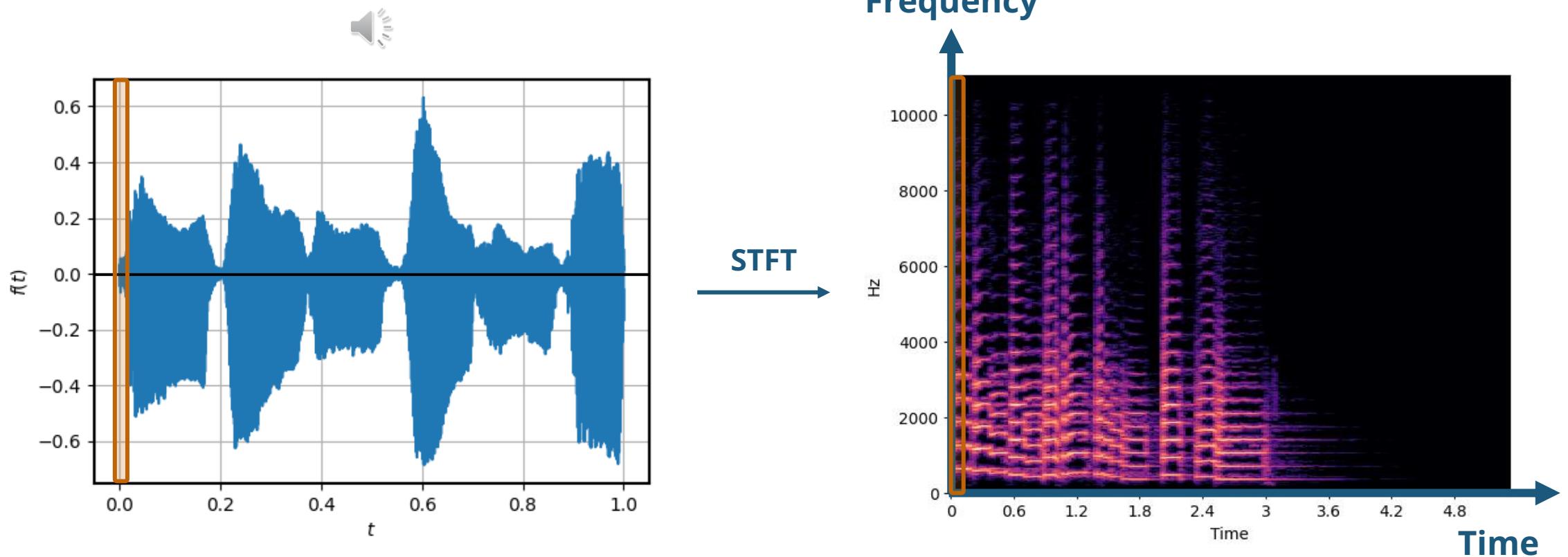


# Demystifying Fourier Transform

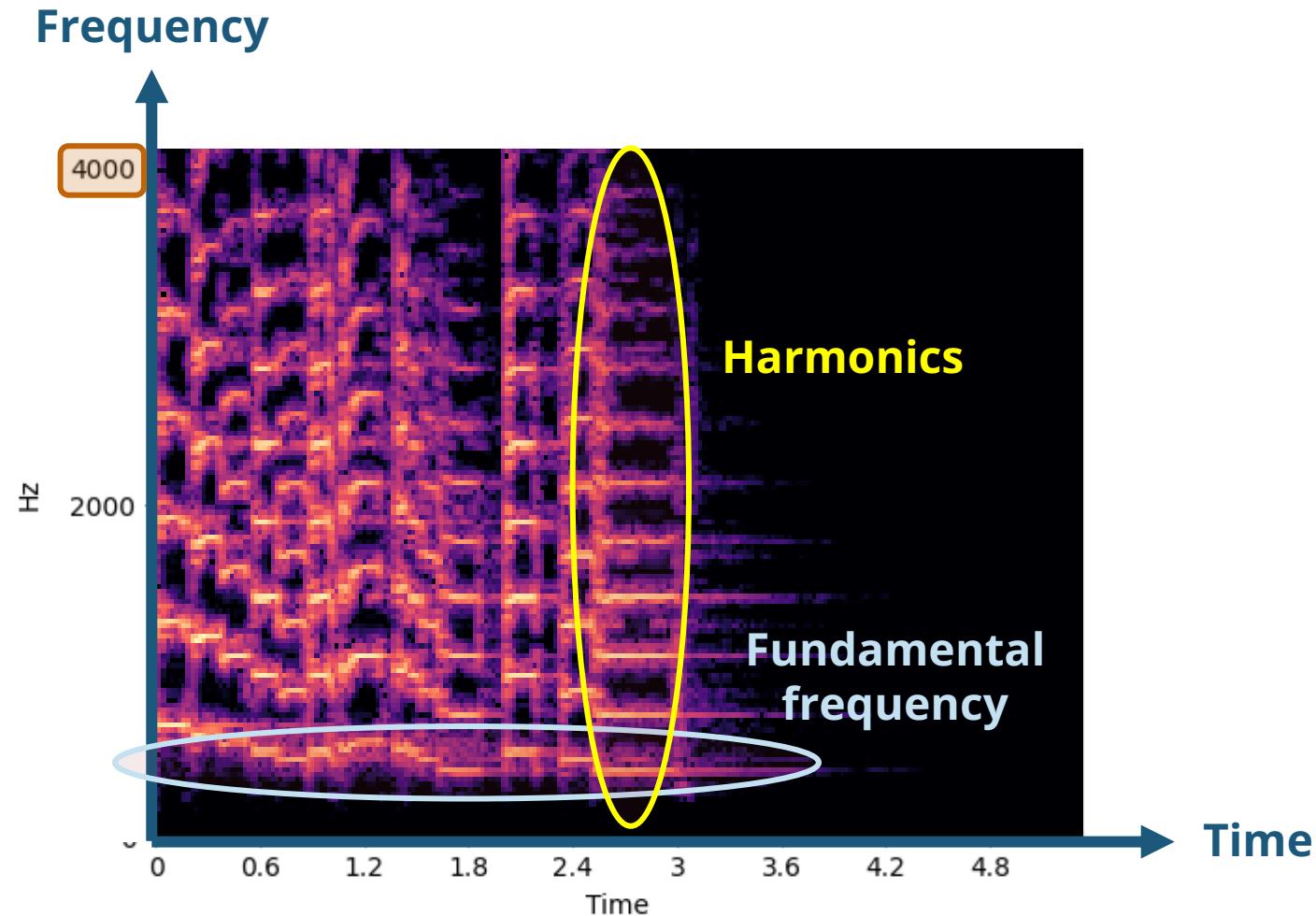


# Short-Time Fourier Transform (STFT)

- **Intuition:** Slice the audio into chunks and apply Fourier transform



# Spectrogram



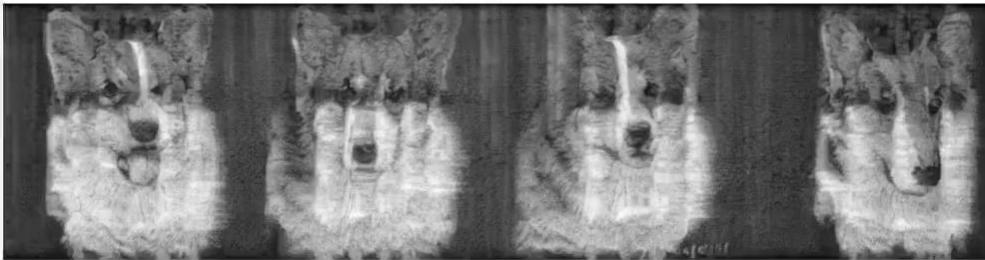
# Images that Sound (Chen et al., 2024)

Using diffusion models to generate visual spectrograms that look like images but can also be played as sound.

Image prompt: a colorful photo of corgis



Audio prompt: dog barking



(Source: Chen et al., 2024)

Image prompt: a colorful photo of tigers



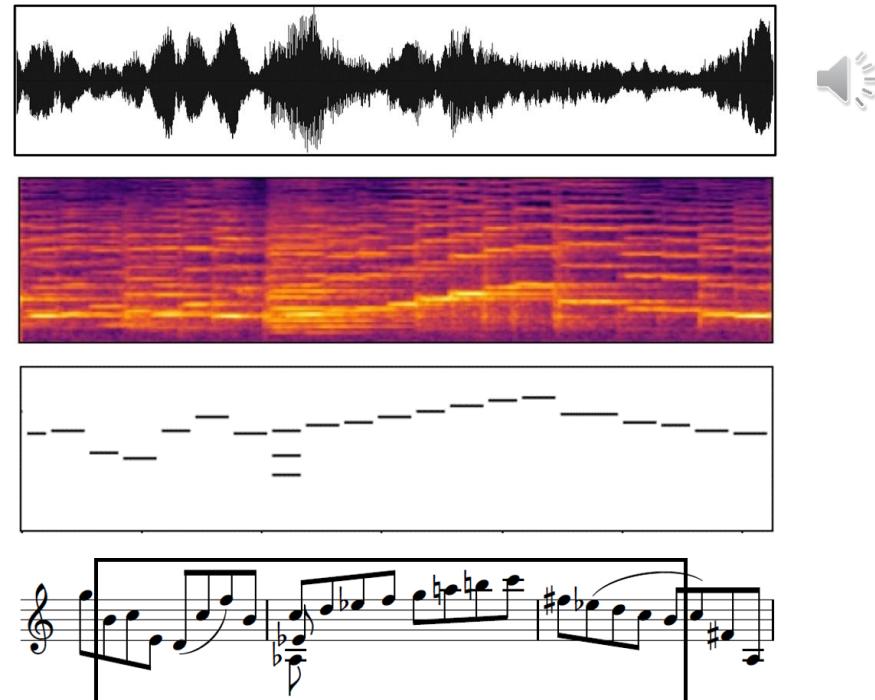
Audio prompt: tiger growling



(Source: Chen et al., 2024)

## Next Lecture

# Music Analysis



(Source: Dong et al., 2022)