PAT 463/563 (Fall 2025)

Music & Al

Lecture 7: Deep Learning Fundamentals Il

Instructor: Hao-Wen Dong

UNIVERSITY OF MICHIGAN

Training a Neural Network

Training a Neural Network

Build a neural network
(which defines a set of functions)

l

Define the objective
(i.e., what is good for a function)

1

Find the optimal parameters
(which leads to the best function)

Training a Neural Network

Build a neural network
(which defines a set of functions)

l

Define the objective
(i.e., what is good for a function)

1

Find the optimal parameters
(which leads to the best function)

Neural Networks are Parameterized Functions

* A neural network represents a set of functions

Find the optimal parameters

y
\
’ 9 (X) ' Good or bad?
)
AII the parameters Objective
Wi, .., Wby, .., by L(B) = L(¥,y)

Loss function

Loss Function

« Measure how well the model perform (in the opposite way)

» The choice of loss function depends on the task and the goals

L(6) = L(y,y)

Loss Function: The Many Names

« Sometimes called
= Cost function

- Error function

* The opposite is known as
- Objective function

- Reward function (reinforcement learning)

* Fitness function (evolutionary algorithms & genetic algorithms)
- Utility function (economics)

- Profit function (economics)

Example: Audio Codec

- What would be a good objective to train a neural audio codec?

« What do we care about for a codec?
- Reconstruction quality Trainable
- Bit rate (compression rate) Likely not trainable but searchable

- Encoding/decoding speed Likely not trainable but searchable

- How do we measure reconstruction quality?
- Difference in raw waveforms?
- Difference in spectrograms?

* Perceptual quality (psychoacoustics)?

Common Loss Functions for Regression

L»y,y) =1y — vyl

L1 loss

X No activation
function!

L2 loss

Why notL(y,y) =y — y?

L1 vs L2 Losses

L1 loss

L&,y) =1y —]

n
R 1 .
L(¥,y) = MAE(¥,y) = Ez |V — vil

1=1

Mean Absolute Error (MAE)

L2 loss

More sensitive
to outliers

L(y'y) — (5} _y)Z
1 n
L@,y) = MSE@,y) =~ > 9 = »)’
i=1

Mean Squared Error (MSE)
10

L1 vs L2 Losses

L1 loss

L&y, y) =1y — v
1 n

L@,y) = MAE@,Y) == > |9 = ¥
i=1

Mean Absolute Error (MAE)

L2 loss

More sensitive
to outliers

L(y'y) — (5} _y)Z
1 n
L@,y) = MSE@,y) =~ > 9 = »)’
i=1

Mean Squared Error (MSE)
11

Binary Cross Entropy for Binary Classification

- Logistic regression approaches classification like regression

Sigmoid function

Binary cross entropy

(Also called log loss)

~ _ —lOgj;, lfy=1
)= {—logu ~5).ify = 0

= —ylogy — (1 —y) log(1 —)

3 F\ify=1 ify=0

12

Cross Entropy for Multiclass Classification

L(@) = L(y,y)

Loss function

13

Cross Entropy for Multiclass Classification

Real-valued numbers to
probability-like numbers

/\
i y: €[0,1] y;€{0,1}
y y
5 -O—O
5’, : :

L(@) = L(y,y)

Loss function

Softmax

eli

Z}l=1 e’

14

Softmax

* Intuition: Map several numbers to [0, 1] while keeping their relative

magnitude

- Softmax is like the multivariate version of sigmoid

Real-valued numbers to
probability-like numbers

y1—

~~

Y2

Yn="

S A

Softmax

Divide by sum

735 ¥,

26 Yy, exp

~~

-128 vy, exp

T

L

Normalize

P

— V1

P

—> Y2

Sum to 1

0.98

0.02

0.00

15

Cross Entropy for Multiclass Classification

Binary Cross Entropy

Only one of them will be one!

L(yly) = 7

Y

log9 —|(1 - ylog1 =9 L@ ¥) = yllog: —|y;

n
= —Z% log y;
i
|

Log likelihood

Cross Entropy

Only one of them will be one!

log §, — - —

Yi

log i,

16

Optimization

17

Training a Neural Network

Build a neural network
(which defines a set of functions)

J y = fo(x)

l

Define the objective
(i.e., what is good for a function)

J L(O)

1

Find the optimal parameters
(which leads to the best function)

J 0" = arg min L(0)
0

18

Training a Neural Network

Build a neural network
(which defines a set of functions)

J y = fo(x)

l

Define the objective
(i.e., what is good for a function)

J L(O)

1

Find the optimal parameters
(which leads to the best function)

J 0" = arg min L(0)
0

19

Optimizing the Parameters of a Neural Network

* Many, many ways...
« Most commonly through gradient descent in deep learning

- Alternatively, we can use search or genetic algorithm

0" = arg min L(0)
0

20

Gradient Descent

* Intuition: Gradient can suggest a good direction to tune the parameters

Derivative for a vector,
matrix or tensor

21

Gradient Descent: Pseudocode

 Pick an initial weight vector w, and learning rate n

- Repeat until convergence: wy ; = wy — n[Vf(wt)]—»

"~

S

Gradient of function f
with respect to weight w

22

Gradient Descent: Pseudocode

* Pick an initial weight vector wy and learning rate n

* Repeat until convergence: w;,; = w; —nVf(w;)

.Aope =Vf(wy) >0

23

Gradient Descent: Pseudocode

* Pick an initial weight vector wy and learning rate n

« Repeat until convergence: w;,; = wy —nVf(w;)

.Aope =Vf(wy) >0

adjustment = —nVf(wy) <0

24

Gradient Descent: Pseudocode

* Pick an initial weight vector wy and learning rate n

« Repeat until convergence: w;,; = wy —nVf(w;)

.Aope =Vf(wy) >0

‘\

W1 Wy
adjustment = —nVf(wy) <0

25

Gradient Descent: Pseudocode

* Pick an initial weight vector wy and learning rate n

« Repeat until convergence: w;,; = wy —nVf(w;)

4i)e =Vf(wy) >0

PR

Wz Wi Wo
adjustment = —nVf(w;) <0

26

Gradient Descent: Pseudocode

* Pick an initial weight vector wy and learning rate n

« Repeat until convergence: w;,; = wy —nVf(w;)

N

=Vf(wy) >0

(Lt
1 1 |
L

W3W, Wq Wo

adjustment = —nVf(w,) < 0

°
L
o
o
-0

27

Gradient Descent: Pseudocode

* Pick an initial weight vector wy and learning rate n

« Repeat until convergence: w;,; = wy —nVf(w;)

slope = Vf(w;) > 0

adjustment = —nVf(w;) <0

28

Gradient Descent: 3D Case

substance3d.adobe.com/community-assets/assets/9fe77d4279e12fe2fbd90b8f7ca18146a565f7ee

29

https://substance3d.adobe.com/community-assets/assets/9fe77d4279e12fe2fbd90b8f7ca18146a565f7ee
https://substance3d.adobe.com/community-assets/assets/9fe77d4279e12fe2fbd90b8f7ca18146a565f7ee
https://substance3d.adobe.com/community-assets/assets/9fe77d4279e12fe2fbd90b8f7ca18146a565f7ee

Backpropagation: Efficiently Computing the Gradients

* An efficient way of computing gradients using chain rule

* The reason why we want everything to be differentiable in deep learning

Werr = We — V[(w)

30

Backpropagation: Efficiently Computing the Gradients

Backpropagation

youtu.be/llg3gGewQ5U?t=196

31

https://youtu.be/Ilg3gGewQ5U?t=196

h; = (W;x+by)

Forward Pass & Backward Pass

Forward pass

/

A / \ PO

WV QWX WS
Y, . ' ~ A

A"A‘A".;?W NG

X\ W) '}U‘,“(
>¢‘\W’%‘?‘K‘§ é’f ?‘:»"\
A‘\ ﬁ‘:“‘ 'l’%‘k

SIAX LA

@) 5\

V.=

h, = @(W3h; + b;)
hz = (W;h; + b;)

<

y=oW;h;,_4 +b;)

32

Forward Pass & Backward Pass

>
\, A p
AN ~'\\

> t
So o A\w R
9o O
DRI RFL L
O

¢
7z
N

AN |
Y ’\!/‘ \')é
ANY \
f'y\‘l
0";4/‘\¥:'0/4//‘\ -
TS e)
“"0\;" ”\Q
C PR IK TN
\Wff\'/i
Nn/\D
S
<\
” \"\\

D

s

< 7\
7 4 ¥ ;

z

r/

N~
\/\’1 >
\ /o2
YA
/A\L
PR
R
\\'/7 Z

N
) 74

X ‘\ N “" R/ ’\ A%/, ,‘ \> ‘n‘\
//“ - S N »
\\\:

Backward pass
loss.backward()

oL
oh;_q

<

33

Training-Validation-Test

34

In-distribution vs Out-of-distribution

35

In-distribution vs Out-of-distribution

36

In-distribution vs Out-of-distribution

Training

37

In-distribution vs Out-of-distribution

- Key: Make the training distribution closer to the target distribution
* First, we need to define our target distribution

* Then, we can try to
- Collect a diverse dataset covering that covers different parts of the target distribution
- Apply data augmentation to fill the gaps in the distribution

38

In-distribution vs Out-of-distribution
* What do we really want?
- Good performance on the training samples We already have their answers
- Good performance on unseen samples in the target distribution Yep, we can do this!

- Good performance on out-of-distribution samples Hopefully, but not guaranteed

How to achieve good performance on
unseen samples in the target distribution

39

Underfitting

Degree 1
MSE = 4.08e-01(+/- 4.25e-01)

— Model
True function

@ Samples

Overfitting & Underfitting

Good fit!

Degree 4
MSE = 4.32e-02(+/- 7.08e-02)

Model too inexpressive

— Model
True function
e Samples

Overfitting

Degree 15
MSE = 1.82e+08(+/- 5.46e+08)

— Model
True function
@ Samples

scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html

Model too expressive

40

https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html

Overfitting & Underfitting

Underfitting

Good fit!

Overfitting

Model too inexpressive

Model too expressive

41

Train-Test Split

- Goal: Good performance on unseen samples in the target distribution

42

Train-Test Split

- Goal: Good performance on unseen samples in the target distribution

Training Test

43

Test Set is an Estimation of the Test Distribution

« We create a test set because we want to estimate the performance
when the model is applied to an interested distribution

44

Train-Validation-Test Split

Training

Test

45

Train-Validation-Test Split

Training

Validation

Test

46

Iine

-Test Pipel

10N

ining-Validati

Tra

Validation Test

ing

In

Tra

(I
4

imize

Opt

Training vs Validation Losses

Loss

Training loss l

Validation loss l

Training loss l

Validation loss t

Overfitting!

¥ __ Validation

— Training

Steps

48

Training vs Validation Losses

Loss

Steps

Validation

Training

49

Training vs Validation Losses

Loss

Pick the model with the
lowest validation loss

~__—Validation

Training

Steps

50

Training vs Validation Losses

Possible solutions

* Increase the size and diversity
of the validation set
« Apply cross validation

Loss

Validation

Unrepresentative
validation samples

Training

Steps

51

Training vs Validation Losses

Loss

Possible solutions

« Train it for more steps!
 Increase the learning rate

Underfitting!

Validation

Training

Steps

52

Training vs Validation Losses

Loss

Validation
Overfitting!
—
Possible solutions
» Reduce the model size
» Apply dropout
» Add a regularizer
Training

Steps

53

Train-Validation-Test Split

- Keys
* Never train or select your model on test samples!

- Don't over-select your model on the validation set

« What's the best ratio?
= Most common: 8:1:1 or 9:0.5:0.5

- For smaller dataset, you might even want 6:2:2

54

Overcoming Overfitting

55

Early Stopping

Loss

Stop early!

~_—Validation

P
-

Training

Steps

56

Dropout

Each neuron may be removed
with probability p during training

| Dropout rate l

Dropout

Test
error : : : ‘
rate B T e T
8 With dropout
EaCh neuron may be remOVEd 20(;000 400iOOO 600;000 806000 100 oﬁ

with probability p during training V\;:ib;;;v:iﬁ;d&t;tes

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, llya Sutskever, and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” JMLR, 2014.\ 58

https://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

Regularization Term

» A regularization term can help alleviate overfitting
* L1 regularization (LASSO)

L' =L+ A(lwy| + lwa| + - + [wg])
- L2 regularization (ridge regression)

L'=L+A(w?+wi+-+w?)

Both L1 and L2 regularizations encourage smaller weights

59

Recap

60

Training a Neural Network

Build a neural network
(which defines a set of functions)

|

l

Define the objective
(i.e., what is good for a function)

|

1

Find the optimal parameters
(which leads to the best function)

|

61

Neural Networks are Parameterized Functions

* A neural network represents a set of functions

Find the optimal parameters

y
\
’ 9 (X) ' Good or bad?
)
AII the parameters Objective
Wi, .., Wby, .., by L(B) = L(¥,y)

Loss function

62

L1 vs L2 Losses

L1 loss

L&y, y) =1y — v
1 n

L@,y) = MAE@,Y) == > |9 = ¥
i=1

Mean Absolute Error (MAE)

L2 loss

More sensitive
to outliers

L(y'y) — (5} _y)Z
1 n
L@,y) = MSE@,y) =~ > 9 = »)’
i=1

Mean Squared Error (MSE)
63

Cross Entropy for Multiclass Classification

Real-valued numbers to
probability-like numbers

/\
i y: €[0,1] y;€{0,1}
y y
5 -O—O
5’, : :

L(@) = L(y,y)

Loss function

Softmax

eli

Z}l=1 e’

64

Softmax

* Intuition: Map several numbers to [0, 1] while keeping their relative

magnitude

- Softmax is like the multivariate version of sigmoid

Real-valued numbers to
probability-like numbers

y1—

~~

Y2

Yn="

S A

Softmax

Divide by sum

735 ¥,

26 Yy, exp

~~

-128 vy, exp

T

L

Normalize

P

— V1

P

—> Y2

Sum to 1

0.98

0.02

0.00

65

Gradient Descent: Pseudocode

* Pick an initial weight vector wy and learning rate n

« Repeat until convergence: w;,; = wy —nVf(w;)

slope = Vf(w;) > 0

adjustment = —nVf(w;) <0

66

Gradient Descent: 3D Case

substance3d.adobe.com/community-assets/assets/9fe77d4279e12fe2fbd90b8f7ca18146a565f7ee

67/

https://substance3d.adobe.com/community-assets/assets/9fe77d4279e12fe2fbd90b8f7ca18146a565f7ee
https://substance3d.adobe.com/community-assets/assets/9fe77d4279e12fe2fbd90b8f7ca18146a565f7ee
https://substance3d.adobe.com/community-assets/assets/9fe77d4279e12fe2fbd90b8f7ca18146a565f7ee

Backpropagation: Efficiently Computing the Gradients

* An efficient way of computing gradients using chain rule

* The reason why we want everything to be differentiable in deep learning

Werr = We — V[(w)

68

Forward Pass & Backward Pass

>
\, A p
AN ~'\\

> t
So o A\w R
9o O
DRI RFL L
O

¢
7z
N

AN |
Y ’\!/‘ \')é
ANY \
f'y\‘l
0";4/‘\¥:'0/4//‘\ -
TS e)
“"0\;" ”\Q
C PR IK TN
\Wff\'/i
Nn/\D
S
<\
” \"\\

D

s

< 7\
7 4 ¥ ;

z

r/

N~
\/\’1 >
\ /o2
YA
/A\L
PR
R
\\'/7 Z

N
) 74

X ‘\ N “" R/ ’\ A%/, ,‘ \> ‘n‘\
//“ - S N »
\\\:

Backward pass
loss.backward()

oL
oh;_q

<

69

Iine

-Test Pipel

10N

ining-Validati

Tra

Validation Test

ing

In

Tra

o
I~

imize

Opt

Training vs Validation Losses

Loss

Training loss l

Validation loss l

Training loss l

Validation loss t

Overfitting!

¥ __ Validation

— Training

Steps

/71

Training vs Validation Losses

Loss

Steps

Validation

Training

72

Training vs Validation Losses

Loss

Pick the model with the
lowest validation loss

~__—Validation

Training

Steps

73

Next Lecture

Source Separation

AN

&b & & Tot
-||‘||-|-|||||||‘|‘||-|-

R

(Source: “Like Before” by Bessonn&sa)

UNIVERSITY OF MICHIGAN

&
e
&
&
[&t

i
(Other)

£
7

i
#

https://www.jamendo.com/track/2230554/like-before

	Slide 1: Music & AI
	Slide 2: Training a Neural Network
	Slide 3: Training a Neural Network
	Slide 4: Training a Neural Network
	Slide 5: Neural Networks are Parameterized Functions
	Slide 6: Loss Function
	Slide 7: Loss Function: The Many Names
	Slide 8: Example: Audio Codec
	Slide 9: Common Loss Functions for Regression
	Slide 10: L1 vs L2 Losses
	Slide 11: L1 vs L2 Losses
	Slide 12: Binary Cross Entropy for Binary Classification
	Slide 13: Cross Entropy for Multiclass Classification
	Slide 14: Cross Entropy for Multiclass Classification
	Slide 15: Softmax
	Slide 16: Cross Entropy for Multiclass Classification
	Slide 17: Optimization
	Slide 18: Training a Neural Network
	Slide 19: Training a Neural Network
	Slide 20: Optimizing the Parameters of a Neural Network
	Slide 21: Gradient Descent
	Slide 22: Gradient Descent: Pseudocode
	Slide 23: Gradient Descent: Pseudocode
	Slide 24: Gradient Descent: Pseudocode
	Slide 25: Gradient Descent: Pseudocode
	Slide 26: Gradient Descent: Pseudocode
	Slide 27: Gradient Descent: Pseudocode
	Slide 28: Gradient Descent: Pseudocode
	Slide 29: Gradient Descent: 3D Case
	Slide 30: Backpropagation: Efficiently Computing the Gradients
	Slide 31: Backpropagation: Efficiently Computing the Gradients
	Slide 32: Forward Pass & Backward Pass
	Slide 33: Forward Pass & Backward Pass
	Slide 34: Training–Validation–Test
	Slide 35: In-distribution vs Out-of-distribution
	Slide 36: In-distribution vs Out-of-distribution
	Slide 37: In-distribution vs Out-of-distribution
	Slide 38: In-distribution vs Out-of-distribution
	Slide 39: In-distribution vs Out-of-distribution
	Slide 40: Overfitting & Underfitting
	Slide 41: Overfitting & Underfitting
	Slide 42: Train–Test Split
	Slide 43: Train–Test Split
	Slide 44: Test Set is an Estimation of the Test Distribution
	Slide 45: Train–Validation–Test Split
	Slide 46: Train–Validation–Test Split
	Slide 47: Training–Validation–Test Pipeline
	Slide 48: Training vs Validation Losses
	Slide 49: Training vs Validation Losses
	Slide 50: Training vs Validation Losses
	Slide 51: Training vs Validation Losses
	Slide 52: Training vs Validation Losses
	Slide 53: Training vs Validation Losses
	Slide 54: Train–Validation–Test Split
	Slide 55: Overcoming Overfitting
	Slide 56: Early Stopping
	Slide 57: Dropout
	Slide 58: Dropout
	Slide 59: Regularization Term
	Slide 60: Recap
	Slide 61: Training a Neural Network
	Slide 62: Neural Networks are Parameterized Functions
	Slide 63: L1 vs L2 Losses
	Slide 64: Cross Entropy for Multiclass Classification
	Slide 65: Softmax
	Slide 66: Gradient Descent: Pseudocode
	Slide 67: Gradient Descent: 3D Case
	Slide 68: Backpropagation: Efficiently Computing the Gradients
	Slide 69: Forward Pass & Backward Pass
	Slide 70: Training–Validation–Test Pipeline
	Slide 71: Training vs Validation Losses
	Slide 72: Training vs Validation Losses
	Slide 73: Training vs Validation Losses
	Slide 74: Source Separation

