PAT 463/563 (Fall 2025)

Music & Al

Lecture 11: Music Classification

Instructor: Hao-Wen Dong

Music Classification

Music Classification Tasks

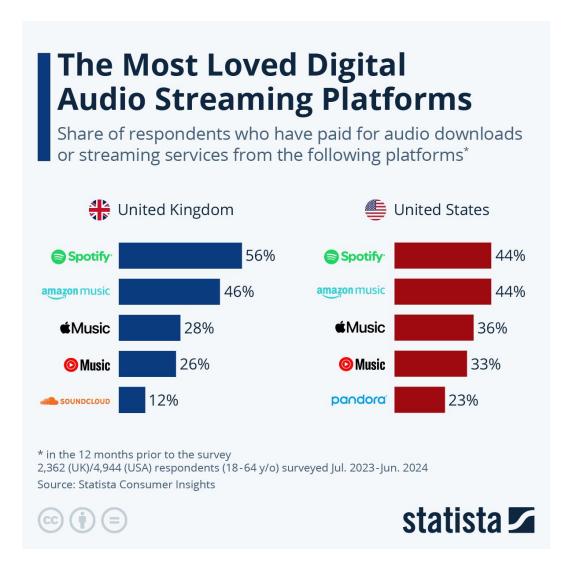
- Genre classification (pop, rock, r&b, jazz, hip-hop, classical, etc.)
- Mood classification (happy, sad, calm, aggressive, cheerful, etc.)
- Instrument recognition
- Composer identification
- Key detection
- Chord estimation
- Music tagging

 Can cover everything above!

Applications of Music Classification Models

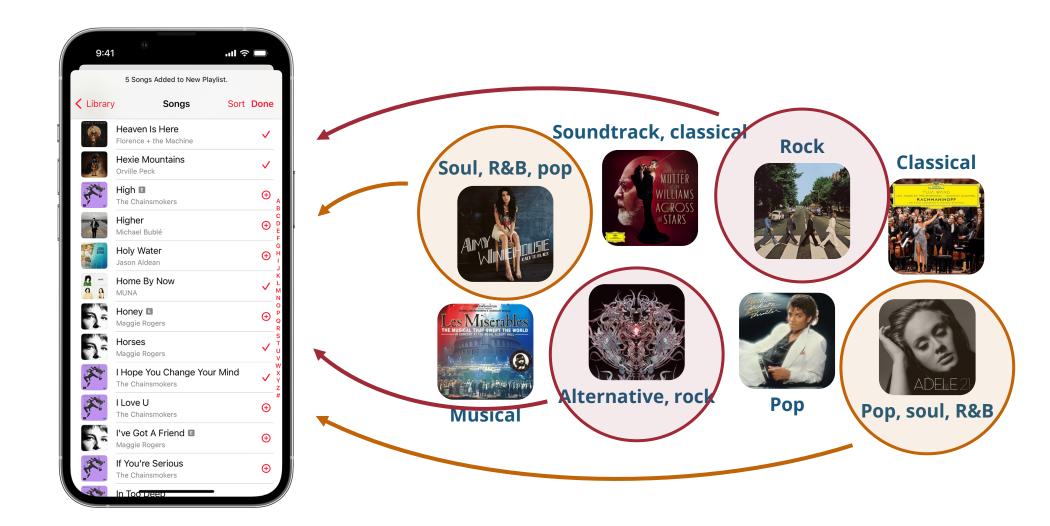
- Recommendation
- Curation
- Playlist generation
- Listening behavior analysis
- Musicology research

Music Classification for Recommendation

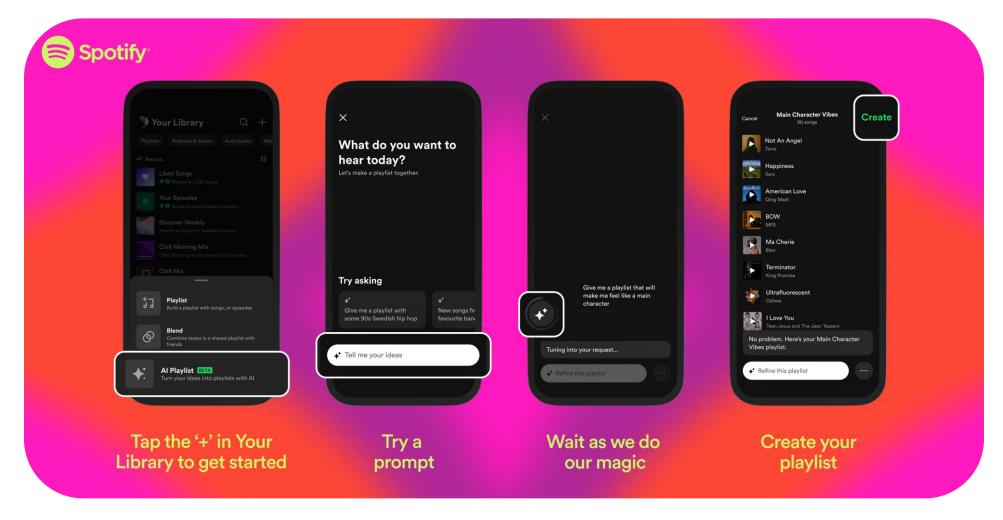


Music Classification for Recommendation

Music Classification for Playlist Generation

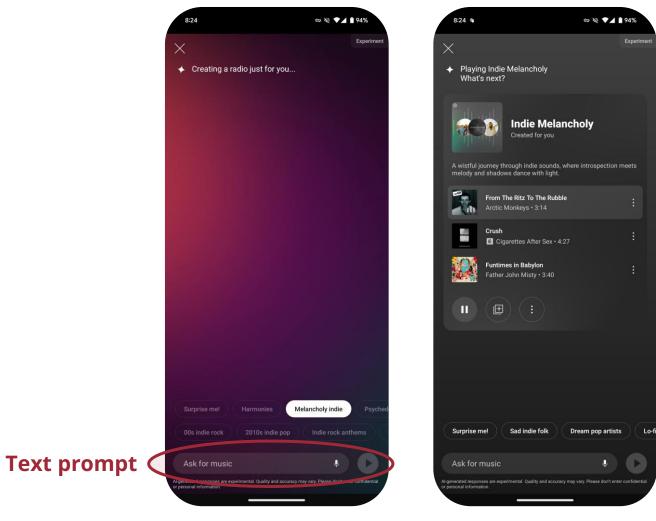


Spotify's Al Playlist (2024)



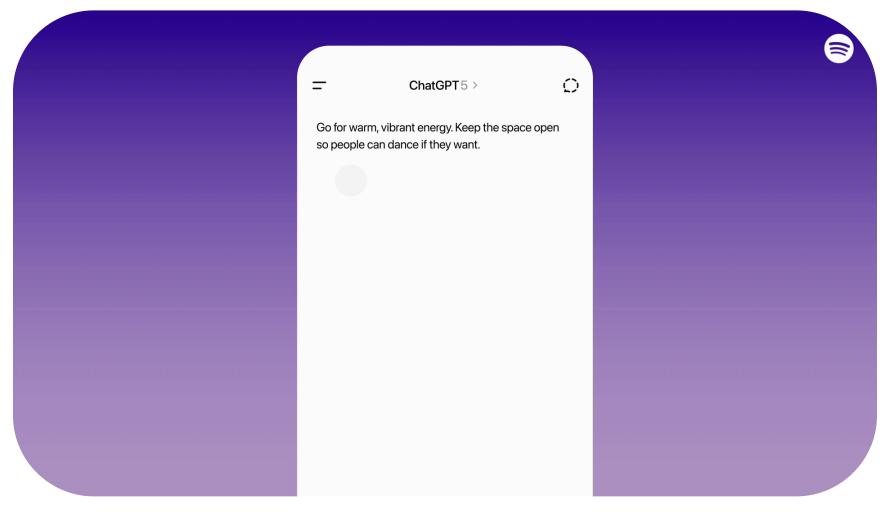
(Source: Spotify)

YouTube Music's Ask Music (2024)



(Source: Android Police)

Spotify's Personalized Picks in ChatGPT (2025)



(Source: Spotify)

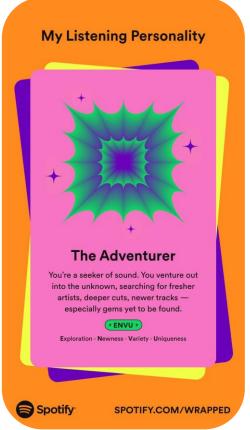
Music Classification for Listening Behavior Analysis

YouTube's Music Recap

(Source: YouTube)

Spotify's Listening Personality





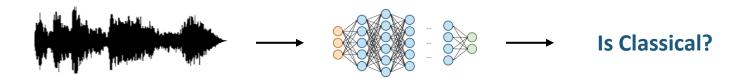
(Source: Spotify)

Types of Classification Tasks

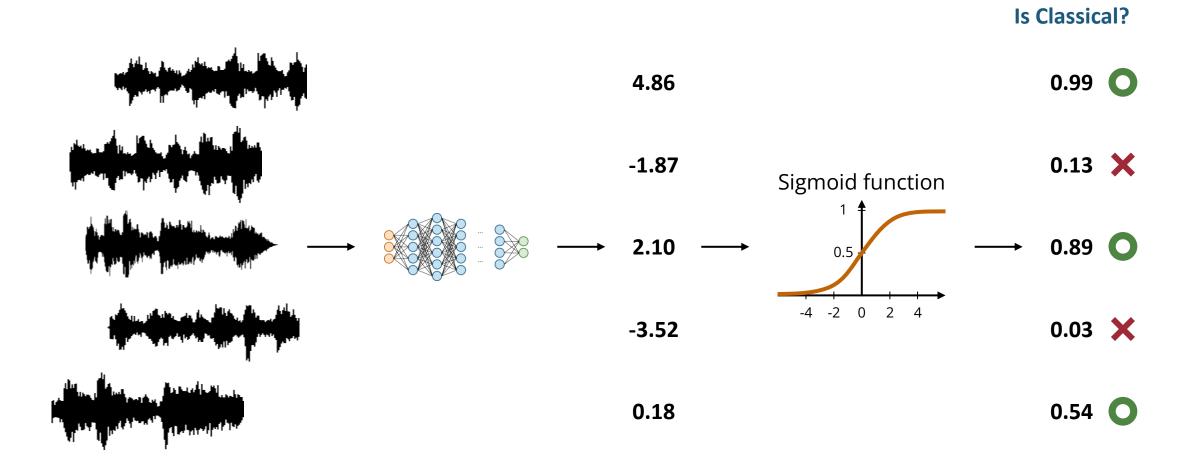
Types of Classification Tasks

- Binary classification
- Multiclass classification
- Multi-label classification

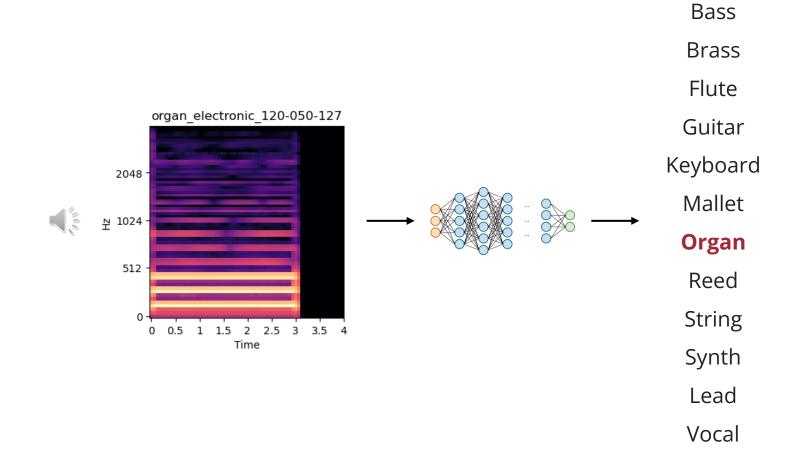
Binary Classification



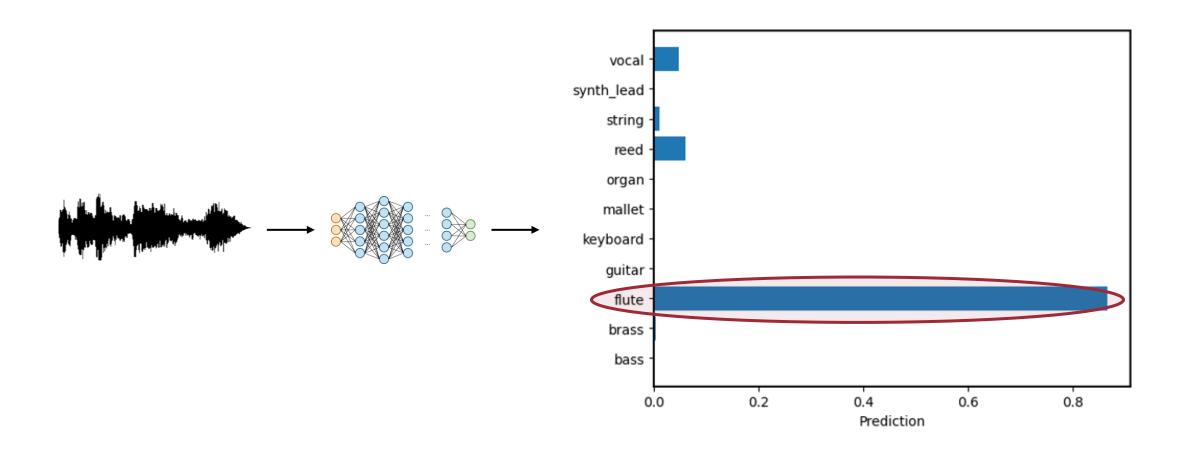
Binary Classification



Multiclass Classification



Multiclass Classification



Multi-label Classification

Soul, R&B, pop

Classical

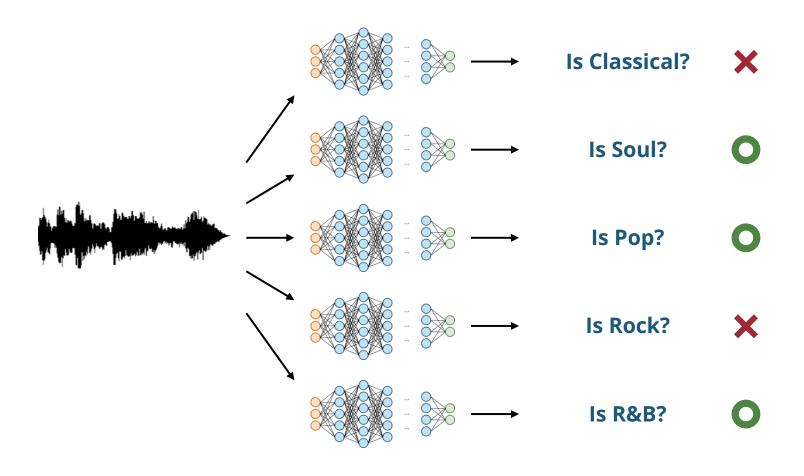
Alternative, rock

Pop

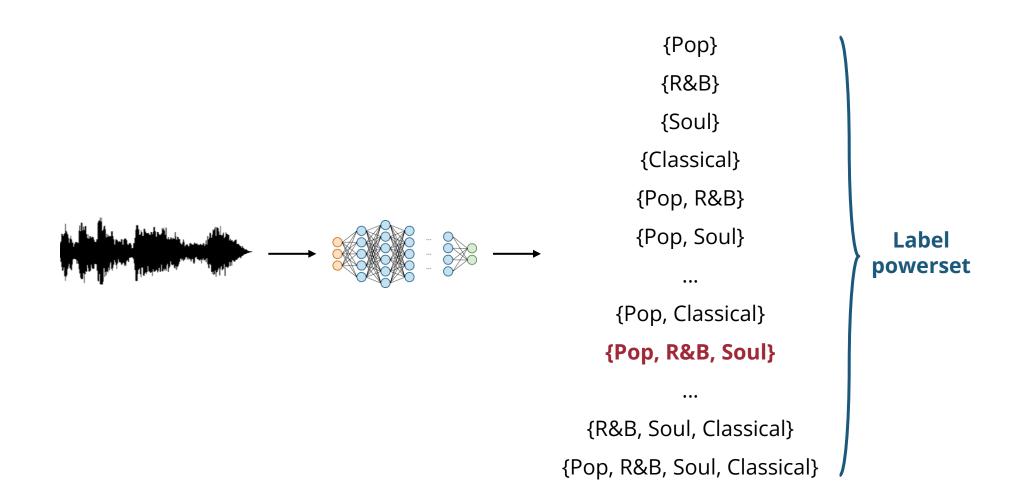
Pop, soul, R&B

Multi-label Classification

Multi-label Classification as Binary Classification

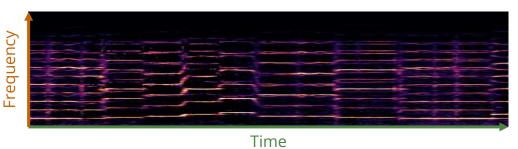


Multi-label Classification as Multi-class Classification



Input Features

- Waveforms
- Time-frequency representation (spectrograms)
- Hand-crafted features or features provided in metadata
 - Acoustic: loudness, pitch, timbre
 - Rhythmic: beat, tempo, time signature
 - **Tonal**: key, scale, chords
 - Instrumentation, expressions, structures, etc.



Common Datasets

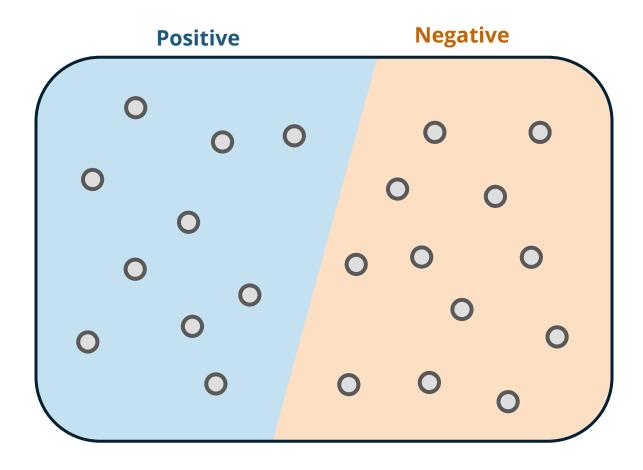
- **GTZAN**: 1,000 30-sec songs, 10 genres
- MagnaTagATune: 5,405 29-sec songs, 188 tags, 230 artists
- Million Song Dataset (MSD): 1M 30-sec songs, >500K tags, tricky to access
- Free Music Archive (FMA): >10K full songs, 163 genres
- MTG-Jamendo: 55K full songs, 195 tags
- AudioSet: 1M songs, YouTube URLs, low-quality audio
- **NSynth**: ~306K 4-sec one-shot instrument sounds

Evaluation Metrics

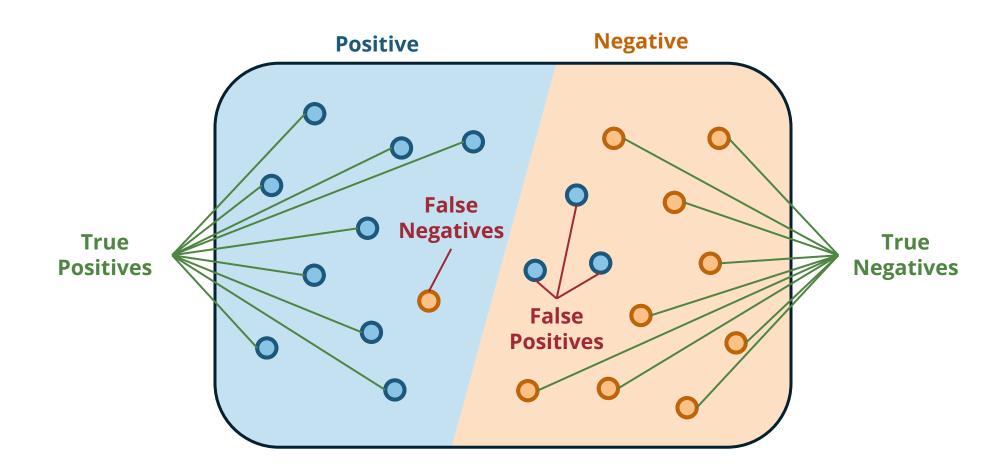
Evaluation Metrics

- **Key**: Capture what you care the most!
- The best evaluation metric depends on the actual use case
- Best to use several evaluation metrics to obtain a holistic view of your model's performance

Toy Example: Binary Classification



Toy Example: Binary Classification

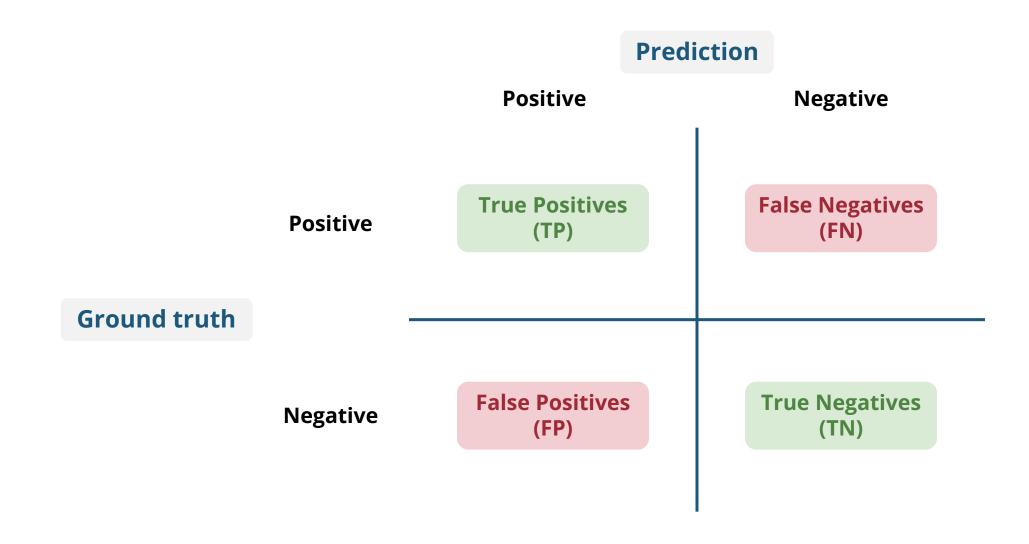


Accuracy

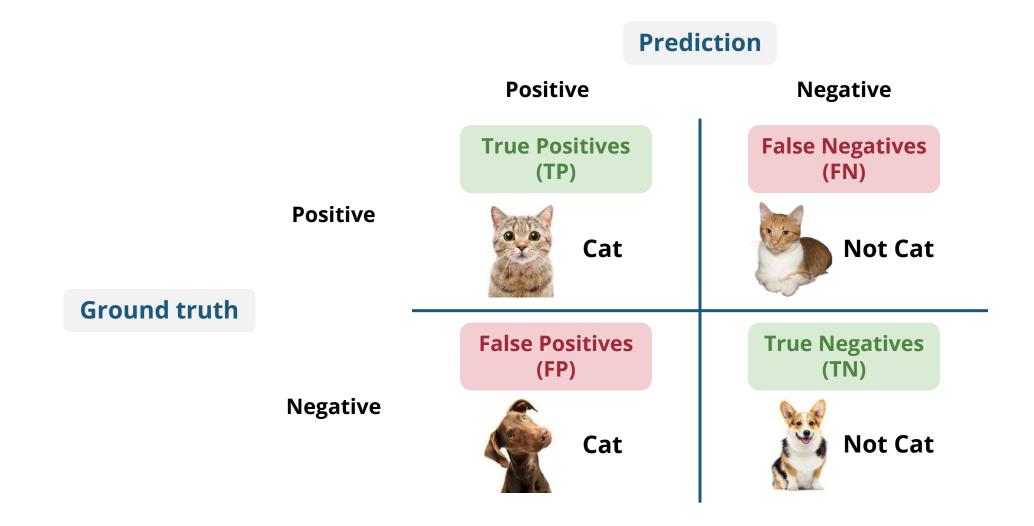
• **Definition**: Percentage of correct predictions across all classes



Confusion Matrix for Binary Classification

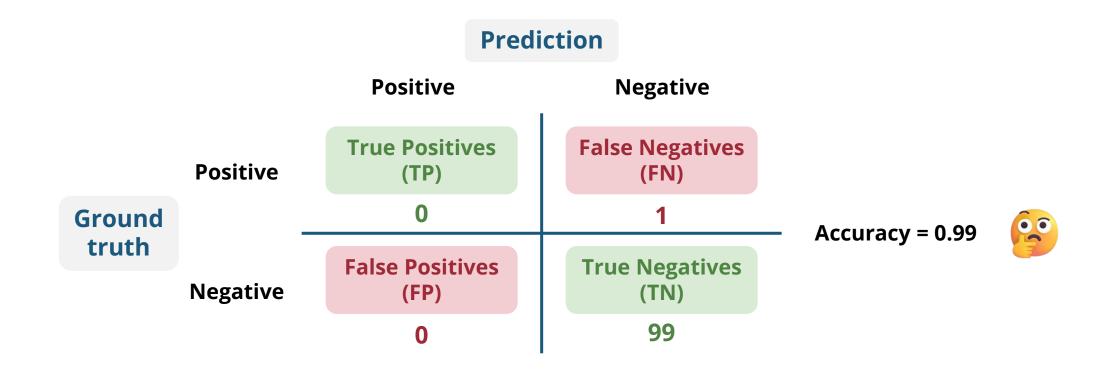


Confusion Matrix for Binary Classification

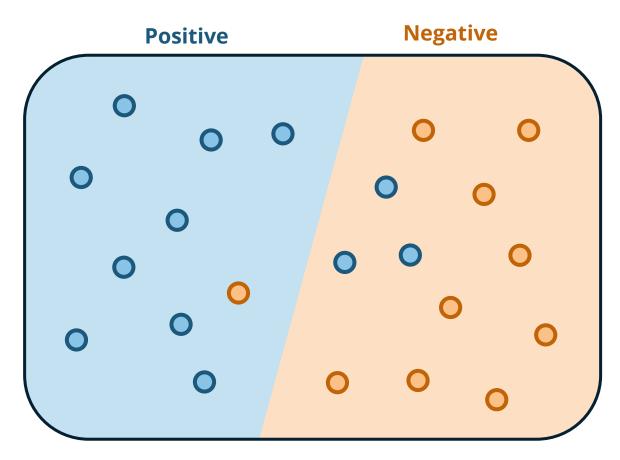


Accuracy on Imbalanced Datasets

- Accuracy does not work well on imbalanced dataset
- Take a disease with a 1% prevalence for example:
 - What if we simply say negative to all diagnoses?



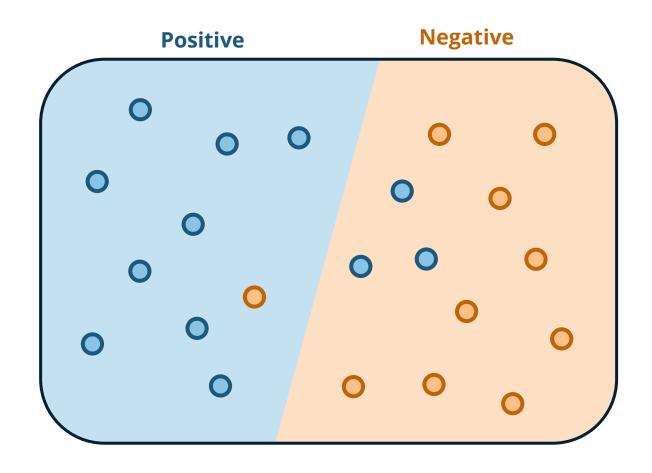
Precision



Precision =
$$\frac{TP}{TP + FP} = \frac{00000}{00000} = 0.75$$

How often predictions for the positive are correct

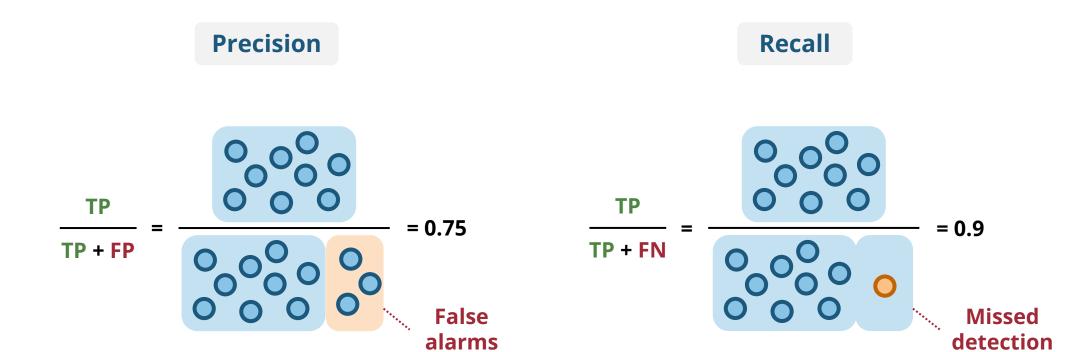
Recall



Recall =
$$\frac{TP}{TP + FN} = \frac{00000}{00000} = 0.9$$

How well the model finds all positive instances in the dataset

Precision vs Recall



How often predictions for the positive are correct

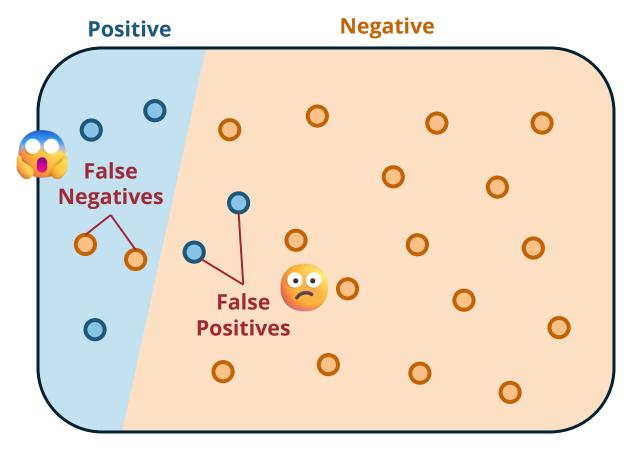
How well the model finds all positive instances in the dataset

When should we care about Precision & Recall?

Rare cancer detection

Aim for high precision or high recall?

High recall ensures most cancer cases are identified.



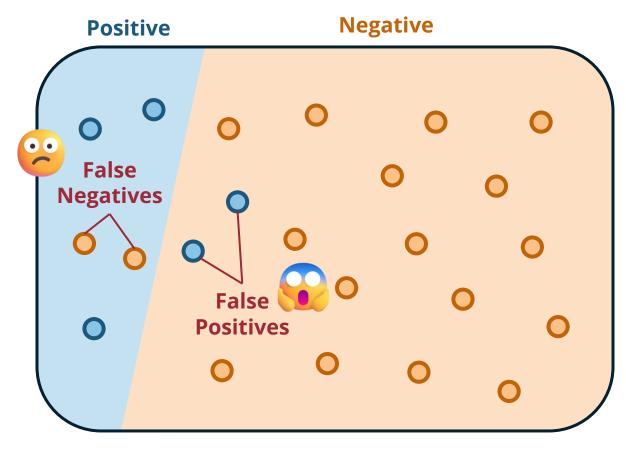
False alarms vs Missed detections

When should we care about Precision & Recall?

Music recommendation

Aim for high precision or high recall?

High precision ensures that the model won't recommend irrelevant items.



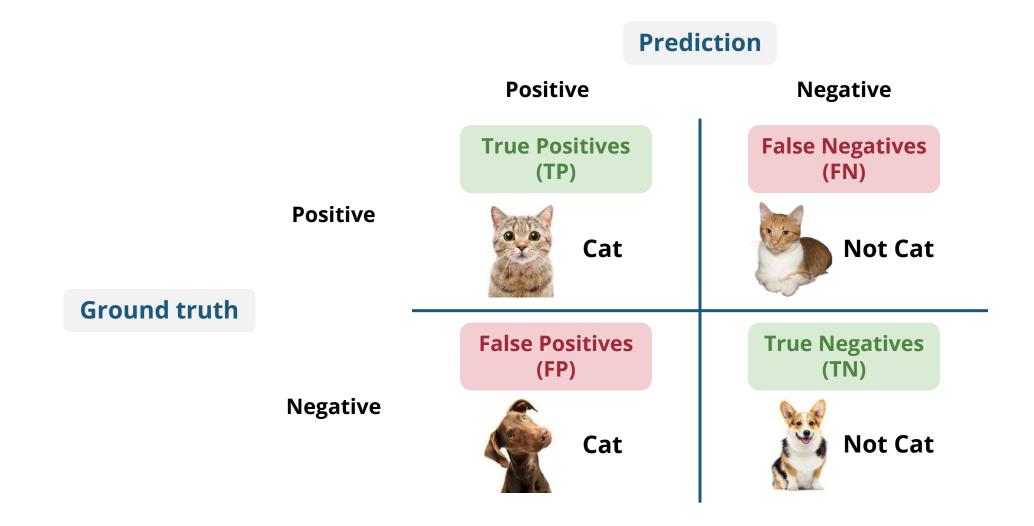
False alarms vs Missed recommendations

F1 Score: Considering both Precision & Recall

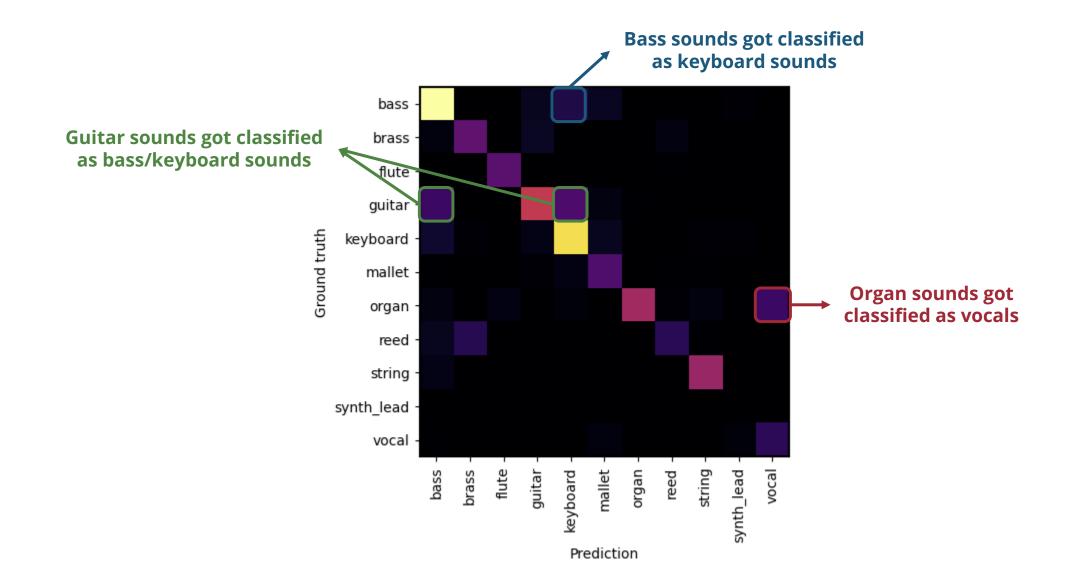
- Particularly useful for imbalanced datasets
 - Work better than accuracy when the dataset is imbalanced
 - For example, music search, retrieval, and recommendation

$$F_{1} = \frac{2}{\frac{1}{Precision} + \frac{1}{Recall}}$$
$$= \frac{2 \cdot Precision \cdot Recall}{Precision + Recall}$$

Confusion Matrix for Binary Classification



Confusion Matrix for Multiclass Classification

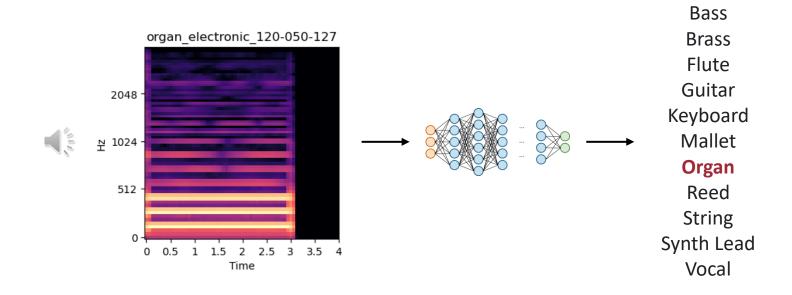


Resources on Music Classification

- Minz Won, Janne Spijkervet, and Keunwoo Choi, "<u>Music Classification:</u>
 <u>Beyond Supervised Learning, Towards Real-world Applications,</u>" *Tutorials of ISMIR*, 2021.
- Open source music classification models
 - github.com/minzwon/sota-music-tagging-models
 - github.com/jordipons/musicnn

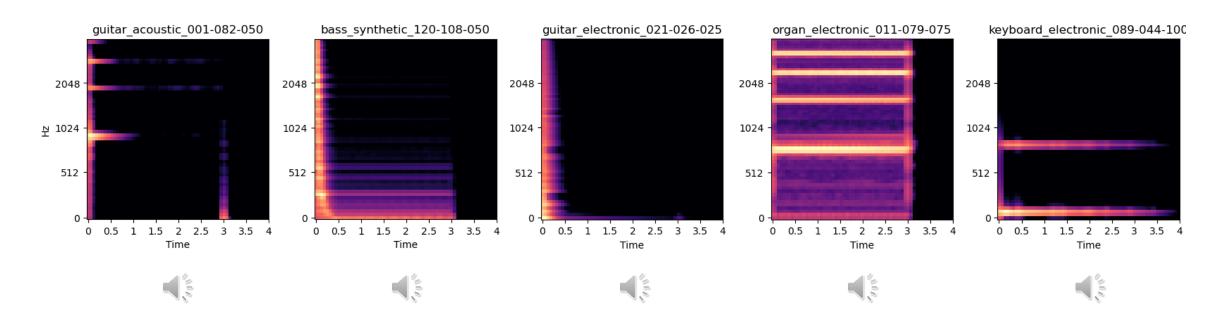
HW 3: Musical Note Classification using CNNs

- Instructions will be sent by emails and released on the course website
- Train a CNN that can classify audio files into their instrument families
 - **Input**: 64x64 mel spectrogram
 - Output: 11 instrument classes



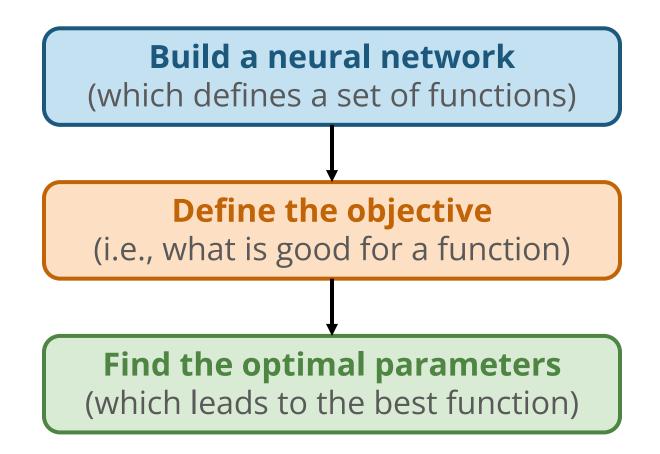
NSynth Dataset

- A collection of 305,979 one-shot musical notes (Engel et al., 2017)
 - Produced from 1,006 commercial sample libraries
 - With different **MIDI** pitches (21–108) and velocities (25, 50, 75, 100, 127)



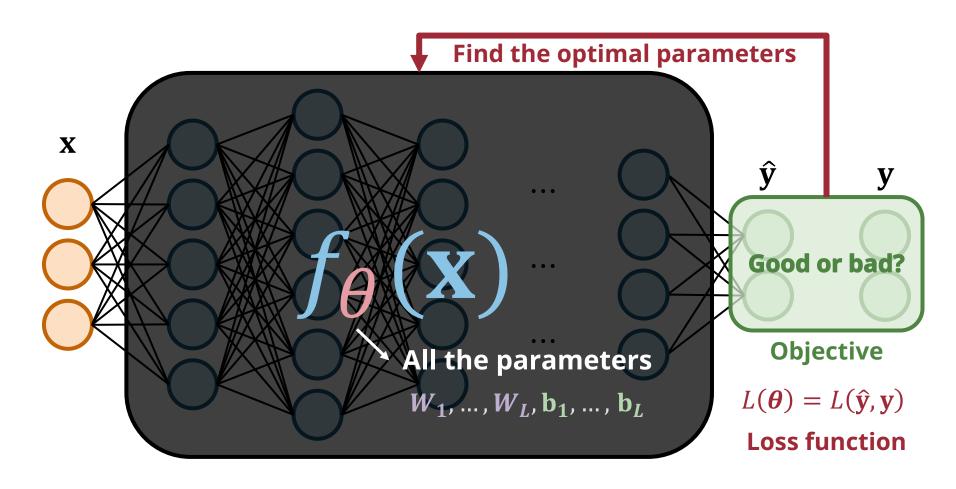
More on Optimization

Training a Neural Network

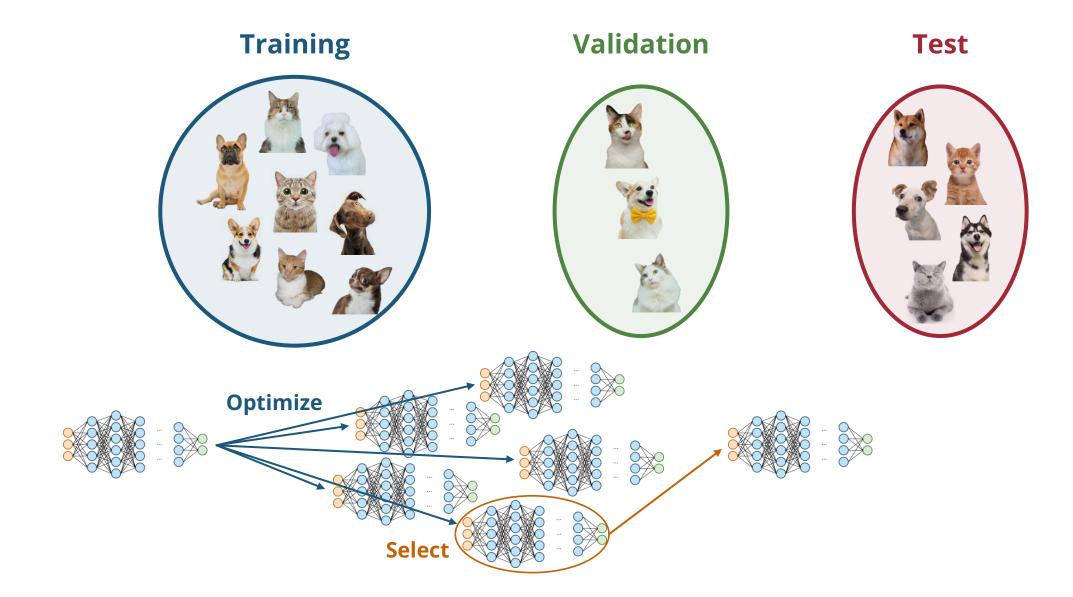


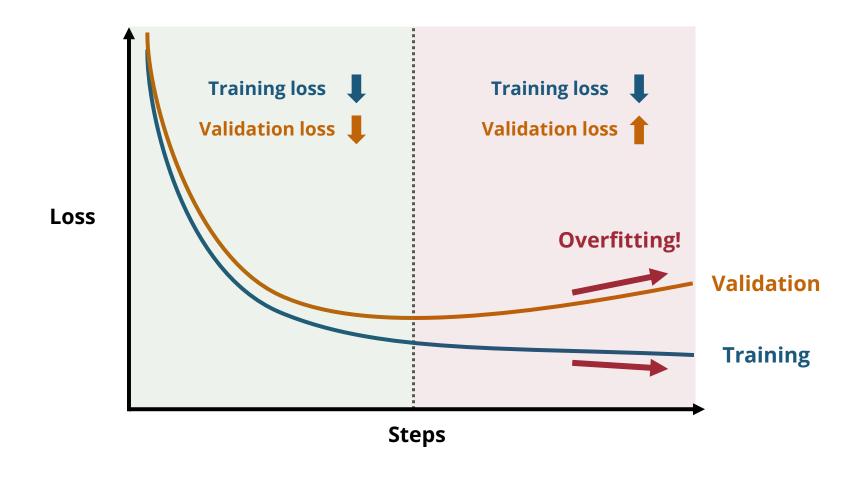
Neural Networks are Parameterized Functions

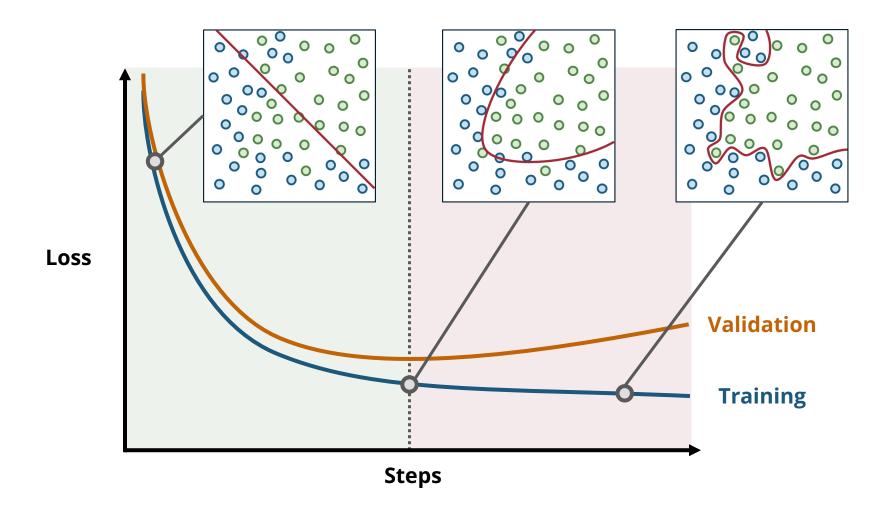
A neural network represents a set of functions

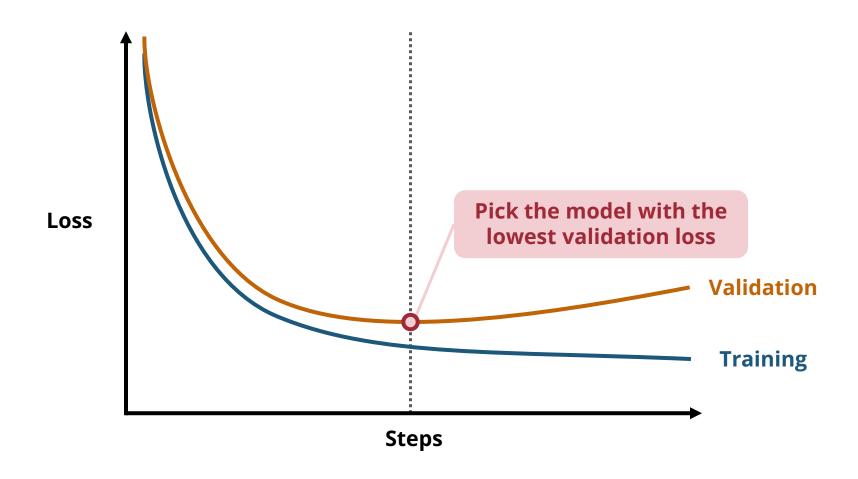


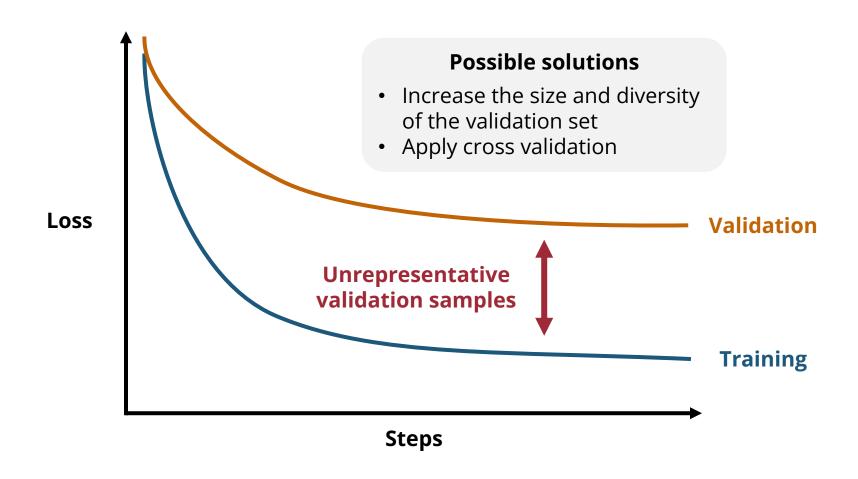
Training-Validation-Test Pipeline

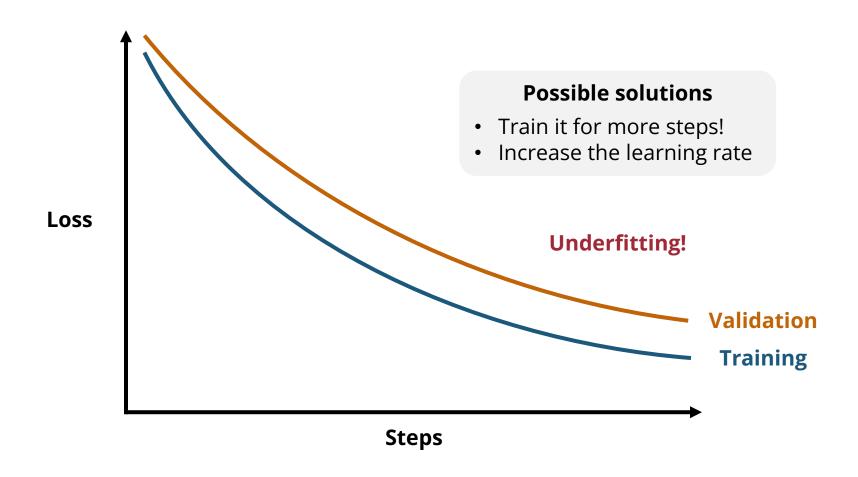


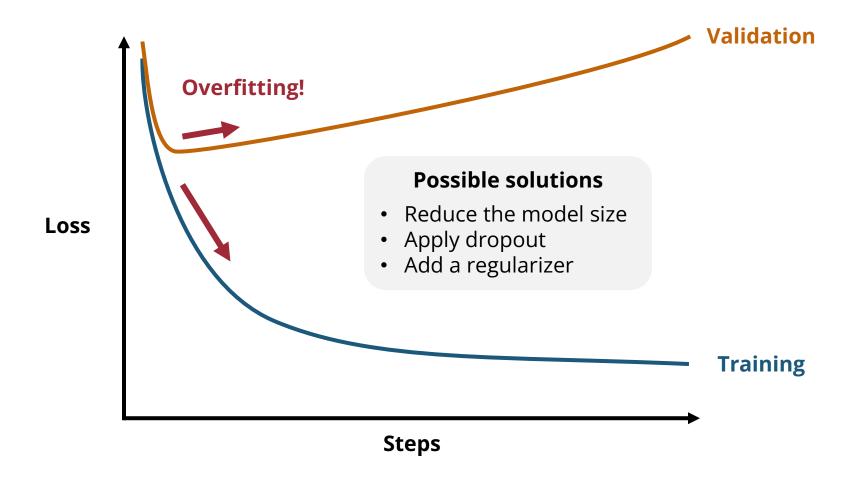












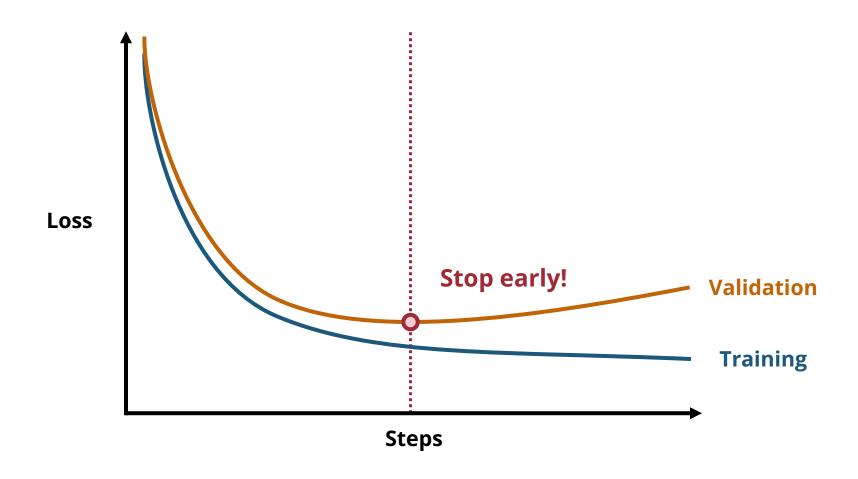
Train-Validation-Test Split

- Keys
 - Never train or select your model on test samples!
 - Don't over-select your model on the validation set

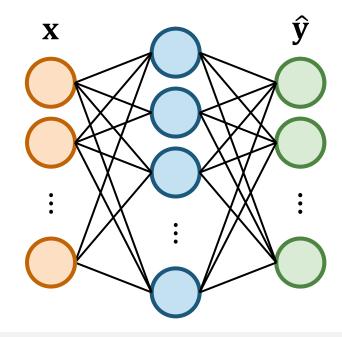
- What's the **best ratio**?
 - Most common: **8:1:1** or 9:0.5:0.5
 - For smaller dataset, you might even want 6:2:2

Mitigating Overfitting

Early Stopping

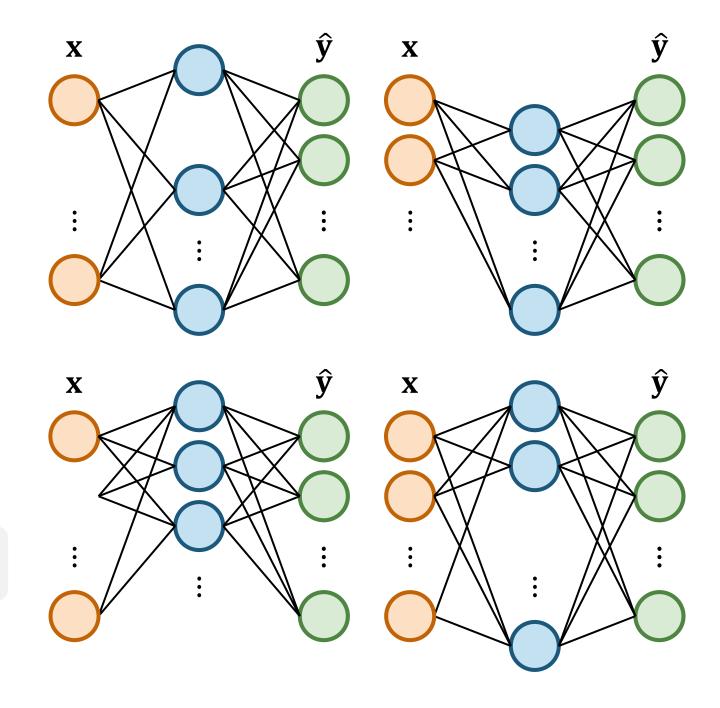


Dropout

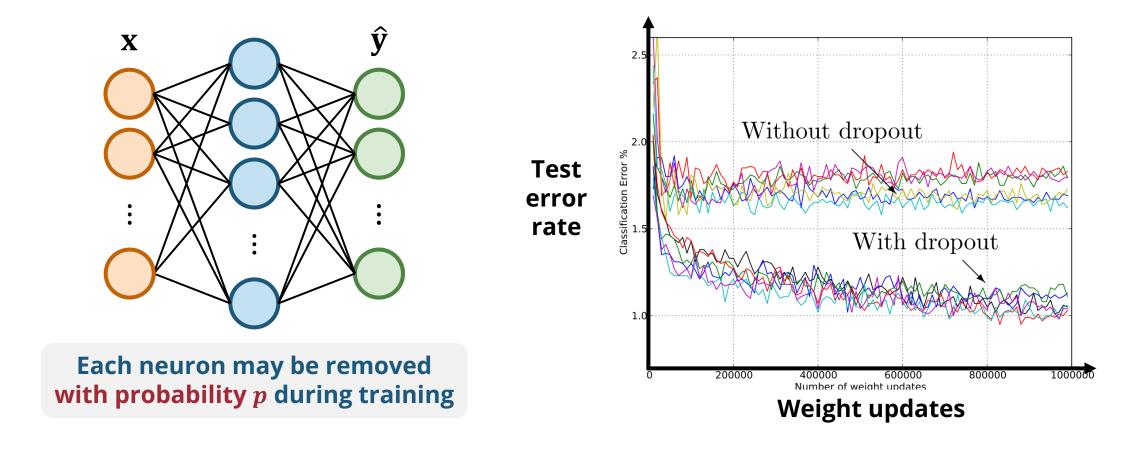


Each neuron may be removed with probability *p* during training

Dropout rate



Dropout



Regularization Term

- A regularization term can help alleviate overfitting
 - L1 regularization (LASSO)

$$L' = L + \lambda(|w_1| + |w_2| + \dots + |w_K|)$$

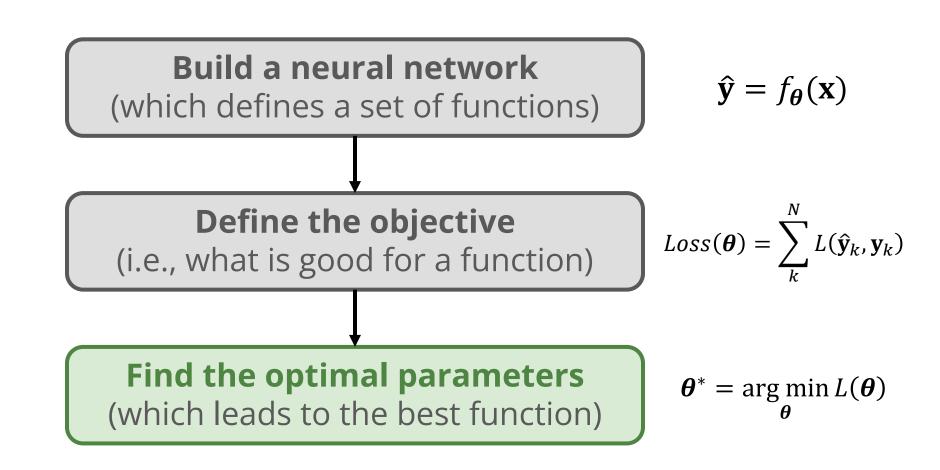
L2 regularization (ridge regression)

$$L' = L + \lambda (w_1^2 + w_2^2 + \dots + w_K^2)$$

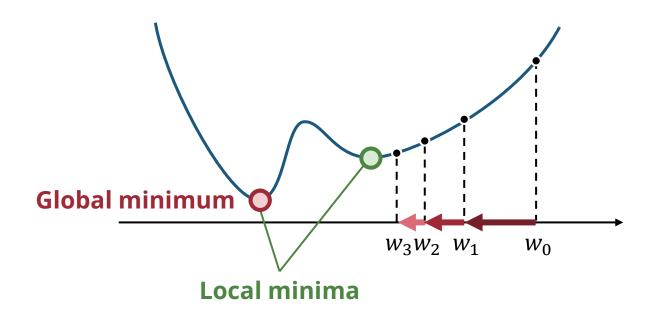
Both L1 and L2 regularizations encourage smaller weights

Adaptive Optimizers

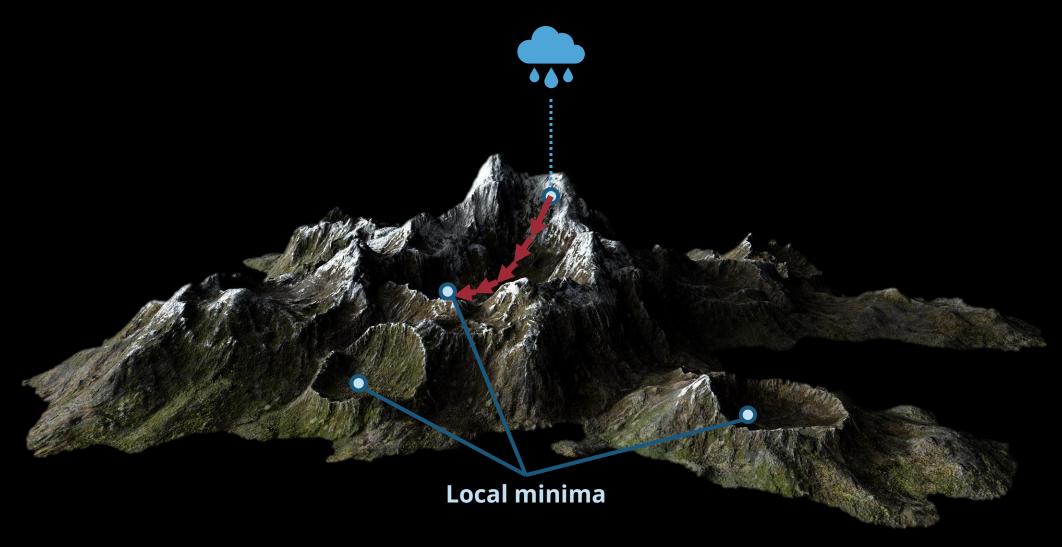
Training a Neural Network



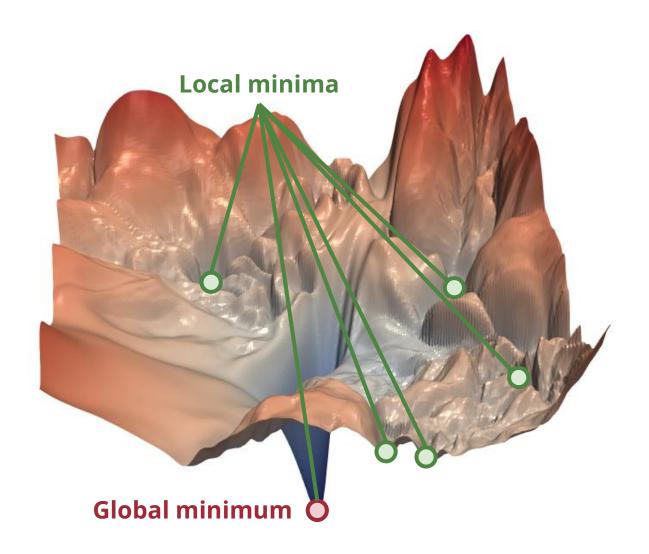
Gradient Descent Finds a Local Minimum



Gradient Descent Finds a Local Minimum



Local Minima in Complex Loss Landscape



Solution 1

Use an optimizer with adaptive learning rate

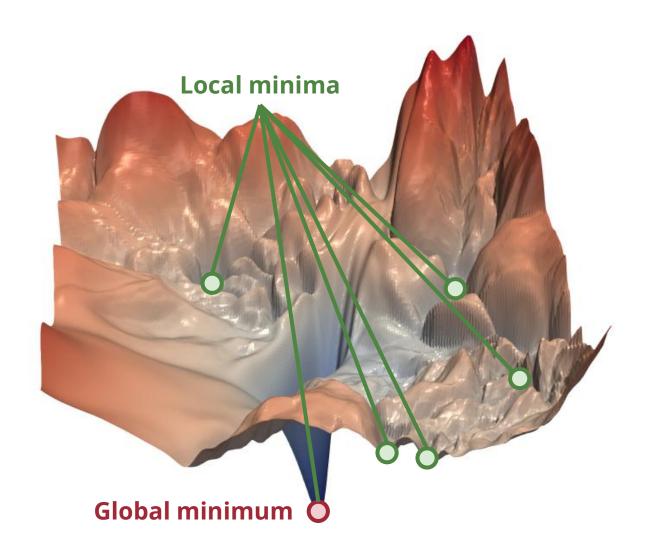
Solution 2

Use a stochastic optimizer

Solution 3

Make the loss landscape smoother

Local Minima in Complex Loss Landscape

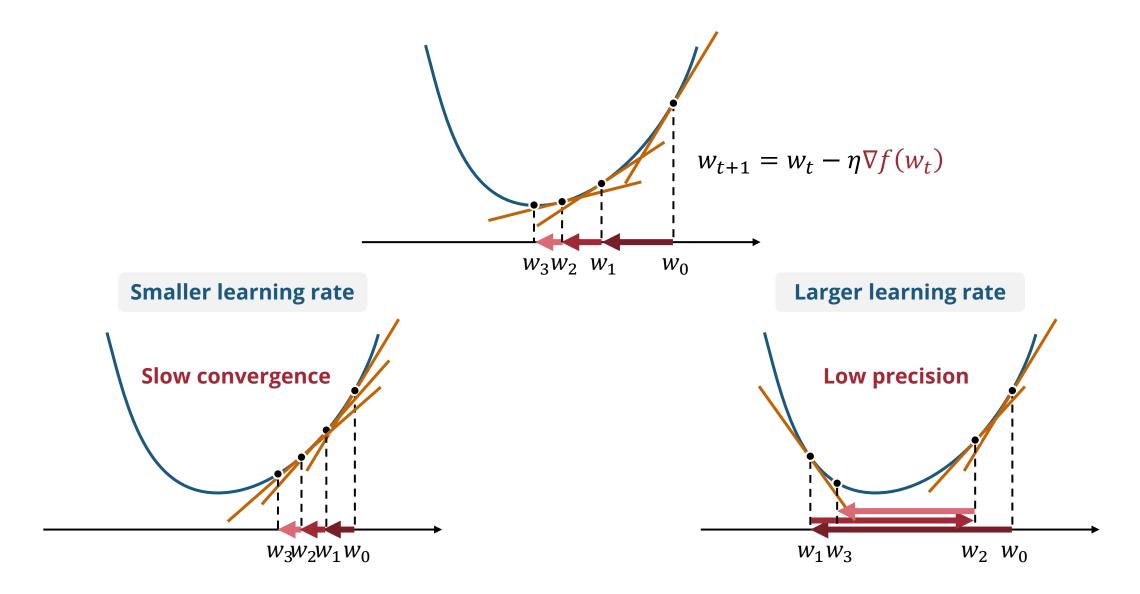


Solution 1
Use an optimizer with adaptive learning rate

Solution 2
Use a stochastic optimizer

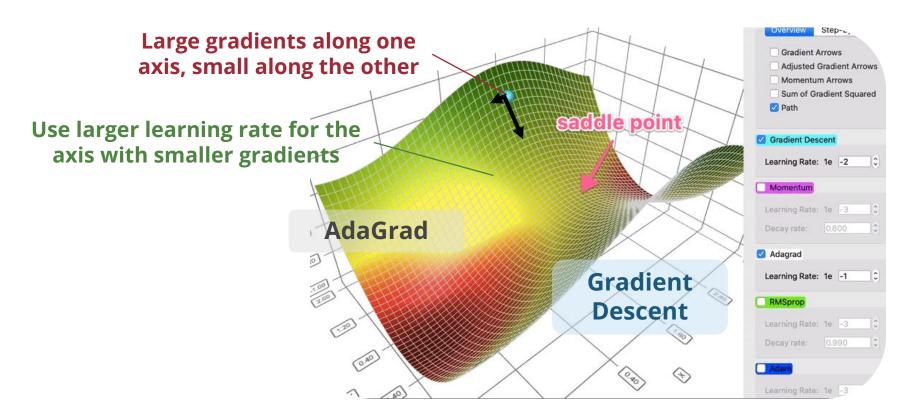
Solution 3
Make the loss
landscape smoother

Learning Rate in Gradient Descent



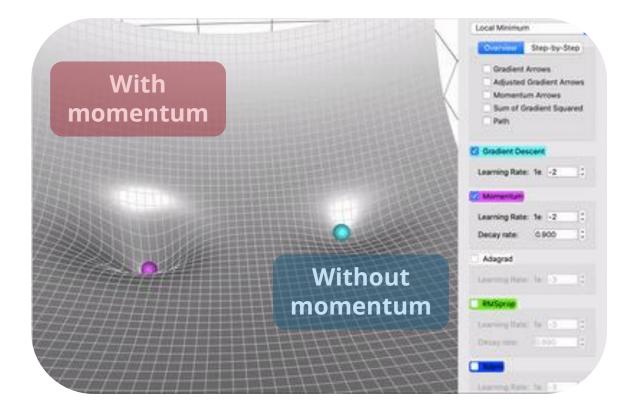
Gradient-based Adaptive Learning Rate

 Intuition: Compensate axis that has little progress by comparing the current gradients to the previous gradients

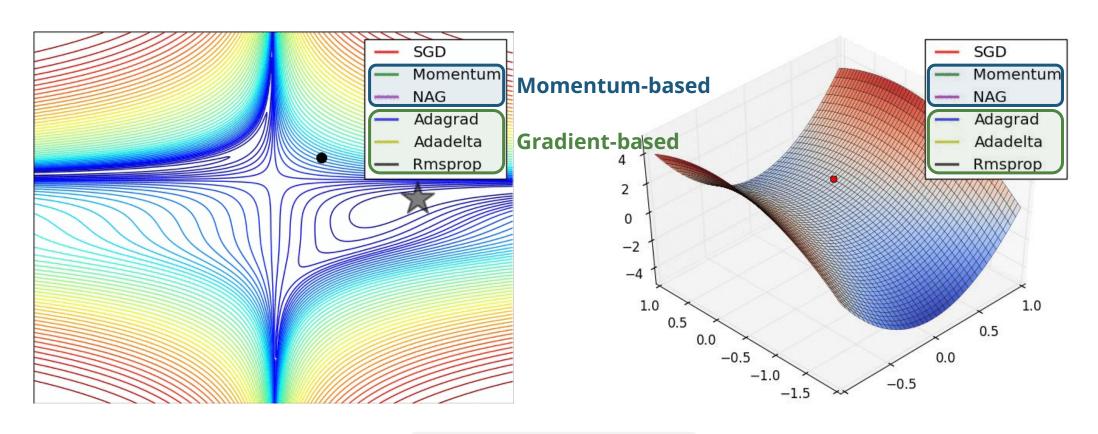


Momentum

• Intuition: Maintain the momentum to escape from local minima



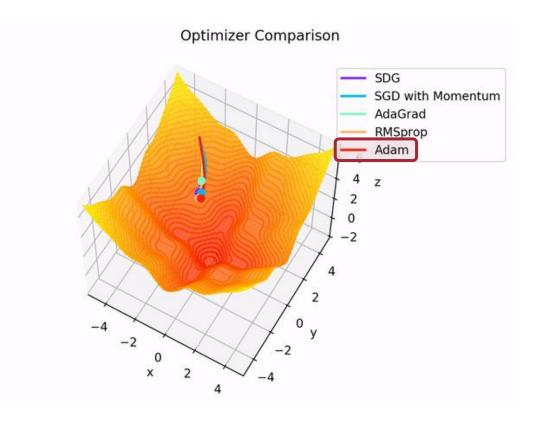
Comparison of Optimizers



Can we combine them?

Adam Optimizer

- Combine the idea of adaptive learning rate and momentum
- Work **empirically well** in complex neural network
- The **go-to choice** for most cases



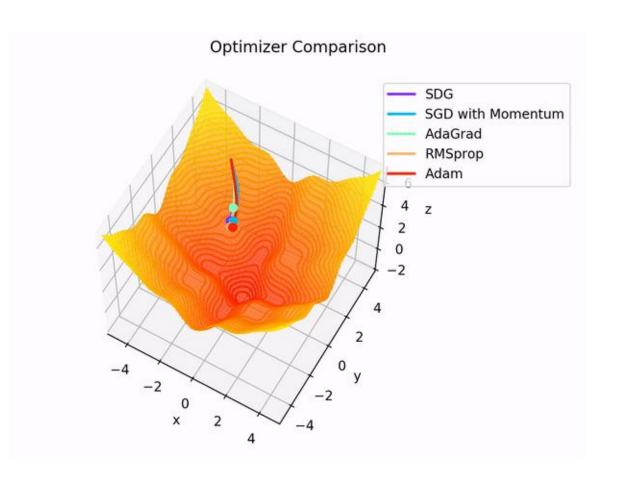
Comparison of Optimizers

Momentum

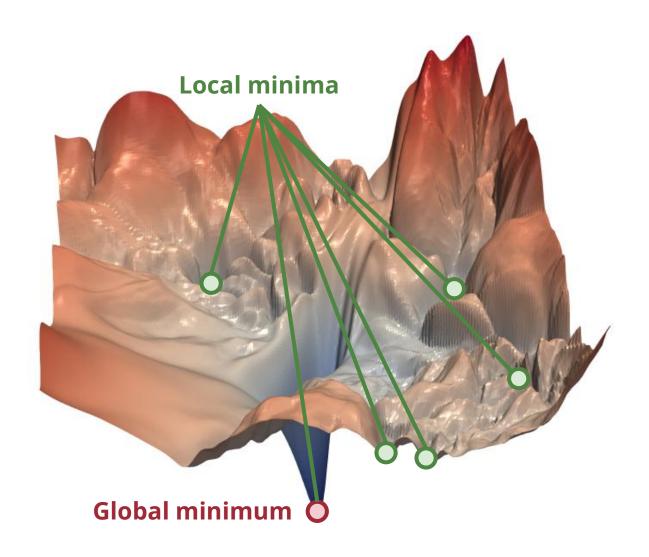
- Gets you out of spurious local minima
- Allows the model to explore around

Gradient-based adaption

- Maintains steady improvement
- Allows faster convergence



Local Minima in Complex Loss Landscape



Solution 1
Use an optimizer with adaptive learning rate

Solution 2
Use a stochastic optimizer

Solution 3
Make the loss
landscape smoother

Batch Gradient Descent

- How to aggregate the gradients obtained from different training samples?
- Batch gradient descent computes the mean gradients over the whole training set

MSE loss

$$Loss(\boldsymbol{\theta}) = \sum_{k}^{N} L(\hat{\mathbf{y}}, \mathbf{y}) = \frac{1}{n} \sum_{k}^{N} \sum_{i}^{n} \left(\hat{y}_{i}^{(k)} - y_{i}^{(k)} \right)^{2}$$

Binary cross entropy

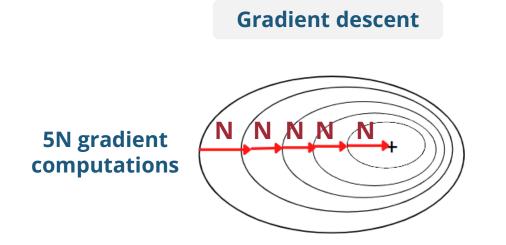
$$Loss(\boldsymbol{\theta}) = \sum_{k=0}^{N} L(\hat{y}, y) = \sum_{k=0}^{N} -y \log \hat{y} - (1 - y) \log(1 - \hat{y})$$

Cross entropy

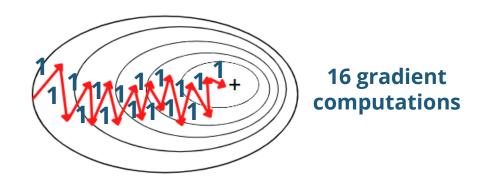
$$Loss(\boldsymbol{\theta}) = \sum_{k}^{N} L(\hat{\mathbf{y}}, \mathbf{y}) = -\sum_{k}^{N} \sum_{i}^{n} y_{i} \log \hat{y}_{i}$$

Stochastic Gradient Descent (SGD)

- Intuition: Estimate the gradient using one random training sample
- Benefits
 - Speed up the computation of the gradient N computations → 1 computation
 - Add some randomness to the gradient descent algorithm
 Help escape spurious local minima

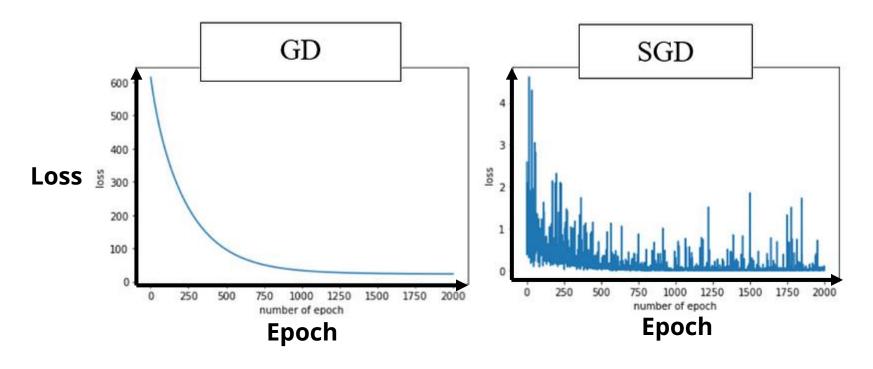


Stochastic gradient descent



Stochastic Gradient Descent is Noisy and Unstable

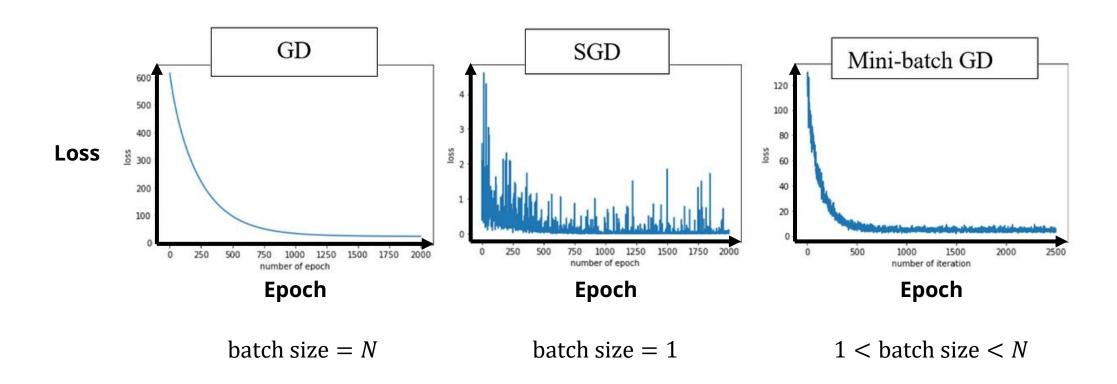
Gradient estimate using one single sample can be unreliable



How about we use more samples to estimate the gradient?

Mini-batch Gradient Descent

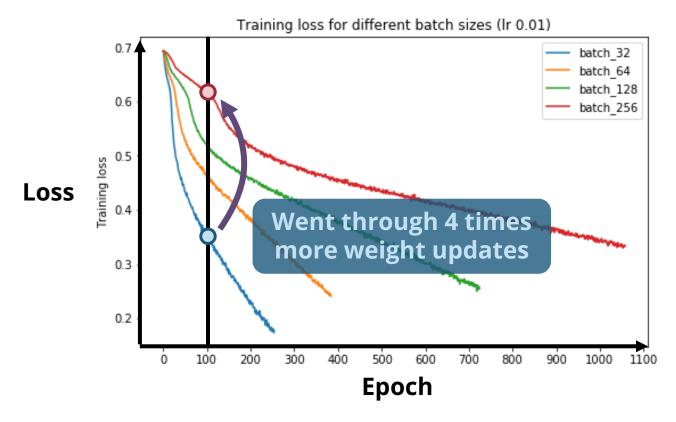
Intuition: Estimate the gradient using several random training samples



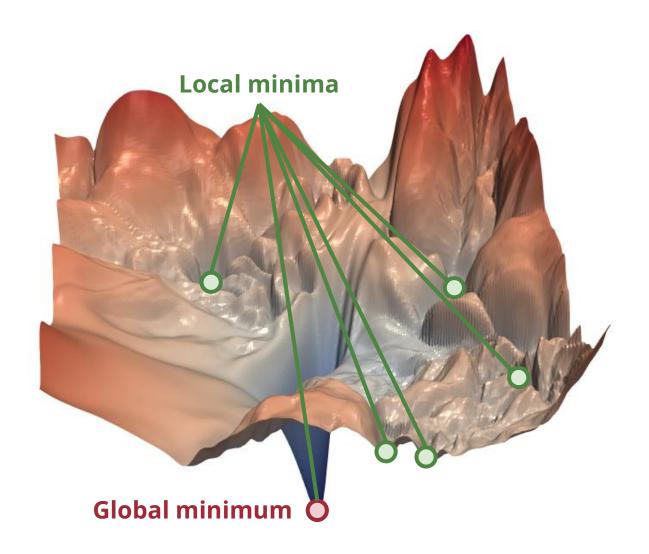
Effects of Batch Size

- An epoch is a full run of the whole dataset
- Steps per epoch depends on the batch size

$$\#(steps) = \frac{\#(training samples)}{batch size}$$



Local Minima in Complex Loss Landscape



Solution 1
Use an optimizer with adaptive learning rate

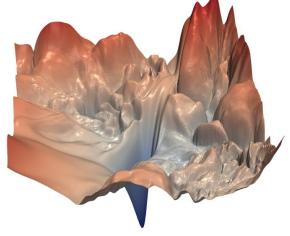
Solution 2
Use a stochastic optimizer

Solution 3
Make the loss
landscape smoother

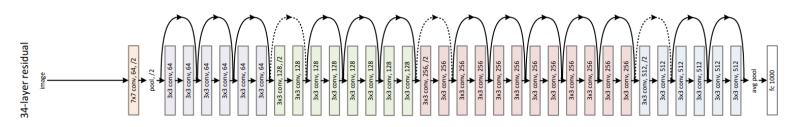
Skip Connections

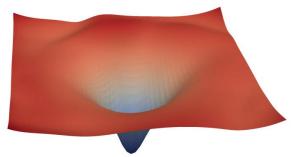
Without skip connections





With skip connections

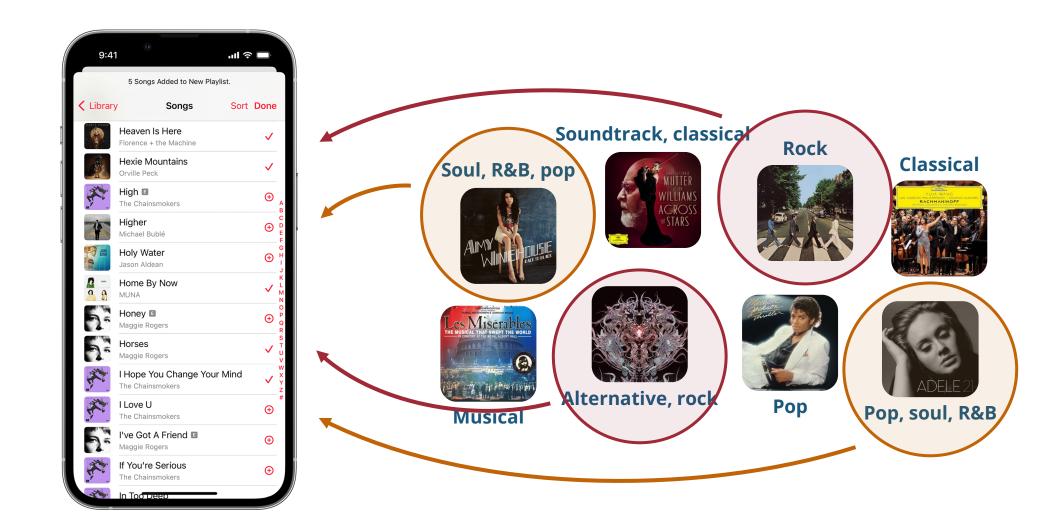




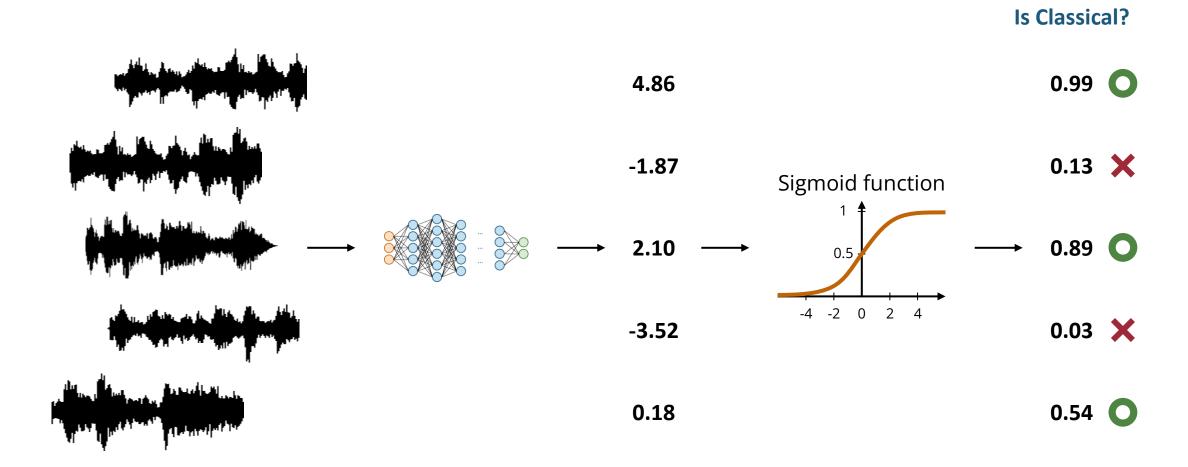
Recap

Music Classification for Recommendation

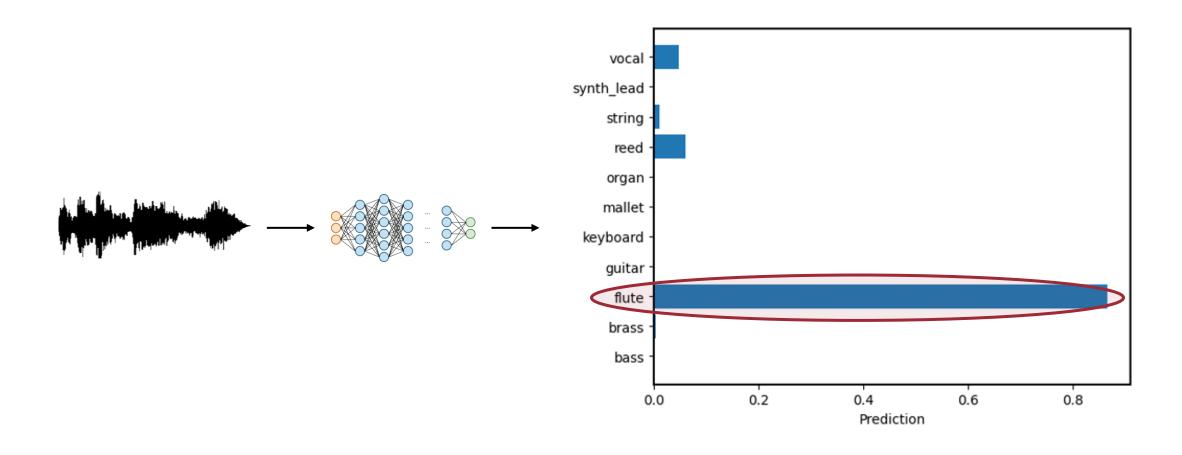
Music Classification for Playlist Generation



Binary Classification



Multiclass Classification



Multi-label Classification

Soul, R&B, pop

Rock

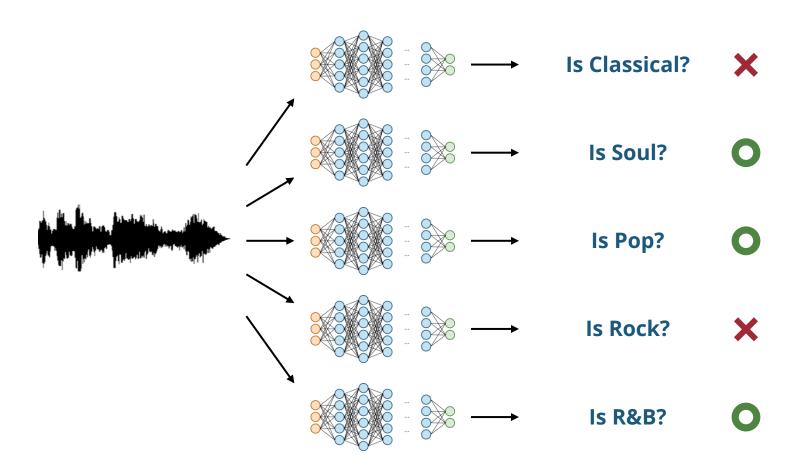
Classical

Alternative, rock

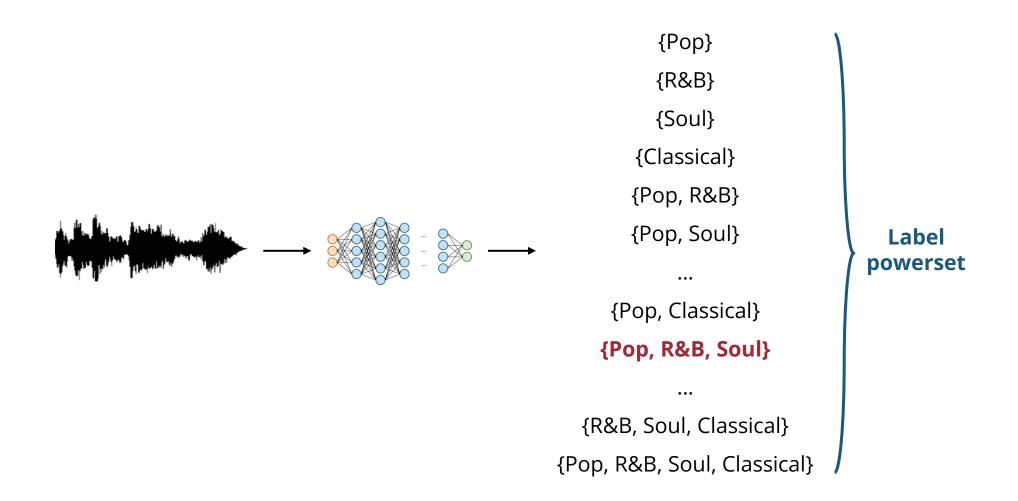
Pop

Pop, soul, R&B

Multi-label Classification as Binary Classification

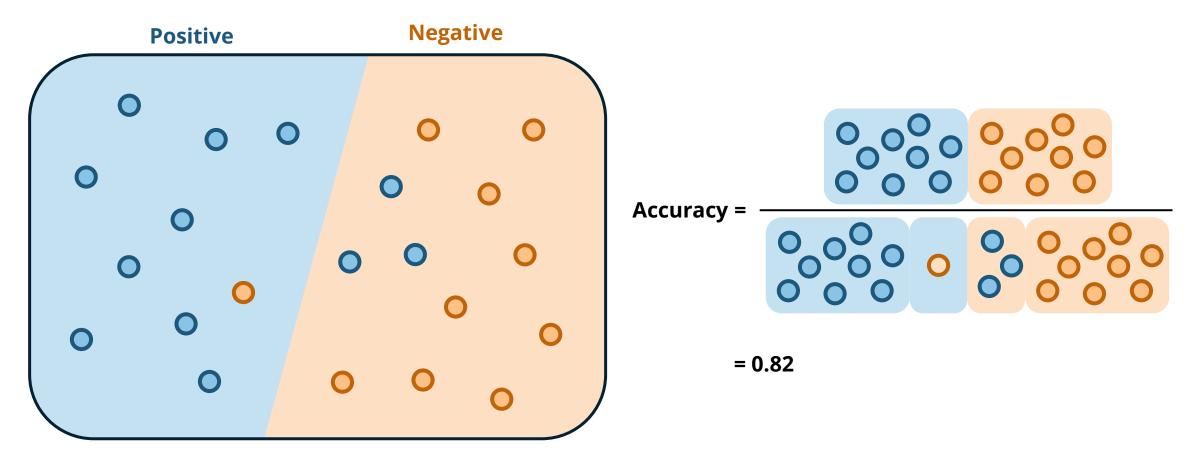


Multi-label Classification as Multi-class Classification

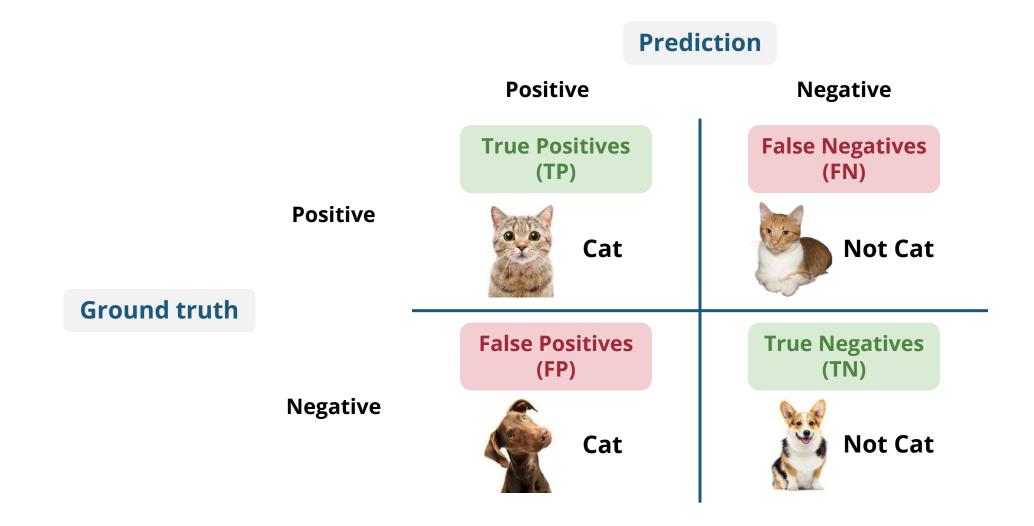


Accuracy

• **Definition**: Percentage of correct predictions across all classes



Confusion Matrix for Binary Classification



Precision vs Recall

How often predictions for the positive are correct

Recall

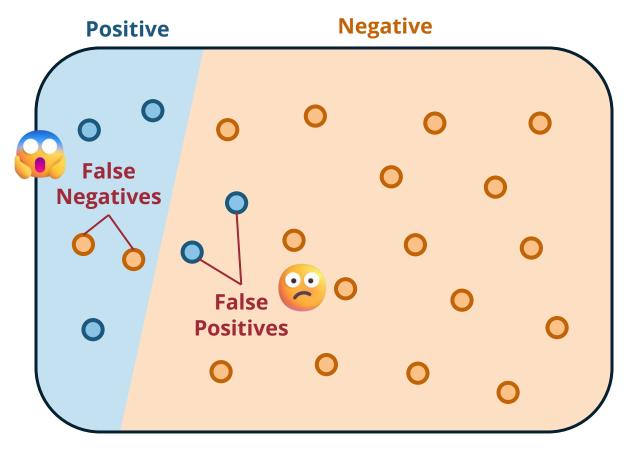
How well the model finds all positive instances in the dataset

When should we care about Precision & Recall?

Rare cancer detection

Aim for high precision or high recall?

High recall ensures most cancer cases are identified.



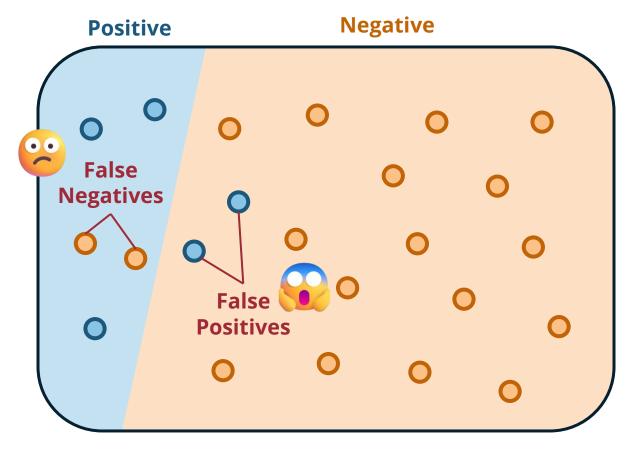
False alarms vs Missed detections

When should we care about Precision & Recall?

Music recommendation

Aim for high precision or high recall?

High precision ensures that the model won't recommend irrelevant items.



False alarms vs Missed recommendations

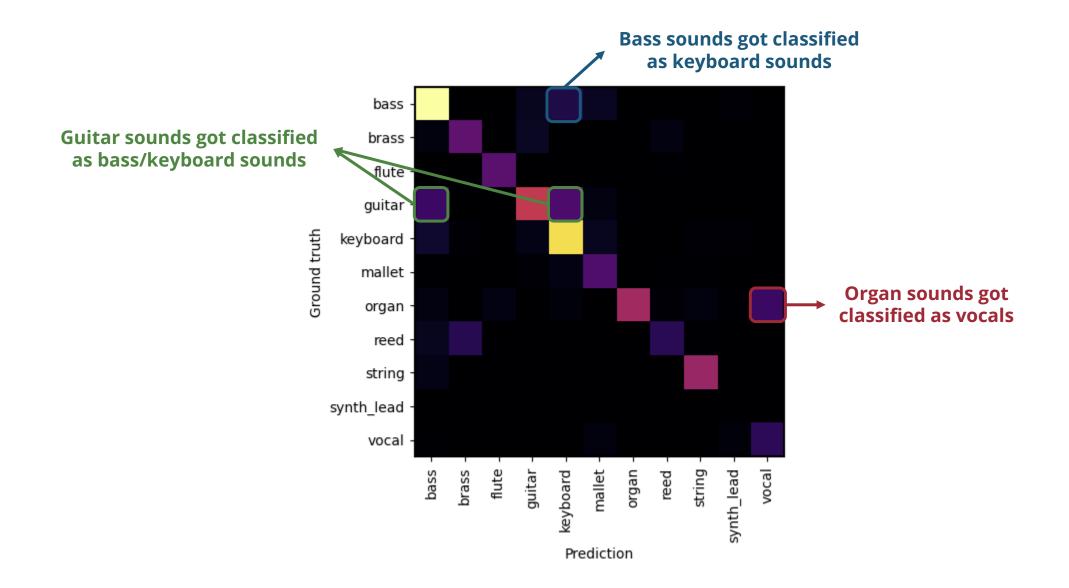
F1 Score: Considering both Precision & Recall

- Particularly useful for imbalanced datasets
 - Work better than accuracy when the dataset is imbalanced
 - For example, music search, retrieval, and recommendation

$$F_1 = \frac{2}{\frac{1}{Precision} + \frac{1}{Recall}}$$

$$= \frac{2 \cdot Precision \cdot Recall}{Precision + Recall}$$

Confusion Matrix for Multiclass Classification



Next Lecture

Language-based Music Generation

(Source: Huang et al., 2018)

