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Music Classification



Music Classification Tasks

* Genre classification (pop, rock, r&b, jazz, hip-hop, classical, etc.)

Mood classification (happy, sad, calm, aggressive, cheerful, etc.)

Instrument recognition

Composer identification

Key detection
« Chord estimation

* Music tagging - Can cover everything above!



Applications of Music Classification Models

Recommendation

Curation

Playlist generation

Listening behavior analysis

Musicology research

Minz Won, Janne Spijkervet, and Keunwoo Choi, “Music Classification: Beyond Supervised Learning, Towards Real-world Applications,” Tutorials of ISMIR, 2021.
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Music Classification for Recommendation
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Music Classification for Recommendation

Soundtrack, classical

Rock

Classical

What to play next?

Pop Pop, soul, R&B




Music Classification for Playlist Generation
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Spotify's Al Playlist (2024)

Main Character Vibes

X

Not An Angel

What do you want to
hear today? L TR

Try asking

Playlist

's your Main Character
: Tuning into your request... Vibes
4" Tell me your ideas
@ y Al Playlist 4° Refine this playlist

Tap the ‘+’ in Your Wait as we do Create your
Library to get started our magic playlist
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YouTube Music's Ask Music (2024)
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(Source: Android Police)

androidpolice.com/youtube-music-ask-music-ai-playlist-assistant/
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Spotify’'s Personalized Picks in ChatGPT (2025)

b ChatGPT5 >

Go for warm, vibrant energy. Keep the space open
so people can dance if they want.

(Source: Spotify)

newsroom.spotify.com/2025-10-06/spotify-personalized-prompts-chatgpt
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Music Classification for Listening Behavior Analysis

YouTube’s Music Recap

Your listening this year? It's
giving...

In January, you also had Lose
Control on repeat

March was all kinds of happy, at

Afrobeats

»» Share »» Share

(Source: YouTube)

blog.youtube/news-and-events/2024-music-recap-youtube/
engineering.atspotify.com/2023/01/whats-a-listening-personality/

Spotify’s Listening Personality

The Replayer

You’re a comfort listener. You stick with
the songs you like, by the artists you like,
from whenever and wherever. Why rock

the boat?

ity - Til - Loyalty - Uni

(Source: Spotify)
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Types of Classification Tasks
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Types of Classification Tasks

* Binary classification
 Multiclass classification

 Multi-label classification
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Binary Classification
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Multiclass Classification

organ_electronic_120-050-127
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Multiclass Classification
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Multi-label Classification
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Pop, soul, R&B
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Multi-label Classification

%8 ——  Soul, R&B, pop
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Multi-label Classification as Binary Classification
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Multi-label Classification as Multi-class Classification

{Pop} \
{R&B}
{Soul}

{Classical}

{Pop, R&B}

{Pop, Soul}

{Pop, Classical}
{Pop, R&B, Soul}

{R&B, Soul, Classical}
{Pop, R&B, Soul, Classical} }

Label
powerset
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Input Features

« Waveforms
- Time-frequency representation (spectrograms)

- Hand-crafted features or features provided in metadata
- Acoustic: loudness, pitch, timbre
- Rhythmic: beat, tempo, time signature
- Tonal: key, scale, chords

- Instrumentation, expressions, structures, etc.

Frequency

22



Common Datasets

GTZAN: 1,000 30-sec songs, 10 genres

MagnaTagATune: 5,405 29-sec songs, 188 tags, 230 artists

Million Song Dataset (MSD): 1M 30-sec songs, >500K tags, tricky to access

Free Music Archive (FMA): >10K full songs, 163 genres

MTG-Jamendo: 55K full songs, 195 tags

AudioSet: 1M songs, YouTube URLs, low-quality audio

NSynth: ~306K 4-sec one-shot instrument sounds

Minz Won, Janne Spijkervet, and Keunwoo Choi, “Music Classification: Beyond Supervised Learning, Towards Real-world Applications,” Tutorials of ISMIR, 2021.
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Evaluation Metrics
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Evaluation Metrics

- Key: Capture what you care the most!
* The best evaluation metric depends on the actual use case

 Best to use several evaluation metrics to obtain a holistic view of your
model's performance
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Toy Example: Binary Classification

Positive Negative

(o A
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Toy Example: Binary Classification
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Accuracy

- Definition: Percentage of correct predictions across all classes

Positive Negative
/ © o o) o\ 0 09~ 0 0°
© 0% © “0%©
© © o ©0 0 00O
®) Accuracy = o o
o) © O
0 o © © 0% 9 o0 o ©0°©°
o) o ©Oo0O © 00O
o © o
=0.82




Confusion Matrix for Binary Classification

Ground truth

Positive

Negative

Prediction
Positive Negative
True Positives False Negatives
(TP) (FN)
False Positives True Negatives
(FP) (TN)
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Confusion Matrix for Binary Classification

Ground truth

Positive

True Positives

Prediction

Negative

False Negatives

(TP) (FN)
Positive
Cat Not Cat
False Positives True Negatives
(FP) (TN)
Negative - C’!‘g &
Cat ¢ 4 Not Cat
ARV d
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Accuracy on Imbalanced Datasets

 Accuracy does not work well on imbalanced dataset

- Take a disease with a 1% prevalence for example:

- What if we simply say negative to all diagnoses?

Ground
truth

Positive

Negative

Prediction

Positive

True Positives
(TP)

0

Negative

False Negatives
(FN)

1

False Positives
(FP)

0

True Negatives
(TN)

29

Accuracy = 0.99

~
—
o O

va
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Precision

Positive Negative
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Recall

Positive Negative
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How well the model finds all
positive instances in the dataset
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Precision vs Recall

Precision
o n©
0% ©
TP O o O
= O =0.75
TP + FP (0 @)
0°%° "o
Ooo0©O ".. False
alarms

How often predictions for
the positive are correct

Recall
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0% ©
TP 0O
TP + FN i O O =09
0% 09 o
O 00O .. Missed
detection

How well the model finds all
positive instances in the dataset
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When should we care about Precision & Recall?

Rare cancer detection

Aim for high precision or high recall?

High recall ensures most
cancer cases are identified.

Positive Negative
2 )
A 0 o © o©
K ralse
Negatives O
oj O
False
Positives
O o

K O

O/

False alarms vs Missed detections



When should we care about Precision & Recall?

Music recommendation

Aim for high precision or high recall?

High precision ensures that the model
won’'t recommend irrelevant items.

Positive Negative
o © o © o o
Fal
NegZ;(\eles O O
ale o o
False \ O @)
@) Positives
o © o

\_

°

False alarms vs Missed recommendations



F1 Score: Considering both Precision & Recall

» Particularly useful for imbalanced datasets
- Work better than accuracy when the dataset is imbalanced
- For example, music search, retrieval, and recommendation

2

T 1
Precision Recall

=
Il

2 - Precision - Recall

Precision + Recall
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Confusion Matrix for Binary Classification

Ground truth

Positive

True Positives

Prediction

Negative

False Negatives

(TP) (FN)
Positive
Cat Not Cat
False Positives True Negatives
(FP) (TN)
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ARV d
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Confusion Matrix for Multiclass Classification

Bass sounds got classified
as keyboard sounds

bass

Guitar sounds got classified brass
as bass/keyboard sounds

guitar

keyhoard
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Organ sounds got
classified as vocals
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Resources on Music Classification

Minz Won, Janne Spijkervet, and Keunwoo Choi, “Music Classification:
Beyond Supervised Learning, Towards Real-world Applications,” Tutorials of
ISMIR, 2021.

Open source music classification models
= github.com/minzwon/sota-music-tagging-models

- github.com/jordipons/musicnn

40
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® HW 3: Musical Note Classification using CNNs

* Instructions will be sent by emails and released on the course website

 Train a CNN that can classify audio files into their instrument families
 Input: 64x64 mel spectrogram

- Output: 11 instrument classes
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NSynth Dataset

* A collection of 305,979 one-shot musical notes (Engel et al., 2017)
- Produced from 1,006 commercial sample libraries
- With different MIDI pitches (21-108) and velocities (25, 50, 75, 100, 127)

guitar_acoustic_001-082-050 bass_synthetic_120-108-050 guitar_electronic_021-026-025 organ_electronic_011-079-075 keyboard_electronic_089-044-10C

2048 A 2048 2048 2048

1024 ~ 1024 1 1024 1024

—

512 512 512 512 512

0 - 0 0 4]
0 05 1 15 2 25 3 35 4 0O 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4
Time Time Time Time Time

Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Douglas Eck, Karen Simonyan, and Mohammad Norouzi, “Neural Audio Synthesis of Musical Notes with WaveNet
Autoencoders,” ICML, 2017.


https://arxiv.org/pdf/1704.01279
https://arxiv.org/pdf/1704.01279
https://arxiv.org/pdf/1704.01279

More on Optimization
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Training a Neural Network

Build a neural network
(which defines a set of functions)

|

l

Define the objective
(i.e., what is good for a function)

|

1

Find the optimal parameters
(which leads to the best function)

|
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Neural Networks are Parameterized Functions

* A neural network represents a set of functions

Find the optimal parameters

y
\
’ 9 (X) ' Good or bad?
)
AII the parameters Objective
Wi, .., Wby, .., by L(B) = L(¥,y)

Loss function
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Training vs Validation Losses

Loss

Training loss l

Validation loss l

Training loss l

Validation loss t

Overfitting!

¥ __ Validation

— Training

Steps
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Training vs Validation Losses

Loss

Steps

Validation

Training
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Training vs Validation Losses

Loss

Pick the model with the
lowest validation loss

~__—Validation

Training

Steps
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Training vs Validation Losses

Possible solutions

* Increase the size and diversity
of the validation set
« Apply cross validation

Loss

Validation

Unrepresentative
validation samples

Training

Steps
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Training vs Validation Losses

Loss

Possible solutions

« Train it for more steps!
 Increase the learning rate

Underfitting!

Validation

Training

Steps
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Training vs Validation Losses

Loss

Validation
Overfitting!
—
Possible solutions
» Reduce the model size
» Apply dropout
» Add a regularizer
Training

Steps
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Train-Validation-Test Split

- Keys
* Never train or select your model on test samples!

- Don't over-select your model on the validation set

« What's the best ratio?
= Most common: 8:1:1 or 9:0.5:0.5

- For smaller dataset, you might even want 6:2:2

53



Mitigating Overfitting
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Early Stopping

Loss

Stop early!

~_—Validation

P
-

Training

Steps
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Dropout

Each neuron may be removed
with probability p during training

| Dropout rate l




Dropout

Test
error : : : ‘
rate B T e T
8 With dropout
EaCh neuron may be remOVEd 20(;000 400iOOO 600;000 806000 100 oﬁ

with probability p during training V\;:ib;;;v:iﬁ;d&t;tes

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, llya Sutskever, and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” JMLR, 2014.\ 57
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Regularization Term

» A regularization term can help alleviate overfitting
* L1 regularization (LASSO)

L' =L+ A(lwy| + lwa| + - + [wg])
- L2 regularization (ridge regression)

L'=L+A(w?+wi+-+w?)

Both L1 and L2 regularizations encourage smaller weights
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Adaptive Optimizers
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Training a Neural Network

Build a neural network
(which defines a set of functions)

J y = fo(x)

l

Define the objective
(i.e., what is good for a function)

N
J Loss(0) = Z LYk, Yi)
K

1

Find the optimal parameters
(which leads to the best function)

J 0" = arg min L(0)
0
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Gradient Descent Finds a Local Minimum

Global minimum

\/ W3W,y Wq Wy

Local minima
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| Gradient Descent Finds a Local Minimum

Local minima

substance3d.adobe.com/community-assets/assets/9fe77d4279e12fe2fbd90b8f7ca18146a565f7ee
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Local Minima in Complex Loss Landscape

Local minima

Solution 1
Use an optimizer with
adaptive learning rate

Solution 2
Use a stochastic
optimizer

Solution 3
Make the loss
landscape smoother

Global minimum

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein, “Visualizing the Loss Landscape of Neural Nets,” Neur/PS, 2018.
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Local Minima in Complex Loss Landscape

Local minima

Solution 1
Use an optimizer with
adaptive learning rate

Solution 2
Use a stochastic
optimizer

Solution 3
Make the loss
landscape smoother

Global minimum

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein, “Visualizing the Loss Landscape of Neural Nets,” Neur/PS, 2018.
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Learning Rate in Gradient Descent

~

Wepq = Wy — NVf (wy)

s
: g I
W3W, Wq W

Smaller learning rate

Slow convergence /

TN

W3iWoWi Wy

Larger learning rate

~

Low precision

"

WiWws Wy Wy
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Gradient-based Adaptive Learning Rate

* Intuition: Compensate axis that has little progress by comparing the

current gradients to the previous gradients

WG Step--.

Large gradients along one o
. | Gradient Arrows
axis, small along the other el prome

| Sum of Gradient Squared
4 Path

Use larger learning rate for the
axis with smaller gradien

P N Decay rate
h \))( # Adagrad

@ /,; : v 4 G rad Ie n/t’; " Learning Rate: 1e -1 ]
% Y L | RMSprop
. _Descent

Learn Rate: 1e
/ S NG
' &> .
Decay rate
.: Learning Rate: le
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Momentum

* Intuition: Maintain the momentum to escape from local minima

With
momentum
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Comparison of Optimizers

— SGD - SGD
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Can we combine them?

analyticsvidhya.com/blog/2021/10/a-comprehensive-guide-on-deep-learning-optimizers/
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Adam Optimizer

« Combine the idea of adaptive learning rate and momentum
- Work empirically well in complex neural network

* The go-to choice for most cases

Optimizer Comparison

—_— SDG
= SGD with Momentum
AdaGrad
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Comparison of Optimizers

* Momentum
- Gets you out of spurious local minima

Optimizer Comparison

- Allows the model to explore around o

= SGD with Momentum
AdaGrad

- Gradient-based adaption
- Maintains steady improvement

- Allows faster convergence

medium.com/@LayanSA/complete-guide-to-adam-optimization-1e5f29532¢3d

70


mailto:medium.com/@LayanSA/complete-guide-to-adam-optimization-1e5f29532c3d
mailto:medium.com/@LayanSA/complete-guide-to-adam-optimization-1e5f29532c3d
mailto:medium.com/@LayanSA/complete-guide-to-adam-optimization-1e5f29532c3d
mailto:medium.com/@LayanSA/complete-guide-to-adam-optimization-1e5f29532c3d
mailto:medium.com/@LayanSA/complete-guide-to-adam-optimization-1e5f29532c3d
mailto:medium.com/@LayanSA/complete-guide-to-adam-optimization-1e5f29532c3d
mailto:medium.com/@LayanSA/complete-guide-to-adam-optimization-1e5f29532c3d
mailto:medium.com/@LayanSA/complete-guide-to-adam-optimization-1e5f29532c3d
mailto:medium.com/@LayanSA/complete-guide-to-adam-optimization-1e5f29532c3d
mailto:medium.com/@LayanSA/complete-guide-to-adam-optimization-1e5f29532c3d
mailto:medium.com/@LayanSA/complete-guide-to-adam-optimization-1e5f29532c3d

Local Minima in Complex Loss Landscape

Local minima

Solution 1
Use an optimizer with
adaptive learning rate

Solution 2
Use a stochastic
optimizer

Solution 3
Make the loss
landscape smoother

Global minimum

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein, “Visualizing the Loss Landscape of Neural Nets,” Neur/PS, 2018.
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Batch Gradient Descent

How to aggregate the gradients obtained from different training samples?

Batch gradient descent computes the mean gradients over the whole

training set
MSE loss Loss(0) = Z L(y,y) = Z z A(k) (k)
N
Binary cross entropy Loss(0) = z L(y,y) = 2 —ylogy — (1 —1vy) log(1 —9)

k

N N n
Cross entropy Loss(0) = 2 L(y,y) =— 2 2 yilogy;
k ki
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Stochastic Gradient Descent (SGD)

* Intuition: Estimate the gradient using one random training sample

- Benefits
- Speed up the computation of the gradient N computations - 1 computation

- Add some randomness to the gradient descent algorithm  Help escape spurious local minima

Gradient descent Stochastic gradient descent

5N gradient /N /N N N
computations

analyticsvidhya.com/blog/2022/07/gradient-descent-and-its-types/ 73

16 gradient
computations
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Stochastic Gradient Descent is Noisy and Unstable

- Gradient estimate using one single sample can be unreliable

GD SGD

S00

400 3

2 2

Loss & .. 8
200

100

0 250 500 750 1000 1250 1500 1750 200% 0 250 500 750 1000 1250 1500 1750 2000
number of epoch number of epoch
Epoch Epoch

How about we use more samples to estimate the gradient?

towardsdatascience.com/deep-learning-optimizers-436171c9e23f
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Mini-batch Gradient Descent

- Intuition: Estimate the gradient using several random training
samples

P — i P SGD &+— Mini-batch GD | —
- p 120
=0 100
400 3 8
Loss i, 8, o
200 )
1
100 2
0 0
’ 0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000 0 500 1000 1500 2000 2500
number of epoch number of epoch number of iteration
Epoch Epoch Epoch
batch size = N batch size = 1 1 < batchsize < N

analyticsvidhya.com/blog/2022/07/gradient-descent-and-its-types/
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Effects of Batch Size

« An epoch is a full run of the whole dataset

#(steps) =

* Steps per epoch depends on the batch size

Training loss for different batch sizes (Ir 0.01)

074 —— batch 32
batch 64
—— hbatch_128
0.6 —— batch_256
i 5
Loss £
‘w04 o
£ Went through 4 times
more weight updates
03
o2

0 100 200 300 400 500 €00 700 BOO
Epoch

medium.com/deep-learning-experiments/effect-of-batch-size-on-neural-net-training-c5ae8516e57

1 1 »
900 1000 1100

#(training samples)

batch size
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Local Minima in Complex Loss Landscape

Local minima

Solution 1
Use an optimizer with
adaptive learning rate

Solution 2
Use a stochastic
optimizer

Solution 3
Make the loss
landscape smoother

Global minimum

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein, “Visualizing the Loss Landscape of Neural Nets,” Neur/PS, 2018.
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Recap
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Music Classification for Recommendation

Soundtrack, classical

What to play next?

Rock

Classical

Pop, soul, R&B

80



Music Classification for Playlist Generation

< Library

5 Songs Added to New Playlist.

Songs Sort Done

Heaven Is Here
Florence + the Machine

Hexie Mountains
Orville Peck

High 8

The Chainsmokers

Higher
Michael Bublé

Holy Water

Jason Aldean

Home By Now
MUNA

Honey @
Maggie Rogers

Horses
Maggie Rogers

| Hope You Change Your Mind

The Chainsmokers

| Love U
The Chainsmokers

I've Got A Friend B

Maggie Rogers

If You're Serious
The Chainsmokers

Q0 DJEE])

A
B
c
D
E
F
G
H
|

J

K
L
M
N
(o]
P
Q
R
S
T
u
v
w
X
Y
z
#

Altern

——

ative, rocl

RACHMANINOFF

Pop, soul, R&B
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Binary Classification

4.86

0.18

Is Classical?

099 O
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Multiclass Classification

vocal
synth_lead
string

reed
organ A
mallet -
keyboard -
guitar
brass 1

bass -

0.0 0.2 0.4 0.6 0.8
Prediction
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Multi-label Classification

/ Sl
£ VYWt
£ Wil

Musical Alternative, rock

Pop

Classical

Pop, soul, R&B
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Multi-label Classification as Binary Classification

X

P-
1]
.
M
7
£C
O
)

o

Is Soul?

o

Is Pop?

X

Is Rock?

o

Is R&B?
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Multi-label Classification as Multi-class Classification

{Pop} \
{R&B}
{Soul}

{Classical}

{Pop, R&B}

{Pop, Soul}

{Pop, Classical}
{Pop, R&B, Soul}

{R&B, Soul, Classical}
{Pop, R&B, Soul, Classical} }

Label
powerset
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Accuracy

- Definition: Percentage of correct predictions across all classes

Positive Negative
/ © o o) o\ 0 09~ 0 0°
© 0% © “0%©
© © o ©0 0 00O
®) Accuracy = o o
o) © O
0 o © © 0% 9 o0 o ©0°©°
o) o ©Oo0O © 00O
o © o
=0.82




Confusion Matrix for Binary Classification

Ground truth

Positive

True Positives

Prediction

Negative

False Negatives

(TP) (FN)
Positive
Cat Not Cat
False Positives True Negatives
(FP) (TN)
Negative - C’!‘g &
Cat ¢ 4 Not Cat
ARV d
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Precision vs Recall

Precision
o n©
0% ©
TP O o O
= O =0.75
TP + FP (0 @)
0°%° "o
Ooo0©O ".. False
alarms

How often predictions for
the positive are correct

Recall
o n°
0% ©
TP 0O
TP + FN i O O =09
0% 09 o
O 00O .. Missed
detection

How well the model finds all
positive instances in the dataset
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When should we care about Precision & Recall?

Rare cancer detection

Aim for high precision or high recall?

High recall ensures most
cancer cases are identified.

Positive Negative
2 )
A 0 o © o©
K ralse
Negatives O
oj O
False
Positives
O o

K O

O/

False alarms vs Missed detections



When should we care about Precision & Recall?

Music recommendation

Aim for high precision or high recall?

High precision ensures that the model
won’'t recommend irrelevant items.

Positive Negative
o © o © o o
Fal
NegZ;(\eles O O
ale o o
False \ O @)
@) Positives
o © o

\_

°

False alarms vs Missed recommendations



F1 Score: Considering both Precision & Recall

» Particularly useful for imbalanced datasets
- Work better than accuracy when the dataset is imbalanced
- For example, music search, retrieval, and recommendation

2

T 1
Precision Recall

=
Il

2 - Precision - Recall

Precision + Recall
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Confusion Matrix for Multiclass Classification

Bass sounds got classified
as keyboard sounds

bass

Guitar sounds got classified brass
as bass/keyboard sounds

guitar

keyhoard

mallet

Organ sounds got
classified as vocals

Ground truth

organ
reed
string

synth_lead

vocal

i L = == on r
@ 24 2 5 2 @ 5 § 2 ® 8
= = o T o A

-D"-q-::ﬁGfUL_E —
= tn &6 E © "=

== =]

E =

=,

[T]

Prediction



Next Lecture

Language-based Music Generation
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(Source: Huang et al., 2018)
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