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Global Recorded Music Industry Revenues

Global recorded music industry revenues 1999-2024 (USS billions)
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https://globalmusicreport.ifpi.org/

How the World Listens to Music?

How the World Listens to Music

Share of hours spent engaging with music, by platform

4%
Live music

Including livestreaming

7%

Other forms of
music listening

TV, on-demand premium
video services such

as Netflix, music swapped
with family and friends 320,

Audio streaming

Subscription and free tiers
e.g. Spotify, Apple Music,
Melon

9%
Purchased music

E.g. CDs, vinyl, DVDs,
digital downloads
31%
Video streaming

’ 17% Long-form and short-form
Music on the radio e.g. YouTube, TikTok

Broadcast live, catch up,
internet radio stations

1,100-4,000 internet users (16-64 y/o) surveyed per market in 18 countries in 2023
Source: IFPI Engaging With Music 2023
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(Source: Statista)

statista.com/chart/32880/share-of-hours-spent-engaging-with-music/
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Music Fingerprinting



Shazam & Siri
(=)

Tap to Shazam

“What song is playing right now”

Listening...

— gl —

(Source: OSXDaily)

(Source: Shazam User Guide)

osxdaily.com/2017/09/08/identify-song-playing-mac-siri/
support.apple.com/en-is/guide/shazam/dev9748744b6/web
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SoundHound

TAP THE

ORANGE BUTTON
TO SEARCH SONGS

Slow Burn
Kacey Musgraves oNTous

14 (I1) Pl

(Source: SoundHound)

(Source: CNet)

download.cnet.com/soundhound-music-discovery-hands-free-player/3000-2141_4-77341748.html|
soundhound.com/soundhound/
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Audio Fingerprinting for Audio ldentification
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Common Framework of Audio Fingerprinting
Wmam

FRONT-END
Y
A/D Conversion
Mono Conversion e Preprocessing Frame size = 10-500 ms
Sampling Rate / Overlap=50 - 98 %
Pre-emphasis L3 / Window Type
Normalisation ) |/
Band-filtering Framing&Overlap
GSM coder/decoder T
Energy Filterbank
DFT S Transform MFCC
MCLT / Spectral Flatness
Haar Y High-level descriptors
Hadamard Pitch
Wavelet Feature extract. |~ Bass
™ Robust Hash
¥ Freq. Modulation
/ Post-Processing
Normalisation /
Decorrelation \ 4 (VQ) Histograms
Differentiation Trajectories
Quantisation FINGERPRINT Statistics
MODELING ~—~ GMM
VQ
7 HMM
= Error Correc. Words
ﬁ “Audio High-level attribut.
A&‘ Fingerprint

(Source: Cano et al., 2002)

Pedro Cano, Eloi Batlle, Ton Kalker, and Jaap Haitsm, “A Review of Algorithms for Audio Fingerprinting,” MMSP, 2002.



https://ieeexplore.ieee.org/document/1203274

Energy Difference-based Fingerprinting (Haitsma et al., 2002)

Fourier
Framing  Transform
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(Source: Haitsma et al., 2002)

Jaap Haitsma and Ton Kalker, “A Highly Robust Audio Fingerprinting System,” ISMIR, 2002.
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F(n,31)
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https://ismir2002.ismir.net/proceedings/02-FP04-2.pdf

Energy Difference-based Fingerprinting (Haitsma et al., 2002)

guitar _acoustic 001-082-050
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Jaap Haitsma and Ton Kalker, “A Highly Robust Audio Fingerprinting System,” ISMIR, 2002
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https://ismir2002.ismir.net/proceedings/02-FP04-2.pdf

Energy Difference-based Fingerprinting (Haitsma et al., 2002)

guitar_acoustic_001-082-050 bass_synthetic 120-108-050 organ_electronic_120-050-127
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Jaap Haitsma and Ton Kalker, “A Highly Robust Audio Fingerprinting System,” ISMIR, 2002.
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Energy Difference-based Fingerprinting (Haitsma et al., 2002)
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Jaap Haitsma and Ton Kalker, “A Highly Robust Audio Fingerprinting System,” ISMIR, 2002
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' Peak-based Audio Fingerprinting (wang et al., 2003)

Spectrogram

Constellation Map

Frequency
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g
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(Source: Wang et al., 2003)

Avery Li-Chun Wang, “An Industrial-Strength Audio Search Algorithm,” ISMIR, 2003.
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' Peak-based Audio Fingerprinting (wang et al., 2003)

Avery Li-Chun Wang, “
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(Source: Wang et al., 2003)

An Industrial-Strength Audio Search Algorithm,” ISMIR, 2003.
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INg (Wang et al., 2003)
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Avery Li-Chun Wang, “An Industrial-Strength Audio Search Algorithm,”
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INg (Wang et al., 2003)
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ISMIR, 2003.

Avery Li-Chun Wang, “An Industrial-Strength Audio Search Algorithm,”
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INg (Wang et al., 2003)
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ISMIR, 2003.

Avery Li-Chun Wang, “An Industrial-Strength Audio Search Algorithm,”
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INg (Wang et al., 2003)
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ISMIR, 2003.

Avery Li-Chun Wang, “An Industrial-Strength Audio Search Algorithm,”
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Peak-based Audio Fingerprinting (wang et al., 2003)

Histogram of differences of time offsets: signals match
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(Source: Wang et al., 2003)

Avery Li-Chun Wang, “An Industrial-Strength Audio Search Algorithm,” ISMIR, 2003.
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Peak-based Audio Fingerprinting (wang et al., 2003)
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(Source: Wang et al., 2003)

X

Apply hashing algorithms to speed up the matching process!

Avery Li-Chun Wang, “An Industrial-Strength Audio Search Algorithm,” ISMIR, 2003.
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" YouTube's Content ID

youtu.be/9g2U12SsRns
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https://youtu.be/9g2U12SsRns

Resources on Fingerprinting

- Pedro Cano, Eloi Batlle, Ton Kalker, and Jaap Haitsma, “A Review of Audio
Fingerprinting,” Journal of VLSI Signal Processing Systems for Signal, Image,
and Video Technology, 2005.
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https://link.springer.com/content/pdf/10.1007/s11265-005-4151-3.pdf
https://link.springer.com/content/pdf/10.1007/s11265-005-4151-3.pdf

Version ldentification

25



Version ldentification: Beyond Fingerprinting & Covers

Version Type
— Q
Musical g 5 ® S 8§ O o < o S’ £ 5
... I8 28 = 5 & > & § & § & x 9 @ =
Characteristic = < K=] @ s = =) = e b= = =) =] = @ S £
s 5 3 E 5 5§ £ 2 § £ 5 8 §8 3 E & E 3
A 2 & H A& /A A B M S »h 5 < 2 &£ O < O
Melody | O | O | O[O0 O 0 2 n 2212
Harmony [ 0 | 0 [0 | 0 [ O 0 0 0 | 2 | 2
Tempo 0 0 0 0 2 0 2 2
Timing 0 0 0 0 2 0
Structure | O 0 n
Lyrics 0 0
Key 0 0
Timbre | O 0
Noise | O
Degree of Potential g 2
Difference Likely the same May be variations May be major differences May be unrelated

(Source: Yesiler et al., 2021)

Furkan Yesiler, Guillaume Doras, Rachel M. Bittner, Christopher J. Tralie, and Joan Serra, “Audio-based Musical Version Identification: Elements and Challenges,” IEEE Signal Processing
Magazine, 2021.
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Cover Song Identification

|

. Audio Pair (1, z2) ¢
Singing Voice
Recognition :
o —
Transcripts by, ba | TonalBased |
—_t] —_hl . ¢ Matching
¢ Instrumental
_ . : Detection : :
[ String Matching ] ; | :
i i 51}31,$2 i E
Slyrics i o i Stonal E
—{><J 5

Sf'us

Andrea Vaglio, Romain Hennequin, Manuel Moussallam,

(Source: Vaglio et al., 2021)

and Gaél Richard, “The Words Remain the Same: Cover Detection with Lyrics Transcription,” ISMIR, 2021.
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https://archives.ismir.net/ismir2021/paper/000089.pdf

Google's Hum to Search (2020

(Source: Google Research Blog)

research.google/blog/the-machine-learning-behind-hum-to-search/

n Dance M: nhe-,

28


https://research.google/blog/the-machine-learning-behind-hum-to-search/
https://research.google/blog/the-machine-learning-behind-hum-to-search/
https://research.google/blog/the-machine-learning-behind-hum-to-search/
https://research.google/blog/the-machine-learning-behind-hum-to-search/
https://research.google/blog/the-machine-learning-behind-hum-to-search/
https://research.google/blog/the-machine-learning-behind-hum-to-search/
https://research.google/blog/the-machine-learning-behind-hum-to-search/
https://research.google/blog/the-machine-learning-behind-hum-to-search/
https://research.google/blog/the-machine-learning-behind-hum-to-search/
https://research.google/blog/the-machine-learning-behind-hum-to-search/
https://research.google/blog/the-machine-learning-behind-hum-to-search/
https://research.google/blog/the-machine-learning-behind-hum-to-search/
https://research.google/blog/the-machine-learning-behind-hum-to-search/
https://research.google/blog/the-machine-learning-behind-hum-to-search/

Google's Hum to Search (2020

Humming Studio Recording

(Source: Google Research Blog)

research.google/blog/the-machine-learning-behind-hum-to-search/
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Google's Hum to Search (2020

Audio encoder Data augmentation
Hummed/sung audio Aligned recorded audio
sung audio
g ik
- SPICE
Deep Neural - _& g
Network r o
etwor b-‘-""'&"-.._h--‘"' e
i pitch values
@ [ Tone generator ]
Embeddings (0.12,-0.03,0.2, ...) (0.14, -0.04, 0.23, ...) o
QI @ y tones / hummed audio

Loss function

(Source: Google Research Blog)

research.google/blog/the-machine-learning-behind-hum-to-search/
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Resources on Version ldentification

 Furkan Yesiler, Christopher Tralie, and Joan Serra, “Version Identification in

the 20s,” ISMIR Tutorials, 2020.
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https://docs.google.com/presentation/d/17GDjTE9GV0cWxpYlsiXLvgPkVAg70Ho4RwPUyyL-j0U/edit?usp=sharing
https://docs.google.com/presentation/d/17GDjTE9GV0cWxpYlsiXLvgPkVAg70Ho4RwPUyyL-j0U/edit?usp=sharing

Music Watermarking
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Audio Watermarking

Watermark Watermark
generator detector

e — [ ] e — [ ]

|—> No perceivable difference < ‘
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Audio Watermarking Against Generated Audio

Proactively watermarked speech generator

Speech

Speech | ‘ 1] | | Watermark editing
Model Generator

Al-Generated Watermarked
‘Al generated?’ y
Published X' I
PO 11 1 | Watermark I | ‘ ‘ |
o el Detector
~——
Localized
watermarking

(Source: Roman et al., 2024)

Robin San Roman, Pierre Fernandez, Hady Elsahar, Alexandre Défossez, Teddy Furon, and Tuan Tran, “Proactive Detection of Voice Cloning with Localized Watermarking,” ICML, 2024. 34


https://arxiv.org/pdf/2401.17264

AudioSeal (Roman et al., 2024)

( Perceptual 1 Localization WM Labels « Predictions

| Losses ] Loss LA 1117
l | :

Watermark Watermark
I‘II MI_> aterma e —>‘I M_, aterma
Generator Detector
Original Watermarked Augmented
| & Masked

(Source: Roman et al., 2024)

Robin San Roman, Pierre Fernandez, Hady Elsahar, Alexandre Défossez, Teddy Furon, and Tuan Tran, “Proactive Detection of Voice Cloning with Localized Watermarking,” ICML, 2024. 35


https://arxiv.org/pdf/2401.17264

AudioSeal (Roman et al., 2024)
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(Source: Roman et al., 2024)

Robin San Roman, Pierre Fernandez, Hady Elsahar, Alexandre Défossez, Teddy Furon, and Tuan Tran, “Proactive Detection of Voice Cloning with Localized Watermarking,” ICML, 2024. 36


https://arxiv.org/pdf/2401.17264

- AudioMarkBench (Liu et al., 2024)

é@h} AudioMarkBench

“— g

Attacks

(Source: Liu et al., 2024)

Hongbin Liu, Moyang Guo, Zhengyuan Jiang, Lun Wang, and Neil Zhengiang Gong, “AudioMarkBench: Benchmarking Robustness of Audio Watermarking,” Neur/PS Datasets and
Benchmarks Track, 2024.
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https://arxiv.org/pdf/2406.06979
https://arxiv.org/pdf/2406.06979
https://arxiv.org/pdf/2406.06979

MusicFX's SynthID (Google)

labs.google/fx/tools/music-fx
deepmind.google/technologies/synthid/

About MusicFX

MusicFX is an experimental technology that allows you to
generate your own music. Certain queries that mention
specific artists or include vocals will not be generated.

MusicFX is powered by Google's MusicLM and uses Google
DeepMind’s novel watermarking technology, SynthID to embed
a digital watermark in the outputs.

We need your help to improve Al for everybody. Generated
audio and prompt suggestions are experimental. You can
report content under our policies or applicable laws, or give
feedback by clicking the flag icon so we can improve Al
responsibly together.
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Music Recommendation
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Music Recommendation

e Spotify’

amazon music
N’

& Music
© YouTube Music
pandora

The Most Loved Digital
Audio Streaming Platforms

Share of respondents who have paid for audio downloads
or streaming services from the following platforms”

* United Kingdom

eseotity ||| s
amazonrusic || 4c%
evusic [ 28%
© Music - 26%
aasounocioun. [ 1296

* in the 12 months prior to the survey
2,362 (UK)/4,944 (USA) respondents (18-64 y/o) surveyed Jul. 2023-Jun. 2024

Source: Statista Consumer Insights

% United States

eseotry ||+
evusic [N ¢
© Music - 33%
pandora - 23%

statista %a

Anna Fleck, “The Most Loved Digital Audio Streaming Platforms,” Statista, September 30, 2024. 40



https://www.statista.com/chart/29016/most-popular-music-streaming-services/

Music Recommendation

What to play next?

Soundtrack, classical

Rock

Classical

Pop, soul, R&B
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Collaborative Filtering

v/
v/
v/
v/
v/
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User-based Collaborative Filtering

}

Vv ) similar users

}

v/
v/
v/
v/
v/

v/
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Collaborative Filtering

v/
v/
v/
v/
v/
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Item-based Collaborative Filtering

v/
v/
v/
v/
v/

v/

similar songs

—/
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Item-based Collaborative Filtering

C L L X

similar songs

v v
recommend
4
v v
v
v/
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Challenges of Music Recommendation
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The Long Tail Problem

3000000

2500000

2000000

1500000

number of listeners
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I 1 I 1 I 1
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Longétail
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10° 10! 102 100 <0t 10 10° 15>

rank

(Source: Levy & Bosteels, 2010)

Mark Levy and Klaas Bosteels, “Music Recommendation and the Long Tail,” WOMRAD, 2010.
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https://ceur-ws.org/Vol-633/wom2010_paper10.pdf

Cold Star Problem: New ltems

v/
v/
v/
v/
v/
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Content-based Filtering

Musical

Live concert version

Concert at Royal Albert Hall

\/

similar songs

MERON MACKINTOSH Presents

Musical
Live concert version

Concert at Royal Albert Hall
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Collaborative Filtering vs Content-based Filtering

Collaborative filtering

listened to by both users

e . . ©
i 7

similar users

listen to\‘ et Jrecommend

Content-based filtering

listen to/v

- similar items

recommend\
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Cold Star Problem: New Users
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User Profile Modelling

Data type

Example

Demographic

Age, marital status, gender etc.

Geographic

Location, city, country etc.

Psychographic

Stable: interests, lifestyle, personality etc.

Fluid: mood, attitude, opinions etc.

(Source: Song et al., 2012)

Yading Song, Simon Dixon, and Marcus Pearce, “A Survey of Music Recommendation Systems and Future Perspectives,” CMMR, 2012.
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https://media.fullofwishes.co.uk/00-misc/docs/Net--Blogs-and-Rock--n--Roll.pdf

User Listening Experience Modelling

7% Everything in life seems to be tied up with music
Savants

/ Enthusiasts
f///f Casuals

Indifferents

Music is a key part of life but is also balanced by

o
21% other interests

Music plays a welcome role, but other things are

329 .
: far more important

40% Would not lose much sleep if music ceased to exist

(Source: Jennings, 2007)

David Jennings, “Net, Blogs and Rock 'n’ Roll: How Digital Discovery Works and What it Means for Consumers,” Nicholas Brealey Publishing, 2007.
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https://media.fullofwishes.co.uk/00-misc/docs/Net--Blogs-and-Rock--n--Roll.pdf

Novelty vs Relevance

Random

Novelty(u)

Popular

Relevance(u)

(Source: Celma, 2010)

: The Long Tail, Long Fail, and Long Play in the Digital Music Spac

Oscar Celma, “Music Recommendation and Discover

e

/" Springer, 2010.
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https://link.springer.com/book/10.1007/978-3-642-13287-2

Listening Behavior Analysis

YouTube’s Music Recap

In January, you also had Lose
Control on repeat

March was all kinds of happy, at
least musically

Afrobeats

»» Share

(Source: YouTube)

blog.youtube/news-and-events/2024-music-recap-youtube/
engineering.atspotify.com/2023/01/whats-a-listening-personality/

Spotify’s Listening Personality

The Replayer

You’re a comfort listener. You stick with

the songs you like, by the artists you like,

from whenever and wherever. Why rock
the boat?

ity - Til - Loyalty - Uni

(Source: Spotify)
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Music Playlist Generation

5 Songs Added to New Playlist.

< Library Songs Sort Done \

Heaven Is Here
Florence + the Mcgthine

Hexie Mountafs
Orville Peck

Classical

High 8

The Chainsmoker

Higher
Michael Bublé

Holy Water

Jason Aldean

No

Sequential
recommendation
BL= e

@ | Hope You Chlinge Your Mind

-’ _‘ The Chainsmoker!

@‘ I Love U
o) The Chainsmoker!

u
"‘! I've Got A Frie|
= Maggie Rogers
\@‘ If You're Serioffs /

HNLXESCHVWIODOVOZIrXc—IOTMMOO®W>

Iternative, rocl Pop

Pop, soul, R&B

The Chainsmoke’

< 0 100 DEED



YouTube Music's Ask Music (2024)

=N O4094%

Experiment

X

+ Creating a radio just for you...

X

4 Playing Indie Melancholy
What's next?

-~ 3 Indie Melancholy

Created for you

melody and

ﬂ. From The Ritz To The Rubble

'1 1] Arctic Monk

Crush
B Cigarettes A

0

L3 y
w Funtimes in Babylon
T

ks v Father John Misty * 3:4

Melancholy indie

Surprise me! Sad indie folk Dream pop artists

) Ask for music

Text prompt C RS

(Source: Android Police)

androidpolice.com/youtube-music-ask-music-ai-playlist-assistant/

=N T4 094%

Experiment
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Spotify’'s Al Playlist (2024)

X

What do you want to
hear today?

Try asking

Playlist

4" Tell me your ideas
*ﬂﬁj Al Playlist

Tap the ‘+’ in Your
Library to get started

Tuning into your request...

Wait as we do
our magic

Main Character Vibes

Not An Angel

WO |)oppiness

's your Main Character

4" Refine this playlist

Create your
playlist
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Spotify’'s Personalized Picks in ChatGPT (2025)

b ChatGPT5 >

Go for warm, vibrant energy. Keep the space open
so people can dance if they want.

(Source: Spotify)

newsroom.spotify.com/2025-10-06/spotify-personalized-prompts-chatgpt
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Resources on Music Recommendation

- Markus Schedl, Peter Knees, and Fabien Gouyon, "Overview and New
Challenges of Music Recommendation Research in 2018,” ISMIR Tutorials,
2018.

* Markus Schedl, Hamed Zamani, Ching-Wei Chen, Yashar Deldjoo, and
Mehdi Elahi, “Current Challenges and Visions in Music Recommender
Systems Research,” International Journal of Multimedia Information Retrieval,
7:95-116, 2018.
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https://www.slideshare.net/slideshow/music-recommendation-2018-116102609/116102609
https://www.slideshare.net/slideshow/music-recommendation-2018-116102609/116102609
https://arxiv.org/pdf/1710.03208
https://arxiv.org/pdf/1710.03208

Recap
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Global Recorded Music Industry Revenues

Global recorded music industry revenues 1999-2024 (USS billions)

® Physical @ Streaming @ Downloads @ Performance Rights Synchronisation
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https://globalmusicreport.ifpi.org/

Audio Fingerprinting for Audio ldentification

w Fingerprinting = A
s — o
W — D ' Fingerprint
W Database
oo ~

N

Fingerprinting
model

Matching
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' Peak-based Audio Fingerprinting (wang et al., 2003)

Spectrogram

Constellation Map
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25001
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g
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(Source: Wang et al., 2003)

Avery Li-Chun Wang, “An Industrial-Strength Audio Search Algorithm,” ISMIR, 2003.
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INg (Wang et al., 2003)
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(Source: Wang et al., 2003)
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ISMIR, 2003.

Avery Li-Chun Wang, “An Industrial-Strength Audio Search Algorithm,”


https://www.ee.columbia.edu/~dpwe/papers/Wang03-shazam.pdf
https://www.ee.columbia.edu/~dpwe/papers/Wang03-shazam.pdf
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Version ldentification: Beyond Fingerprinting & Covers

Version Type
— Q
Musical g 5 ® S 8§ O o < o S’ £ 5
... I8 28 = 5 & > & § & § & x 9 @ =
Characteristic = < K=] @ s = =) = e b= = =) =] = @ S £
s 5 3 E 5 5§ £ 2 § £ 5 8 §8 3 E & E 3
A 2 & H A& /A A B M S »h 5 < 2 &£ O < O
Melody | O | O | O[O0 O 0 2 n 2212
Harmony [ 0 | 0 [0 | 0 [ O 0 0 0 | 2 | 2
Tempo 0 0 0 0 2 0 2 2
Timing 0 0 0 0 2 0
Structure | O 0 n
Lyrics 0 0
Key 0 0
Timbre | O 0
Noise | O
Degree of Potential g 2
Difference Likely the same May be variations May be major differences May be unrelated

(Source: Yesiler et al., 2021)

Furkan Yesiler, Guillaume Doras, Rachel M. Bittner, Christopher J. Tralie, and Joan Serra, “Audio-based Musical Version Identification: Elements and Challenges,” IEEE Signal Processing
Magazine, 2021.
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Google's Hum to Search (2020

Humming Studio Recording

(Source: Google Research Blog)

research.google/blog/the-machine-learning-behind-hum-to-search/
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Audio Watermarking

Watermark Watermark
generator detector

e — [ ] e — [ ]

|—> No perceivable difference < ‘
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Audio Watermarking Against Generated Audio

Proactively watermarked speech generator

Speech

Speech | ‘ 1] | | Watermark editing
Model Generator

Al-Generated Watermarked
‘Al generated?’ y
Published X' I
PO 11 1 | Watermark I | ‘ ‘ |
o el Detector
~——
Localized
watermarking

(Source: Roman et al., 2024)

Robin San Roman, Pierre Fernandez, Hady Elsahar, Alexandre Défossez, Teddy Furon, and Tuan Tran, “Proactive Detection of Voice Cloning with Localized Watermarking,” ICML, 2024. 70


https://arxiv.org/pdf/2401.17264

AudioSeal (Roman et al., 2024)

0.2 .
Magnlfled by 5x

©
[

Original Watermarked

Signal
Amplitude
o
o

—-0.1
_0.2 1 | 1 1 1
!_4:3\ ]_0 1 T T =
BE : NS
%E 0 5 L | N N
o)
D | -
Q0.0 B . ! ! ;
4 5 6 7 8
Time (s)

(Source: Roman et al., 2024)

Robin San Roman, Pierre Fernandez, Hady Elsahar, Alexandre Défossez, Teddy Furon, and Tuan Tran, “Proactive Detection of Voice Cloning with Localized Watermarking,” ICML, 2024. 71


https://arxiv.org/pdf/2401.17264

Music Recommendation

e Spotify’

amazon music
N’

& Music
© YouTube Music
pandora

The Most Loved Digital
Audio Streaming Platforms

Share of respondents who have paid for audio downloads
or streaming services from the following platforms”

* United Kingdom

eseotity ||| s
amazonrusic || 4c%
evusic [ 28%
© Music - 26%
aasounocioun. [ 1296

* in the 12 months prior to the survey
2,362 (UK)/4,944 (USA) respondents (18-64 y/o) surveyed Jul. 2023-Jun. 2024

Source: Statista Consumer Insights

% United States

eseotry ||+
evusic [N ¢
© Music - 33%
pandora - 23%

statista %a

Anna Fleck, “The Most Loved Digital Audio Streaming Platforms,” Statista, September 30, 2024. 72
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User-based Collaborative Filtering

}

Vv ) similar users

}

v/
v/
v/
v/
v/

v/
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Item-based Collaborative Filtering

C L L X

similar songs

v v
recommend
4
v v
v
v/
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The Long Tail Problem

3000000

2500000

2000000

1500000

number of listeners

1000000

I 1 I 1 I 1
.ﬁ
‘b.
~
N
~
L e e aeaa ! .........................................................................................

................................................................................................................

Longétail

N I O S B i . —
10° 10! 102 100 <0t 10 10° 15>

rank

(Source: Levy & Bosteels, 2010)

Mark Levy and Klaas Bosteels, “Music Recommendation and the Long Tail,” WOMRAD, 2010.
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https://ceur-ws.org/Vol-633/wom2010_paper10.pdf

Cold Star Problem: New ltems

v/
v/
v/
v/
v/
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Content-based Filtering

Musical

Live concert version

Concert at Royal Albert Hall

\/

similar songs

MERON MACKINTOSH Presents

Musical
Live concert version

Concert at Royal Albert Hall
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Collaborative Filtering vs Content-based Filtering

Collaborative filtering

listened to by both users

e . . ©
i 7

similar users

listen to\‘ et Jrecommend

Content-based filtering

listen to/v

- similar items

recommend\
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User Listening Experience Modelling

7% Everything in life seems to be tied up with music
Savants

/ Enthusiasts
f///f Casuals

Indifferents

Music is a key part of life but is also balanced by

o
21% other interests

Music plays a welcome role, but other things are

329 .
: far more important

40% Would not lose much sleep if music ceased to exist

(Source: Jennings, 2007)

David Jennings, “Net, Blogs and Rock 'n’ Roll: How Digital Discovery Works and What it Means for Consumers,” Nicholas Brealey Publishing, 2007.
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https://media.fullofwishes.co.uk/00-misc/docs/Net--Blogs-and-Rock--n--Roll.pdf

Novelty vs Relevance

Random

Novelty(u)

Popular

Relevance(u)

(Source: Celma, 2010)

: The Long Tail, Long Fail, and Long Play in the Digital Music Spac

Oscar Celma, “Music Recommendation and Discover

e

/" Springer, 2010.
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https://link.springer.com/book/10.1007/978-3-642-13287-2

Listening Behavior Analysis

YouTube’s Music Recap

In January, you also had Lose
Control on repeat

March was all kinds of happy, at
least musically

Afrobeats

»» Share

(Source: YouTube)

blog.youtube/news-and-events/2024-music-recap-youtube/
engineering.atspotify.com/2023/01/whats-a-listening-personality/

Spotify’s Listening Personality

The Replayer

You’re a comfort listener. You stick with

the songs you like, by the artists you like,

from whenever and wherever. Why rock
the boat?

ity - Til - Loyalty - Uni

(Source: Spotify)
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Music Playlist Generation

5 Songs Added to New Playlist.

< Library Songs Sort Done \

Heaven Is Here
Florence + the Mcgthine

Hexie Mountafs
Orville Peck

Classical

High 8

The Chainsmoker

Higher
Michael Bublé

Holy Water

Jason Aldean

No

Sequential
recommendation
BL= e

@ | Hope You Chlinge Your Mind
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@‘ I Love U
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u
"‘! I've Got A Frie|
= Maggie Rogers
\@‘ If You're Serioffs /

HNLXESCHVWIODOVOZIrXc—IOTMMOO®W>

Iternative, rocl Pop
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Next Lecture

Discussion

“Blectronic
12.8%

N(East Asian 24.5%
v R

\ 3

South Asian. Ff-ﬁ — 0

y /T S
Latin American 0.2% \A-x,:_ﬂ D J\_\‘

! \
y Oceania
0.4% > P
Classical gasy Listening P
13.5% 6.8%

Region & Genre Wise Distribution of Dataset Corpus (Heatmap)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Log of Dataset(Hours) by Region (Scaled)

(Source: Mehta et al., 2024)
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