
Music & AI

Lecture 7: Deep Learning Fundamentals II

PAT 463/563 (Fall 2025)

Instructor: Hao-Wen Dong

Training a Neural Network

2

Training a Neural Network

3

Build a neural network
(which defines a set of functions)

Define the objective
(i.e., what is good for a function)

Find the optimal parameters
(which leads to the best function)

Training a Neural Network

4

Build a neural network
(which defines a set of functions)

Define the objective
(i.e., what is good for a function)

Find the optimal parameters
(which leads to the best function)

• A neural network represents a set of functions

Neural Networks are Parameterized Functions

5

⋯

⋯

⋯

𝑓𝜃(𝐱)

𝐱
ො𝐲

All the parameters
𝑾𝟏, … , 𝑾𝑳, 𝐛𝟏, … , 𝐛𝑳

𝐲

Good or bad?

Objective

Find the optimal parameters

𝐿 𝜽 = 𝐿 ො𝐲, 𝐲

Loss function

• Measure how well the model perform (in the opposite way)

• The choice of loss function depends on the task and the goals

Loss Function

6

𝐿 𝜽 = 𝐿 ො𝐲, 𝐲

• Sometimes called
 Cost function
 Error function

• The opposite is known as
 Objective function
 Reward function (reinforcement learning)

 Fitness function (evolutionary algorithms & genetic algorithms)

 Utility function (economics)

 Profit function (economics)

Loss Function: The Many Names

7

• What would be a good objective to train a neural audio codec?

• What do we care about for a codec?
 Reconstruction quality
 Bit rate (compression rate)
 Encoding/decoding speed

• How do we measure reconstruction quality?
 Difference in raw waveforms?
 Difference in spectrograms?
 Perceptual quality (psychoacoustics)?

Example: Audio Codec

8

Trainable

Likely not trainable but searchable

Likely not trainable but searchable

Common Loss Functions for Regression

9

𝐱

ෝ𝒚

⋮
⋮

𝒚

𝐿 𝜽 = 𝐿 ෝ𝒚, 𝒚
Loss function

𝐿 ො𝑦, 𝑦 = | ො𝑦 − 𝑦|

0 1 2-1-2

1

2

3

𝐿 ො𝑦, 𝑦 = ො𝑦 − 𝑦 2

0 1 2-1-2

1

2

3

L1 loss

L2 loss

Why not 𝑳 ෝ𝒚, 𝒚 = ෝ𝒚 − 𝒚?

No activation
function!

L1 vs L2 Losses

10

𝐿 ො𝑦, 𝑦 = | ො𝑦 − 𝑦|

0 1 2-1-2

1

2

3

L1 loss

𝐿 ො𝑦, 𝑦 = ො𝑦 − 𝑦 2

0 1 2-1-2

1

2

3

L2 loss

𝐿 ො𝐲, 𝐲 = 𝐌𝐀𝐄 ො𝐲, 𝐲 =
1

𝑛
෍

𝑖=1

𝑛

| ො𝑦𝑖 − 𝑦𝑖|

Mean Absolute Error (MAE)

𝐿 ො𝐲, 𝐲 = 𝐌𝐒𝐄 ො𝐲, 𝐲 =
1

𝑛
෍

𝑖=1

𝑛

ො𝑦𝑖 − 𝑦𝑖
2

Mean Squared Error (MSE)

More sensitive
to outliers

L1 vs L2 Losses

11

𝐿 ො𝑦, 𝑦 = | ො𝑦 − 𝑦|

0 1 2-1-2

1

2

3

L1 loss

𝐿 ො𝑦, 𝑦 = ො𝑦 − 𝑦 2

0 1 2-1-2

1

2

3

L2 loss

𝐿 ො𝐲, 𝐲 = 𝐌𝐀𝐄 ො𝐲, 𝐲 =
1

𝑛
෍

𝑖=1

𝑛

| ො𝑦𝑖 − 𝑦𝑖|

Mean Absolute Error (MAE)

𝐿 ො𝐲, 𝐲 = 𝐌𝐒𝐄 ො𝐲, 𝐲 =
1

𝑛
෍

𝑖=1

𝑛

ො𝑦𝑖 − 𝑦𝑖
2

Mean Squared Error (MSE)

More sensitive
to outliers

• Logistic regression approaches classification like regression

Binary Cross Entropy for Binary Classification

12

𝐱

ෝ𝒚

⋮
⋮

𝒚

𝐿 𝜽 = 𝐿 ෝ𝒚, 𝒚
Loss function

0 2 4-2-4

0.5

1

Sigmoid function

ෝ𝒚 ∈ 𝟎, 𝟏

𝒚 ∈ {𝟎, 𝟏}

0.5 10

1

2

3

𝐿 ො𝑦, 𝑦 = ቊ
− log ො𝑦 , if 𝑦 = 1

− log 1 − ො𝑦 , if 𝑦 = 0

= −𝑦 log ො𝑦 − 1 − 𝑦 log 1 − ො𝑦

if 𝑦 = 1 if 𝑦 = 0

Binary cross entropy
(Also called log loss)

Cross Entropy for Multiclass Classification

13

𝐱

⋮
⋮

ො𝐲 𝐲

𝐿 𝜽 = 𝐿 ො𝐲, 𝐲
Loss function

⋮ ⋮⋮

Cross Entropy for Multiclass Classification

14

𝐱 ෤𝐲

⋮
⋮

𝐲

𝐿 𝜽 = 𝐿 ො𝐲, 𝐲
Loss function

𝒚𝒊 ∈ {𝟎, 𝟏}

⋮ ⋮

ො𝐲 𝐲

⋮ ⋮So
ft

m
ax

ෝ𝒚𝒊 ∈ 𝟎, 𝟏෥𝒚𝒊 ∈ ℝ

ෝ𝒚𝒊 =
𝒆෥𝒚𝒊

σ𝒋=𝟏
𝒏 𝒆෥𝒚𝒋

Softmax

Real-valued numbers to
probability-like numbers

• Intuition: Map several numbers to 0, 1 while keeping their relative
magnitude
 Softmax is like the multivariate version of sigmoid

Softmax

15

So
ft

m
ax

෥𝒚𝟏

෥𝒚𝟐

෥𝒚𝒏

ෝ𝒚𝟏

ෝ𝒚𝟐

ෝ𝒚𝒏

N
or

m
al

iz
e

ෝ𝒚𝟏

ෝ𝒚𝟐

ෝ𝒚𝒏

෥𝒚𝟏

෥𝒚𝟐

෥𝒚𝒏

𝐞𝐱𝐩

𝐞𝐱𝐩

𝐞𝐱𝐩

Divide by sum

73.5

2.6

-12.8

0.98

0.02

0.00

Sum to 1
Real-valued numbers to
probability-like numbers

Cross Entropy for Multiclass Classification

16

𝐿 ො𝑦, 𝑦 = −𝑦 log ො𝑦 − 1 − 𝑦 log 1 − ො𝑦

Binary Cross Entropy Cross Entropy

𝐿 ො𝐲, 𝐲 = −𝑦1 log ො𝑦1 − 𝑦2 log ො𝑦2 − ⋯ − 𝑦𝑖 log ො𝑦𝑛

= − ෍

𝑖

𝑛

𝑦𝑖 log ො𝑦𝑖

Only one of them will be one! Only one of them will be one!

Log likelihood

Optimization

17

Training a Neural Network

18

Build a neural network
(which defines a set of functions)

Define the objective
(i.e., what is good for a function)

Find the optimal parameters
(which leads to the best function)

ො𝐲 = 𝑓𝜽(𝐱)

𝐿 𝜽

𝜽∗ = arg min
𝜽

𝐿 𝜽

Training a Neural Network

19

Build a neural network
(which defines a set of functions)

Define the objective
(i.e., what is good for a function)

Find the optimal parameters
(which leads to the best function)

ො𝐲 = 𝑓𝜽(𝐱)

𝐿 𝜽

𝜽∗ = arg min
𝜽

𝐿 𝜽

• Many, many ways…

• Most commonly through gradient descent in deep learning

• Alternatively, we can use search or genetic algorithm

Optimizing the Parameters of a Neural Network

20

𝜽∗ = arg min
𝜽

𝐿 𝜽

• Intuition: Gradient can suggest a good direction to tune the parameters

Gradient Descent

21

𝑤0

Derivative for a vector,
matrix or tensor

• Pick an initial weight vector 𝑤0 and learning rate 𝜼

• Repeat until convergence: 𝑤𝑡+1 = 𝑤𝑡 − 𝜼∇𝑓 𝑤𝑡

Gradient Descent: Pseudocode

22

𝑤0

Gradient of function 𝒇
with respect to weight 𝒘

• Pick an initial weight vector 𝑤0 and learning rate 𝜂

• Repeat until convergence: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡

Gradient Descent: Pseudocode

23

𝑤0

slope = ∇𝑓 𝑤0 > 0

• Pick an initial weight vector 𝑤0 and learning rate 𝜂

• Repeat until convergence: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡

Gradient Descent: Pseudocode

24

𝑤0

adjustment = −𝜂∇𝑓 𝑤0 < 0

slope = ∇𝑓 𝑤0 > 0

• Pick an initial weight vector 𝑤0 and learning rate 𝜂

• Repeat until convergence: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡

Gradient Descent: Pseudocode

25

𝑤0

slope = ∇𝑓 𝑤0 > 0

𝑤1

adjustment = −𝜂∇𝑓 𝑤0 < 0

• Pick an initial weight vector 𝑤0 and learning rate 𝜂

• Repeat until convergence: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡

Gradient Descent: Pseudocode

26

𝑤0

slope = ∇𝑓 𝑤1 > 0

𝑤1

adjustment = −𝜂∇𝑓 𝑤1 < 0

𝑤2

• Pick an initial weight vector 𝑤0 and learning rate 𝜂

• Repeat until convergence: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡

Gradient Descent: Pseudocode

27

𝑤0

slope = ∇𝑓 𝑤2 > 0

𝑤1

adjustment = −𝜂∇𝑓 𝑤2 < 0

𝑤2𝑤3

• Pick an initial weight vector 𝑤0 and learning rate 𝜂

• Repeat until convergence: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡

Gradient Descent: Pseudocode

28

𝑤0

slope = ∇𝑓 𝑤𝑡 > 0

𝑤1

adjustment = −𝜂∇𝑓 𝑤𝑡 < 0

𝑤2𝑤3

Gradient Descent: 3D Case

substance3d.adobe.com/community-assets/assets/9fe77d4279e12fe2fbd90b8f7ca18146a565f7ee 29

https://substance3d.adobe.com/community-assets/assets/9fe77d4279e12fe2fbd90b8f7ca18146a565f7ee
https://substance3d.adobe.com/community-assets/assets/9fe77d4279e12fe2fbd90b8f7ca18146a565f7ee
https://substance3d.adobe.com/community-assets/assets/9fe77d4279e12fe2fbd90b8f7ca18146a565f7ee

• An efficient way of computing gradients using chain rule

• The reason why we want everything to be differentiable in deep learning

Backpropagation: Efficiently Computing the Gradients

30

𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡

Backpropagation: Efficiently Computing the Gradients

31

youtu.be/Ilg3gGewQ5U?t=196

https://youtu.be/Ilg3gGewQ5U?t=196

Forward Pass & Backward Pass

32

𝐱
ො𝐲

⋯

⋯

⋯

Forward pass

𝐡𝟏 = 𝝋 𝑾𝟏𝐱 + 𝐛𝟏

𝐡𝟐 = 𝝋 𝑾𝟐𝐡𝟏 + 𝐛𝟐

𝐡𝟑 = 𝝋 𝑾𝟐𝐡𝟐 + 𝐛𝟐

ො𝐲 = 𝝋 𝑾𝑳𝐡𝑳−𝟏 + 𝐛𝑳

Forward Pass & Backward Pass

33

⋯

⋯

⋯
𝐱

ො𝐲

Backward pass

𝜕𝑳

𝜕𝐡𝑳−𝟏

𝜕𝑳

𝜕𝐡𝟑

𝜕𝑳

𝜕𝐡𝟐

𝜕𝑳

𝜕𝐡1

𝜕𝑳

𝜕𝐱

loss.backward()

Training–Validation–Test

34

In-distribution vs Out-of-distribution

35

Test

Training

In-distribution vs Out-of-distribution

36

Test Training

In-distribution vs Out-of-distribution

37

Training

• Key: Make the training distribution closer to the target distribution

• First, we need to define our target distribution

• Then, we can try to
 Collect a diverse dataset covering that covers different parts of the target distribution
 Apply data augmentation to fill the gaps in the distribution

In-distribution vs Out-of-distribution

38

• What do we really want?

 Good performance on the training samples

 Good performance on unseen samples in the target distribution

 Good performance on out-of-distribution samples

In-distribution vs Out-of-distribution

39

We already have their answers

Yep, we can do this!

Hopefully, but not guaranteed

How to achieve good performance on
unseen samples in the target distribution

Overfitting & Underfitting

scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html 40

Underfitting Good fit! Overfitting

Model too inexpressive Model too expressive

https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html

Overfitting & Underfitting

41

Underfitting Good fit! Overfitting

Model too inexpressive Model too expressive

• Goal: Good performance on unseen samples in the target distribution

Train–Test Split

42

• Goal: Good performance on unseen samples in the target distribution

Train–Test Split

43

Training Test

• We create a test set because we want to estimate the performance
when the model is applied to an interested distribution

Test Set is an Estimation of the Test Distribution

44

Train–Validation–Test Split

45

Training Test

Train–Validation–Test Split

46

Training TestValidation

Training–Validation–Test Pipeline

47

Training TestValidation

Optimize

Select

Training vs Validation Losses

48

Training

Validation

Steps

Loss

Validation loss

Training loss

Validation loss

Training loss

Overfitting!

Training vs Validation Losses

49

Training

Validation

Steps

Loss

Training vs Validation Losses

50

Training

Validation

Steps

Loss Pick the model with the
lowest validation loss

Training vs Validation Losses

51

Training

Validation

Steps

Loss

Unrepresentative
validation samples

Possible solutions
• Increase the size and diversity

of the validation set
• Apply cross validation

Training vs Validation Losses

52

Training

Validation

Steps

Loss
Underfitting!

Possible solutions
• Train it for more steps!
• Increase the learning rate

Training vs Validation Losses

53

Training

Validation

Steps

Loss

Possible solutions
• Reduce the model size
• Apply dropout
• Add a regularizer

Overfitting!

• Keys
 Never train or select your model on test samples!
 Don’t over-select your model on the validation set

• What’s the best ratio?
 Most common: 8:1:1 or 9:0.5:0.5
 For smaller dataset, you might even want 6:2:2

Train–Validation–Test Split

54

Overcoming Overfitting

55

Early Stopping

56

Training

Validation

Steps

Loss

Stop early!

Dropout

57

𝐱

⋮
⋮

ො𝐲

⋮⋮

Each neuron may be removed
with probability 𝒑 during training

𝐱

⋮
⋮

ො𝐲

⋮⋮

𝐱

⋮
⋮

ො𝐲

⋮⋮

𝐱

⋮
⋮

ො𝐲

⋮⋮

𝐱

⋮
⋮

ො𝐲

⋮⋮

Dropout rate

Dropout

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” JMLR, 2014.\ 58

Test
error
rate

Weight updates

𝐱

⋮
⋮

ො𝐲

⋮⋮

Each neuron may be removed
with probability 𝒑 during training

https://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

• A regularization term can help alleviate overfitting
 L1 regularization (LASSO)

𝐿′ = 𝐿 + 𝜆 𝑤1 + 𝑤2 + ⋯ + |𝑤𝐾|

 L2 regularization (ridge regression)

𝐿′ = 𝐿 + 𝜆 𝑤1
2 + 𝑤2

2 + ⋯ + 𝑤𝐾
2

Regularization Term

59

Both L1 and L2 regularizations encourage smaller weights

Recap

60

Training a Neural Network

61

Build a neural network
(which defines a set of functions)

Define the objective
(i.e., what is good for a function)

Find the optimal parameters
(which leads to the best function)

• A neural network represents a set of functions

Neural Networks are Parameterized Functions

62

⋯

⋯

⋯

𝑓𝜃(𝐱)

𝐱
ො𝐲

All the parameters
𝑾𝟏, … , 𝑾𝑳, 𝐛𝟏, … , 𝐛𝑳

𝐲

Good or bad?

Objective

Find the optimal parameters

𝐿 𝜽 = 𝐿 ො𝐲, 𝐲

Loss function

L1 vs L2 Losses

63

𝐿 ො𝑦, 𝑦 = | ො𝑦 − 𝑦|

0 1 2-1-2

1

2

3

L1 loss

𝐿 ො𝑦, 𝑦 = ො𝑦 − 𝑦 2

0 1 2-1-2

1

2

3

L2 loss

𝐿 ො𝐲, 𝐲 = 𝐌𝐀𝐄 ො𝐲, 𝐲 =
1

𝑛
෍

𝑖=1

𝑛

| ො𝑦𝑖 − 𝑦𝑖|

Mean Absolute Error (MAE)

𝐿 ො𝐲, 𝐲 = 𝐌𝐒𝐄 ො𝐲, 𝐲 =
1

𝑛
෍

𝑖=1

𝑛

ො𝑦𝑖 − 𝑦𝑖
2

Mean Squared Error (MSE)

More sensitive
to outliers

Cross Entropy for Multiclass Classification

64

𝐱 ෤𝐲

⋮
⋮

𝐲

𝐿 𝜽 = 𝐿 ො𝐲, 𝐲
Loss function

𝒚𝒊 ∈ {𝟎, 𝟏}

⋮ ⋮

ො𝐲 𝐲

⋮ ⋮So
ft

m
ax

ෝ𝒚𝒊 ∈ 𝟎, 𝟏෥𝒚𝒊 ∈ ℝ

ෝ𝒚𝒊 =
𝒆෥𝒚𝒊

σ𝒋=𝟏
𝒏 𝒆෥𝒚𝒋

Softmax

Real-valued numbers to
probability-like numbers

• Intuition: Map several numbers to 0, 1 while keeping their relative
magnitude
 Softmax is like the multivariate version of sigmoid

Softmax

65

So
ft

m
ax

෥𝒚𝟏

෥𝒚𝟐

෥𝒚𝒏

ෝ𝒚𝟏

ෝ𝒚𝟐

ෝ𝒚𝒏

N
or

m
al

iz
e

ෝ𝒚𝟏

ෝ𝒚𝟐

ෝ𝒚𝒏

෥𝒚𝟏

෥𝒚𝟐

෥𝒚𝒏

𝐞𝐱𝐩

𝐞𝐱𝐩

𝐞𝐱𝐩

Divide by sum

73.5

2.6

-12.8

0.98

0.02

0.00

Sum to 1
Real-valued numbers to
probability-like numbers

• Pick an initial weight vector 𝑤0 and learning rate 𝜂

• Repeat until convergence: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡

Gradient Descent: Pseudocode

66

𝑤0

slope = ∇𝑓 𝑤𝑡 > 0

𝑤1

adjustment = −𝜂∇𝑓 𝑤𝑡 < 0

𝑤2𝑤3

Gradient Descent: 3D Case

substance3d.adobe.com/community-assets/assets/9fe77d4279e12fe2fbd90b8f7ca18146a565f7ee 67

https://substance3d.adobe.com/community-assets/assets/9fe77d4279e12fe2fbd90b8f7ca18146a565f7ee
https://substance3d.adobe.com/community-assets/assets/9fe77d4279e12fe2fbd90b8f7ca18146a565f7ee
https://substance3d.adobe.com/community-assets/assets/9fe77d4279e12fe2fbd90b8f7ca18146a565f7ee

• An efficient way of computing gradients using chain rule

• The reason why we want everything to be differentiable in deep learning

Backpropagation: Efficiently Computing the Gradients

68

𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡

Forward Pass & Backward Pass

69

⋯

⋯

⋯
𝐱

ො𝐲

Backward pass

𝜕𝑳

𝜕𝐡𝑳−𝟏

𝜕𝑳

𝜕𝐡𝟑

𝜕𝑳

𝜕𝐡𝟐

𝜕𝑳

𝜕𝐡1

𝜕𝑳

𝜕𝐱

loss.backward()

Training–Validation–Test Pipeline

70

Training TestValidation

Optimize

Select

Training vs Validation Losses

71

Training

Validation

Steps

Loss

Validation loss

Training loss

Validation loss

Training loss

Overfitting!

Training vs Validation Losses

72

Training

Validation

Steps

Loss

Training vs Validation Losses

73

Training

Validation

Steps

Loss Pick the model with the
lowest validation loss

Source Separation

Next Lecture

(Other)

(Source: “Like Before” by Bessonn&sa)

https://www.jamendo.com/track/2230554/like-before

	Slide 1: Music & AI
	Slide 2: Training a Neural Network
	Slide 3: Training a Neural Network
	Slide 4: Training a Neural Network
	Slide 5: Neural Networks are Parameterized Functions
	Slide 6: Loss Function
	Slide 7: Loss Function: The Many Names
	Slide 8: Example: Audio Codec
	Slide 9: Common Loss Functions for Regression
	Slide 10: L1 vs L2 Losses
	Slide 11: L1 vs L2 Losses
	Slide 12: Binary Cross Entropy for Binary Classification
	Slide 13: Cross Entropy for Multiclass Classification
	Slide 14: Cross Entropy for Multiclass Classification
	Slide 15: Softmax
	Slide 16: Cross Entropy for Multiclass Classification
	Slide 17: Optimization
	Slide 18: Training a Neural Network
	Slide 19: Training a Neural Network
	Slide 20: Optimizing the Parameters of a Neural Network
	Slide 21: Gradient Descent
	Slide 22: Gradient Descent: Pseudocode
	Slide 23: Gradient Descent: Pseudocode
	Slide 24: Gradient Descent: Pseudocode
	Slide 25: Gradient Descent: Pseudocode
	Slide 26: Gradient Descent: Pseudocode
	Slide 27: Gradient Descent: Pseudocode
	Slide 28: Gradient Descent: Pseudocode
	Slide 29: Gradient Descent: 3D Case
	Slide 30: Backpropagation: Efficiently Computing the Gradients
	Slide 31: Backpropagation: Efficiently Computing the Gradients
	Slide 32: Forward Pass & Backward Pass
	Slide 33: Forward Pass & Backward Pass
	Slide 34: Training–Validation–Test
	Slide 35: In-distribution vs Out-of-distribution
	Slide 36: In-distribution vs Out-of-distribution
	Slide 37: In-distribution vs Out-of-distribution
	Slide 38: In-distribution vs Out-of-distribution
	Slide 39: In-distribution vs Out-of-distribution
	Slide 40: Overfitting & Underfitting
	Slide 41: Overfitting & Underfitting
	Slide 42: Train–Test Split
	Slide 43: Train–Test Split
	Slide 44: Test Set is an Estimation of the Test Distribution
	Slide 45: Train–Validation–Test Split
	Slide 46: Train–Validation–Test Split
	Slide 47: Training–Validation–Test Pipeline
	Slide 48: Training vs Validation Losses
	Slide 49: Training vs Validation Losses
	Slide 50: Training vs Validation Losses
	Slide 51: Training vs Validation Losses
	Slide 52: Training vs Validation Losses
	Slide 53: Training vs Validation Losses
	Slide 54: Train–Validation–Test Split
	Slide 55: Overcoming Overfitting
	Slide 56: Early Stopping
	Slide 57: Dropout
	Slide 58: Dropout
	Slide 59: Regularization Term
	Slide 60: Recap
	Slide 61: Training a Neural Network
	Slide 62: Neural Networks are Parameterized Functions
	Slide 63: L1 vs L2 Losses
	Slide 64: Cross Entropy for Multiclass Classification
	Slide 65: Softmax
	Slide 66: Gradient Descent: Pseudocode
	Slide 67: Gradient Descent: 3D Case
	Slide 68: Backpropagation: Efficiently Computing the Gradients
	Slide 69: Forward Pass & Backward Pass
	Slide 70: Training–Validation–Test Pipeline
	Slide 71: Training vs Validation Losses
	Slide 72: Training vs Validation Losses
	Slide 73: Training vs Validation Losses
	Slide 74: Source Separation

