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Training a Neural Network



Training a Neural Network

Build a neural network
(which defines a set of functions)

l

Define the objective
(i.e., what is good for a function)

1

Find the optimal parameters
(which leads to the best function)
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Neural Networks are Parameterized Functions

* A neural network represents a set of functions

Find the optimal parameters

y
\
’ 9 (X) ' Good or bad?
)
AII the parameters Objective
Wi, .., Wby, .., by L(B) = L(¥,y)

Loss function



Loss Function

« Measure how well the model perform (in the opposite way)

» The choice of loss function depends on the task and the goals

L(6) = L(y,y)



Loss Function: The Many Names

« Sometimes called
= Cost function

- Error function

* The opposite is known as
- Objective function

- Reward function (reinforcement learning)

* Fitness function (evolutionary algorithms & genetic algorithms)
- Utility function (economics)

- Profit function (economics)



Example: Audio Codec

- What would be a good objective to train a neural audio codec?

« What do we care about for a codec?
- Reconstruction quality Trainable
- Bit rate (compression rate) Likely not trainable but searchable

- Encoding/decoding speed Likely not trainable but searchable

- How do we measure reconstruction quality?
- Difference in raw waveforms?
- Difference in spectrograms?

* Perceptual quality (psychoacoustics)?



Common Loss Functions for Regression

L»y,y) =1y — vyl

L1 loss

X No activation
function!

L2 loss

Why notL(y,y) =y — y?




L1 vs L2 Losses

L1 loss

L&,y) =1y — ]

n
R 1 .
L(¥,y) = MAE(¥,y) = Ez |V — vil

1=1

Mean Absolute Error (MAE)

L2 loss

More sensitive
to outliers

L(y'y) — (5} _y)Z
1 n
L@,y) = MSE@,y) =~ > 9 = »)’
i=1

Mean Squared Error (MSE)
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L1 vs L2 Losses

L1 loss

L&y, y) =1y — v
1 n

L@,y) = MAE@,Y) == > |9 = ¥
i=1

Mean Absolute Error (MAE)

L2 loss

More sensitive
to outliers
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Binary Cross Entropy for Binary Classification

- Logistic regression approaches classification like regression

Sigmoid function

Binary cross entropy

(Also called log loss)

~ _ —lOgj;, lfy=1
)= {—logu ~5).ify = 0

= —ylogy — (1 —y) log(1 — )

3 F\ify=1 ify=0
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Cross Entropy for Multiclass Classification

L(@) = L(y,y)

Loss function
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Cross Entropy for Multiclass Classification

Real-valued numbers to
probability-like numbers

/\
i y: €[0,1] y;€{0,1}
y y
5 -O—O
5’, : :

L(@) = L(y,y)

Loss function

Softmax

eli

Z}l=1 e’
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Softmax

* Intuition: Map several numbers to [0, 1] while keeping their relative

magnitude

- Softmax is like the multivariate version of sigmoid

Real-valued numbers to
probability-like numbers

y1—

~~

Y2

Yn="

S A

Softmax

Divide by sum

735 ¥,

26 Yy, exp

~~

-128 vy, exp

T

L

Normalize

P

— V1

P

—> Y2

Sum to 1

0.98

0.02

0.00
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Cross Entropy for Multiclass Classification

Binary Cross Entropy

Only one of them will be one!

L(yly) = 7

Y

log9 —|(1 - ylog1 =9 L@ ¥) = yllog: —|y;

n
= —Z% log y;
i
|

Log likelihood

Cross Entropy

Only one of them will be one!

log §, — - —

Yi

log i,
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Optimization
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Training a Neural Network

Build a neural network
(which defines a set of functions)

J y = fo(x)

l

Define the objective
(i.e., what is good for a function)

J L(O)

1

Find the optimal parameters
(which leads to the best function)

J 0" = arg min L(0)
0
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Optimizing the Parameters of a Neural Network

* Many, many ways...
« Most commonly through gradient descent in deep learning

- Alternatively, we can use search or genetic algorithm

0" = arg min L(0)
0
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Gradient Descent

* Intuition: Gradient can suggest a good direction to tune the parameters

Derivative for a vector,
matrix or tensor
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Gradient Descent: Pseudocode

 Pick an initial weight vector w, and learning rate n

- Repeat until convergence: wy ; = wy — n[Vf(wt)]—»

"~

S

Gradient of function f
with respect to weight w
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Gradient Descent: Pseudocode

* Pick an initial weight vector wy and learning rate n

* Repeat until convergence: w;,; = w; —nVf(w;)

.Aope =Vf(wy) >0

23



Gradient Descent: Pseudocode
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Gradient Descent: Pseudocode

* Pick an initial weight vector wy and learning rate n

« Repeat until convergence: w;,; = wy —nVf(w;)

.Aope =Vf(wy) >0

‘\

W1 Wy
adjustment = —nVf(wy) <0
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Gradient Descent: Pseudocode

* Pick an initial weight vector wy and learning rate n

« Repeat until convergence: w;,; = wy —nVf(w;)

4i)e =Vf(wy) >0

PR

Wz Wi Wo
adjustment = —nVf(w;) <0
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Gradient Descent: Pseudocode

* Pick an initial weight vector wy and learning rate n

« Repeat until convergence: w;,; = wy —nVf(w;)

N

=Vf(wy) >0

(Lt
1 1 |
L

W3W, Wq Wo

adjustment = —nVf(w,) < 0

°
L
o
o
-0
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Gradient Descent: Pseudocode

* Pick an initial weight vector wy and learning rate n

« Repeat until convergence: w;,; = wy —nVf(w;)

slope = Vf(w;) > 0

adjustment = —nVf(w;) <0

28



Gradient Descent: 3D Case

substance3d.adobe.com/community-assets/assets/9fe77d4279e12fe2fbd90b8f7ca18146a565f7ee
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https://substance3d.adobe.com/community-assets/assets/9fe77d4279e12fe2fbd90b8f7ca18146a565f7ee
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Backpropagation: Efficiently Computing the Gradients

* An efficient way of computing gradients using chain rule

* The reason why we want everything to be differentiable in deep learning

Werr = We — V[ (w)
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Backpropagation: Efficiently Computing the Gradients

Backpropagation

youtu.be/llg3gGewQ5U?t=196
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https://youtu.be/Ilg3gGewQ5U?t=196

h; = (W;x+by)

Forward Pass & Backward Pass

Forward pass
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Forward Pass & Backward Pass
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loss.backward()
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Training-Validation-Test

34



In-distribution vs Out-of-distribution
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In-distribution vs Out-of-distribution
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In-distribution vs Out-of-distribution

Training
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In-distribution vs Out-of-distribution

- Key: Make the training distribution closer to the target distribution
* First, we need to define our target distribution

* Then, we can try to
- Collect a diverse dataset covering that covers different parts of the target distribution
- Apply data augmentation to fill the gaps in the distribution
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In-distribution vs Out-of-distribution
* What do we really want?
- Good performance on the training samples We already have their answers
- Good performance on unseen samples in the target distribution Yep, we can do this!

- Good performance on out-of-distribution samples Hopefully, but not guaranteed

How to achieve good performance on
unseen samples in the target distribution
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Underfitting

Degree 1
MSE = 4.08e-01(+/- 4.25e-01)

— Model
True function

@ Samples

Overfitting & Underfitting

Good fit!

Degree 4
MSE = 4.32e-02(+/- 7.08e-02)

Model too inexpressive

— Model
True function
e Samples

Overfitting

Degree 15
MSE = 1.82e+08(+/- 5.46e+08)

— Model
True function
@ Samples

scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html

Model too expressive
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https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html
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https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html

Overfitting & Underfitting

Underfitting

Good fit!

Overfitting

Model too inexpressive

Model too expressive
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Train-Test Split

- Goal: Good performance on unseen samples in the target distribution

42



Train-Test Split

- Goal: Good performance on unseen samples in the target distribution

Training Test
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Test Set is an Estimation of the Test Distribution

« We create a test set because we want to estimate the performance
when the model is applied to an interested distribution
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Train-Validation-Test Split

Training

Test

45



Train-Validation-Test Split

Training

Validation

Test
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Training vs Validation Losses

Loss

Training loss l

Validation loss l

Training loss l

Validation loss t

Overfitting!

¥ __ Validation

— Training

Steps
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Training vs Validation Losses

Loss

Steps

Validation

Training
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Training vs Validation Losses

Loss

Pick the model with the
lowest validation loss

~__—Validation

Training

Steps
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Training vs Validation Losses

Possible solutions

* Increase the size and diversity
of the validation set
« Apply cross validation

Loss

Validation

Unrepresentative
validation samples

Training

Steps
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Training vs Validation Losses

Loss

Possible solutions

« Train it for more steps!
 Increase the learning rate

Underfitting!

Validation

Training

Steps
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Training vs Validation Losses

Loss

Validation
Overfitting!
—
Possible solutions
» Reduce the model size
» Apply dropout
» Add a regularizer
Training

Steps
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Train-Validation-Test Split

- Keys
* Never train or select your model on test samples!

- Don't over-select your model on the validation set

« What's the best ratio?
= Most common: 8:1:1 or 9:0.5:0.5

- For smaller dataset, you might even want 6:2:2
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Overcoming Overfitting
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Early Stopping

Loss

Stop early!

~_—Validation

P
-

Training

Steps
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Dropout

Each neuron may be removed
with probability p during training

| Dropout rate l




Dropout

Test
error : : : ‘
rate B T e T
8 With dropout
EaCh neuron may be remOVEd 20(;000 400iOOO 600;000 806000 100 oﬁ

with probability p during training V\;:ib;;;v:iﬁ;d&t;tes

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, llya Sutskever, and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” JMLR, 2014.\ 58


https://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

Regularization Term

» A regularization term can help alleviate overfitting
* L1 regularization (LASSO)

L' =L+ A(lwy| + lwa| + - + [wg])
- L2 regularization (ridge regression)

L'=L+A(w?+wi+-+w?)

Both L1 and L2 regularizations encourage smaller weights

59



Recap
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Training a Neural Network

Build a neural network
(which defines a set of functions)

|

l

Define the objective
(i.e., what is good for a function)

|

1

Find the optimal parameters
(which leads to the best function)

|
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Neural Networks are Parameterized Functions

* A neural network represents a set of functions

Find the optimal parameters

y
\
’ 9 (X) ' Good or bad?
)
AII the parameters Objective
Wi, .., Wby, .., by L(B) = L(¥,y)

Loss function
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L1 vs L2 Losses

L1 loss

L&y, y) =1y — v
1 n

L@,y) = MAE@,Y) == > |9 = ¥
i=1

Mean Absolute Error (MAE)

L2 loss

More sensitive
to outliers

L(y'y) — (5} _y)Z
1 n
L@,y) = MSE@,y) =~ > 9 = »)’
i=1

Mean Squared Error (MSE)
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Cross Entropy for Multiclass Classification

Real-valued numbers to
probability-like numbers

/\
i y: €[0,1] y;€{0,1}
y y
5 -O—O
5’, : :

L(@) = L(y,y)

Loss function

Softmax

eli

Z}l=1 e’
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Softmax

* Intuition: Map several numbers to [0, 1] while keeping their relative

magnitude

- Softmax is like the multivariate version of sigmoid

Real-valued numbers to
probability-like numbers

y1—

~~

Y2

Yn="

S A

Softmax

Divide by sum

735 ¥,

26 Yy, exp

~~

-128 vy, exp

T

L

Normalize

P

— V1

P

—> Y2

Sum to 1

0.98

0.02

0.00
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Gradient Descent: Pseudocode

* Pick an initial weight vector wy and learning rate n

« Repeat until convergence: w;,; = wy —nVf(w;)

slope = Vf(w;) > 0

adjustment = —nVf(w;) <0
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Gradient Descent: 3D Case

substance3d.adobe.com/community-assets/assets/9fe77d4279e12fe2fbd90b8f7ca18146a565f7ee
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Backpropagation: Efficiently Computing the Gradients

* An efficient way of computing gradients using chain rule

* The reason why we want everything to be differentiable in deep learning

Werr = We — V[ (w)
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Forward Pass & Backward Pass
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Backward pass
loss.backward()
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Training vs Validation Losses

Loss

Training loss l

Validation loss l

Training loss l

Validation loss t

Overfitting!

¥ __ Validation

— Training

Steps
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Training vs Validation Losses

Loss

Steps

Validation

Training
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Training vs Validation Losses

Loss

Pick the model with the
lowest validation loss

~__—Validation

Training

Steps
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Next Lecture

Source Separation
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https://www.jamendo.com/track/2230554/like-before
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