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Define the objective 
(i.e., what is good for a function)

Find the optimal parameters
(which leads to the best function)
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• A neural network represents a set of functions

Neural Networks are Parameterized Functions
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⋯

⋯

⋯

𝑓𝜃(𝐱)

𝐱
ො𝐲

All the parameters
𝑾𝟏, … , 𝑾𝑳, 𝐛𝟏, … , 𝐛𝑳

𝐲

Good or bad?

Objective

Find the optimal parameters

𝐿 𝜽 = 𝐿 ො𝐲, 𝐲

Loss function



• Measure how well the model perform (in the opposite way)

• The choice of loss function depends on the task and the goals

Loss Function
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𝐿 𝜽 = 𝐿 ො𝐲, 𝐲



• Sometimes called
 Cost function
 Error function

• The opposite is known as
 Objective function
 Reward function (reinforcement learning)

 Fitness function (evolutionary algorithms & genetic algorithms)

 Utility function (economics)

 Profit function (economics)

Loss Function: The Many Names
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• What would be a good objective to train a neural audio codec?

• What do we care about for a codec?
 Reconstruction quality
 Bit rate (compression rate)
 Encoding/decoding speed

• How do we measure reconstruction quality?
 Difference in raw waveforms?
 Difference in spectrograms?
 Perceptual quality (psychoacoustics)?

Example: Audio Codec
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Trainable

Likely not trainable but searchable

Likely not trainable but searchable



Common Loss Functions for Regression
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𝐱

ෝ𝒚

⋮
⋮

𝒚

𝐿 𝜽 = 𝐿 ෝ𝒚, 𝒚
Loss function

𝐿 ො𝑦, 𝑦 = | ො𝑦 − 𝑦|

0 1 2-1-2

1

2

3

𝐿 ො𝑦, 𝑦 = ො𝑦 − 𝑦 2

0 1 2-1-2

1

2

3

L1 loss

L2 loss

Why not 𝑳 ෝ𝒚, 𝒚 = ෝ𝒚 − 𝒚?

No activation 
function!



L1 vs L2 Losses
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𝐿 ො𝑦, 𝑦 = | ො𝑦 − 𝑦|

0 1 2-1-2

1

2

3

L1 loss

𝐿 ො𝑦, 𝑦 = ො𝑦 − 𝑦 2

0 1 2-1-2

1
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3

L2 loss

𝐿 ො𝐲, 𝐲 = 𝐌𝐀𝐄 ො𝐲, 𝐲 =
1

𝑛
෍

𝑖=1

𝑛

| ො𝑦𝑖 − 𝑦𝑖|

Mean Absolute Error (MAE)

𝐿 ො𝐲, 𝐲 = 𝐌𝐒𝐄 ො𝐲, 𝐲 =
1

𝑛
෍

𝑖=1

𝑛

ො𝑦𝑖 − 𝑦𝑖
2

Mean Squared Error (MSE)

More sensitive 
to outliers



L1 vs L2 Losses
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• Logistic regression approaches classification like regression

Binary Cross Entropy for Binary Classification
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𝐱

ෝ𝒚

⋮
⋮

𝒚

𝐿 𝜽 = 𝐿 ෝ𝒚, 𝒚
Loss function

0 2 4-2-4

0.5

1

Sigmoid function

ෝ𝒚 ∈ 𝟎, 𝟏

𝒚 ∈ {𝟎, 𝟏}

0.5 10

1

2

3

𝐿 ො𝑦, 𝑦 = ቊ
− log ො𝑦 ,  if 𝑦 = 1

− log 1 − ො𝑦 , if 𝑦 = 0

= −𝑦 log ො𝑦 − 1 − 𝑦  log 1 − ො𝑦

if 𝑦 = 1 if 𝑦 = 0

Binary cross entropy
(Also called log loss)



Cross Entropy for Multiclass Classification
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𝐱

⋮
⋮

ො𝐲 𝐲

𝐿 𝜽 = 𝐿 ො𝐲, 𝐲
Loss function

⋮ ⋮⋮



Cross Entropy for Multiclass Classification
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𝐱 ෤𝐲

⋮
⋮

𝐲

𝐿 𝜽 = 𝐿 ො𝐲, 𝐲
Loss function

𝒚𝒊 ∈ {𝟎, 𝟏}

⋮ ⋮

ො𝐲 𝐲

⋮ ⋮So
ft

m
ax

ෝ𝒚𝒊 ∈ 𝟎, 𝟏෥𝒚𝒊 ∈ ℝ

ෝ𝒚𝒊 =
𝒆෥𝒚𝒊

σ𝒋=𝟏
𝒏 𝒆෥𝒚𝒋

Softmax

Real-valued numbers to 
probability-like numbers



• Intuition:  Map several numbers to 0, 1  while keeping their relative 
magnitude
 Softmax is like the multivariate version of sigmoid

Softmax
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So
ft

m
ax

෥𝒚𝟏

෥𝒚𝟐

෥𝒚𝒏

ෝ𝒚𝟏

ෝ𝒚𝟐

ෝ𝒚𝒏

N
or

m
al

iz
e

ෝ𝒚𝟏

ෝ𝒚𝟐

ෝ𝒚𝒏

෥𝒚𝟏

෥𝒚𝟐

෥𝒚𝒏

𝐞𝐱𝐩

𝐞𝐱𝐩

𝐞𝐱𝐩

Divide by sum

73.5

2.6

-12.8

0.98

0.02

0.00

Sum to 1
Real-valued numbers to 
probability-like numbers



Cross Entropy for Multiclass Classification
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𝐿 ො𝑦, 𝑦 = −𝑦 log ො𝑦 − 1 − 𝑦  log 1 − ො𝑦

Binary Cross Entropy Cross Entropy

𝐿 ො𝐲, 𝐲 = −𝑦1 log ො𝑦1 − 𝑦2 log ො𝑦2 − ⋯ − 𝑦𝑖 log ො𝑦𝑛

= − ෍

𝑖

𝑛

𝑦𝑖 log ො𝑦𝑖

Only one of them will be one! Only one of them will be one!

Log likelihood



Optimization
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Training a Neural Network
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(which defines a set of functions)

Define the objective 
(i.e., what is good for a function)

Find the optimal parameters
(which leads to the best function)

ො𝐲 = 𝑓𝜽(𝐱)

𝐿 𝜽

𝜽∗ = arg min
𝜽

𝐿 𝜽
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• Many, many ways…

• Most commonly through gradient descent in deep learning

• Alternatively, we can use search or genetic algorithm

Optimizing the Parameters of a Neural Network
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𝜽∗ = arg min
𝜽

𝐿 𝜽



• Intuition:  Gradient can suggest a good direction to tune the parameters

Gradient Descent
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𝑤0

Derivative for a vector, 
matrix or tensor



• Pick an initial weight vector 𝑤0 and learning rate 𝜼

• Repeat until convergence:  𝑤𝑡+1 = 𝑤𝑡 − 𝜼∇𝑓 𝑤𝑡

Gradient Descent: Pseudocode
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𝑤0

Gradient of function 𝒇 
with respect to weight 𝒘



• Pick an initial weight vector 𝑤0 and learning rate 𝜂

• Repeat until convergence:  𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡

Gradient Descent: Pseudocode
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𝑤0

slope = ∇𝑓 𝑤0 > 0



• Pick an initial weight vector 𝑤0 and learning rate 𝜂

• Repeat until convergence:  𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡

Gradient Descent: Pseudocode
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𝑤0

adjustment = −𝜂∇𝑓 𝑤0 < 0

slope = ∇𝑓 𝑤0 > 0



• Pick an initial weight vector 𝑤0 and learning rate 𝜂

• Repeat until convergence:  𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡

Gradient Descent: Pseudocode
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𝑤0

slope = ∇𝑓 𝑤0 > 0

𝑤1

adjustment = −𝜂∇𝑓 𝑤0 < 0



• Pick an initial weight vector 𝑤0 and learning rate 𝜂

• Repeat until convergence:  𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡

Gradient Descent: Pseudocode
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𝑤0

slope = ∇𝑓 𝑤1 > 0

𝑤1

adjustment = −𝜂∇𝑓 𝑤1 < 0

𝑤2



• Pick an initial weight vector 𝑤0 and learning rate 𝜂

• Repeat until convergence:  𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡

Gradient Descent: Pseudocode

27

𝑤0

slope = ∇𝑓 𝑤2 > 0

𝑤1

adjustment = −𝜂∇𝑓 𝑤2 < 0

𝑤2𝑤3



• Pick an initial weight vector 𝑤0 and learning rate 𝜂

• Repeat until convergence:  𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡

Gradient Descent: Pseudocode
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𝑤0

slope = ∇𝑓 𝑤𝑡 > 0

𝑤1

adjustment = −𝜂∇𝑓 𝑤𝑡 < 0

𝑤2𝑤3



Gradient Descent: 3D Case

substance3d.adobe.com/community-assets/assets/9fe77d4279e12fe2fbd90b8f7ca18146a565f7ee 29

https://substance3d.adobe.com/community-assets/assets/9fe77d4279e12fe2fbd90b8f7ca18146a565f7ee
https://substance3d.adobe.com/community-assets/assets/9fe77d4279e12fe2fbd90b8f7ca18146a565f7ee
https://substance3d.adobe.com/community-assets/assets/9fe77d4279e12fe2fbd90b8f7ca18146a565f7ee


• An efficient way of computing gradients using chain rule

• The reason why we want everything to be differentiable in deep learning

Backpropagation: Efficiently Computing the Gradients
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𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡



Backpropagation: Efficiently Computing the Gradients

31

youtu.be/Ilg3gGewQ5U?t=196

https://youtu.be/Ilg3gGewQ5U?t=196


Forward Pass & Backward Pass
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𝐱
ො𝐲

⋯

⋯

⋯

Forward pass

𝐡𝟏 = 𝝋 𝑾𝟏𝐱 + 𝐛𝟏

𝐡𝟐 = 𝝋 𝑾𝟐𝐡𝟏 + 𝐛𝟐

𝐡𝟑 = 𝝋 𝑾𝟐𝐡𝟐 + 𝐛𝟐

ො𝐲 = 𝝋 𝑾𝑳𝐡𝑳−𝟏 + 𝐛𝑳



Forward Pass & Backward Pass
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⋯

⋯

⋯
𝐱

ො𝐲

Backward pass

𝜕𝑳

𝜕𝐡𝑳−𝟏

𝜕𝑳

𝜕𝐡𝟑

𝜕𝑳

𝜕𝐡𝟐

𝜕𝑳

𝜕𝐡1

𝜕𝑳

𝜕𝐱

loss.backward()



Training–Validation–Test 
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In-distribution vs Out-of-distribution
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Test

Training



In-distribution vs Out-of-distribution
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Test Training



In-distribution vs Out-of-distribution
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Training



• Key: Make the training distribution closer to the target distribution

• First, we need to define our target distribution

• Then, we can try to
 Collect a diverse dataset covering that covers different parts of the target distribution
 Apply data augmentation to fill the gaps in the distribution

In-distribution vs Out-of-distribution

38



• What do we really want?

 Good performance on the training samples

 Good performance on unseen samples in the target distribution

 Good performance on out-of-distribution samples

In-distribution vs Out-of-distribution
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We already have their answers

Yep, we can do this!

Hopefully, but not guaranteed

How to achieve good performance on 
unseen samples in the target distribution



Overfitting & Underfitting

scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html 40

Underfitting Good fit! Overfitting

Model too inexpressive Model too expressive

https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html


Overfitting & Underfitting
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Underfitting Good fit! Overfitting

Model too inexpressive Model too expressive



• Goal: Good performance on unseen samples in the target distribution

Train–Test Split
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• Goal: Good performance on unseen samples in the target distribution

Train–Test Split

43

Training Test



• We create a test set because we want to estimate the performance 
when the model is applied to an interested distribution

Test Set is an Estimation of the Test Distribution
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Train–Validation–Test Split
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Training Test



Train–Validation–Test Split
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Training TestValidation



Training–Validation–Test Pipeline
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Training TestValidation

Optimize

Select



Training vs Validation Losses
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Training

Validation

Steps

Loss

Validation loss 

Training loss 

Validation loss 

Training loss 

Overfitting!



Training vs Validation Losses
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Training

Validation

Steps

Loss



Training vs Validation Losses
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Training

Validation

Steps

Loss Pick the model with the 
lowest validation loss



Training vs Validation Losses
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Training

Validation

Steps

Loss

Unrepresentative 
validation samples

Possible solutions
• Increase the size and diversity 

of the validation set
• Apply cross validation



Training vs Validation Losses
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Training

Validation

Steps

Loss
Underfitting!

Possible solutions
• Train it for more steps!
• Increase the learning rate



Training vs Validation Losses
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Training

Validation

Steps

Loss

Possible solutions
• Reduce the model size
• Apply dropout
• Add a regularizer

Overfitting!



• Keys
 Never train or select your model on test samples!
 Don’t over-select your model on the validation set

• What’s the best ratio?
 Most common: 8:1:1 or 9:0.5:0.5
 For smaller dataset, you might even want 6:2:2

Train–Validation–Test Split
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Overcoming Overfitting
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Early Stopping
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Training

Validation

Steps

Loss

Stop early!



Dropout
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𝐱

⋮
⋮

ො𝐲

⋮⋮

Each neuron may be removed 
with probability 𝒑 during training

𝐱

⋮
⋮

ො𝐲

⋮⋮

𝐱

⋮
⋮

ො𝐲

⋮⋮

𝐱

⋮
⋮

ො𝐲

⋮⋮

𝐱

⋮
⋮

ො𝐲

⋮⋮

Dropout rate



Dropout

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” JMLR, 2014.\ 58

Test 
error 
rate

Weight updates

𝐱

⋮
⋮

ො𝐲

⋮⋮

Each neuron may be removed 
with probability 𝒑 during training

https://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf


• A regularization term can help alleviate overfitting
 L1 regularization (LASSO)

𝐿′ = 𝐿 + 𝜆 𝑤1 + 𝑤2 + ⋯ + |𝑤𝐾|

 L2 regularization (ridge regression)

𝐿′ = 𝐿 + 𝜆 𝑤1
2 + 𝑤2

2 + ⋯ + 𝑤𝐾
2

Regularization Term
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Both L1 and L2 regularizations encourage smaller weights



Recap
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Training a Neural Network
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Build a neural network
(which defines a set of functions)

Define the objective 
(i.e., what is good for a function)

Find the optimal parameters
(which leads to the best function)



• A neural network represents a set of functions

Neural Networks are Parameterized Functions

62

⋯

⋯

⋯

𝑓𝜃(𝐱)

𝐱
ො𝐲

All the parameters
𝑾𝟏, … , 𝑾𝑳, 𝐛𝟏, … , 𝐛𝑳

𝐲

Good or bad?

Objective

Find the optimal parameters

𝐿 𝜽 = 𝐿 ො𝐲, 𝐲

Loss function



L1 vs L2 Losses
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𝐿 ො𝑦, 𝑦 = | ො𝑦 − 𝑦|

0 1 2-1-2

1

2

3

L1 loss

𝐿 ො𝑦, 𝑦 = ො𝑦 − 𝑦 2

0 1 2-1-2

1

2

3

L2 loss

𝐿 ො𝐲, 𝐲 = 𝐌𝐀𝐄 ො𝐲, 𝐲 =
1

𝑛
෍

𝑖=1

𝑛

| ො𝑦𝑖 − 𝑦𝑖|

Mean Absolute Error (MAE)

𝐿 ො𝐲, 𝐲 = 𝐌𝐒𝐄 ො𝐲, 𝐲 =
1

𝑛
෍

𝑖=1

𝑛

ො𝑦𝑖 − 𝑦𝑖
2

Mean Squared Error (MSE)

More sensitive 
to outliers



Cross Entropy for Multiclass Classification
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𝐱 ෤𝐲

⋮
⋮

𝐲

𝐿 𝜽 = 𝐿 ො𝐲, 𝐲
Loss function

𝒚𝒊 ∈ {𝟎, 𝟏}

⋮ ⋮

ො𝐲 𝐲

⋮ ⋮So
ft

m
ax

ෝ𝒚𝒊 ∈ 𝟎, 𝟏෥𝒚𝒊 ∈ ℝ

ෝ𝒚𝒊 =
𝒆෥𝒚𝒊

σ𝒋=𝟏
𝒏 𝒆෥𝒚𝒋

Softmax

Real-valued numbers to 
probability-like numbers



• Intuition:  Map several numbers to 0, 1  while keeping their relative 
magnitude
 Softmax is like the multivariate version of sigmoid

Softmax
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So
ft

m
ax

෥𝒚𝟏

෥𝒚𝟐

෥𝒚𝒏

ෝ𝒚𝟏

ෝ𝒚𝟐

ෝ𝒚𝒏
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m
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ෝ𝒚𝟏

ෝ𝒚𝟐

ෝ𝒚𝒏

෥𝒚𝟏

෥𝒚𝟐

෥𝒚𝒏

𝐞𝐱𝐩

𝐞𝐱𝐩

𝐞𝐱𝐩

Divide by sum

73.5

2.6

-12.8

0.98

0.02

0.00

Sum to 1
Real-valued numbers to 
probability-like numbers



• Pick an initial weight vector 𝑤0 and learning rate 𝜂

• Repeat until convergence:  𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡

Gradient Descent: Pseudocode

66

𝑤0

slope = ∇𝑓 𝑤𝑡 > 0

𝑤1

adjustment = −𝜂∇𝑓 𝑤𝑡 < 0

𝑤2𝑤3



Gradient Descent: 3D Case

substance3d.adobe.com/community-assets/assets/9fe77d4279e12fe2fbd90b8f7ca18146a565f7ee 67

https://substance3d.adobe.com/community-assets/assets/9fe77d4279e12fe2fbd90b8f7ca18146a565f7ee
https://substance3d.adobe.com/community-assets/assets/9fe77d4279e12fe2fbd90b8f7ca18146a565f7ee
https://substance3d.adobe.com/community-assets/assets/9fe77d4279e12fe2fbd90b8f7ca18146a565f7ee


• An efficient way of computing gradients using chain rule

• The reason why we want everything to be differentiable in deep learning

Backpropagation: Efficiently Computing the Gradients

68

𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡



Forward Pass & Backward Pass
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⋯

⋯

⋯
𝐱

ො𝐲

Backward pass

𝜕𝑳

𝜕𝐡𝑳−𝟏

𝜕𝑳

𝜕𝐡𝟑

𝜕𝑳

𝜕𝐡𝟐

𝜕𝑳

𝜕𝐡1

𝜕𝑳

𝜕𝐱

loss.backward()



Training–Validation–Test Pipeline
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Training TestValidation

Optimize

Select



Training vs Validation Losses

71

Training

Validation

Steps

Loss

Validation loss 

Training loss 

Validation loss 

Training loss 

Overfitting!



Training vs Validation Losses

72

Training

Validation

Steps

Loss



Training vs Validation Losses

73

Training

Validation

Steps

Loss Pick the model with the 
lowest validation loss



Source Separation

Next Lecture

(Other)

(Source: “Like Before” by Bessonn&sa) 

https://www.jamendo.com/track/2230554/like-before
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