

Creative Coding (PAT 204/504, Fall 2025)

Lecture 18: Networking & Open Sound Control
Instructor: Hao-Wen Dong

Example 1: UDP Networking (“1_udp.maxpat” & “1_udp_client.maxpat”)

• Use the “udpsend” object to send data using the User Datagram Protocol (UDP). We
can send different values and messages through UDP in Max.

o The second argument defines the network address to send the data to. In

this example, we are using “127.0.0.1” which is a special IP address that
points to the machine itself. We can also use “localhost” instead of “127.0.0.1”
to send message to the machine itself.

o The third argument defines the port number to be used to send the data to.
Network ports act like PO boxes that allow routing the many messages to the
correct receivers. Here, we are using 8888 as the port number. Note that
some port numbers are reserved for specific important programs, so we
need to avoid using those port numbers. Port numbers above 1024 are
generally safe.

• Use “udpreceive” to receive data sent through UDP.

o The second argument defines the port number to listen to. We have to use

the same port number so that we can receive the data sent through the
“updsend 127.0.01 8888”.

o Note that we can receive data in either the same patch or another patch (e.g.,
across ““1_udp.maxpat” and ”“1_udp_client.maxpat”).

• To better organize the data sent through UDP, we can prepend an ID to the data we
are sending.
[Sender] [Receiver]

o In this example, at the sender end, we prepend “BlueSlider” to the first slider

value, making it “BlueSlider 50”. Similarly, we prepend “RedSlider” to the
second slider value, making it “RedSlider 50”.

o Now, at the receiver end, we receive the data as “RedSlider 40”. We can then
use the “route” object to route these messages to their corresponding
sliders. Note that the “route” object will strip off the matching prefix and thus
its outputs can be directly fed to the sliders here. This is different from the
“select” object that won’t strip off the matching prefix.

• UDP allows us to communicate between Max to Processing (note that this is not
ideal, and we will talk about a better way to communicate between Max and
Processing using Open Sound Control).

// udp.pde

import hypermedia.net.*;

UDP udp; // An UDP object (need to install the UDP library)
String msg = "";
byte[] raw = new byte[0];

void setup() {
 size(400, 400);

 // Create an UDP object that listen to port 8888 at local host (127.0.0.1)
 udp = new UDP(this, 8888, "127.0.0.1");

 // Log the status of UDP
 udp.log(true);

 // Start listening to incoming data
 udp.listen(true);
}

void receive(byte[] data){
 // Parse the received data into a string
 msg = new String(data);
}

o This Processing sketch will listen to port 8888 and show the received
message.

o Note the unknown characters after the message “Hi”, which are the

additional bytes sent through the UDP protocol. This is undesired, and that’s
why we might want to use Open Sound Control (OSC).

Example 2: OSC Max→Processing (“2_osc_max_to_processing.maxpat”)

• Open Sound Control (OSC) is an encoding protocol that defines the format of
messages to be sent through other network protocols such as UDP. An OSC
message consists of 1) an address pattern, 2) a type tag string, and 3) the
arguments.

• In the first example, we can send an OSC-like message through UDP without much
change from example 1. The only change is that the prefix starts with a slash to
represent an address, e.g., “/slider/blue” and “/slider/red”.

• Even though this is not technically an OSC message, we can still treat it as if it was
one in Processing, where we can use the oscP5 library to read the data:

o The oscEvent() function will be triggered when there is an incoming

message.

o We can parse the data using oscMessage.get(0).intValue() since we know

the data type of the main data content. (OSC fixes this issue by sending a
type tag string that indicates the data type of the main data content.)

o Note that the communication between Processing and Max is still based on
the UDP protocol. However, the message sent now has follows a specific
format defined by OSC.

// osc1.pde

import oscP5.*;
import netP5.*;

OscP5 osc;
NetAddress addr;
int value = -1;

void setup() {
 size(400, 400);
 addr = new NetAddress("127.0.0.1", 8888);
 osc = new OscP5(this, 8888);
}

void oscEvent(OscMessage oscMessage) {
 // Print the address pattern and typetag of the received OSC message
 print("OSC message received");
 print(" | addrpattern: " + oscMessage.addrPattern());
 println(" | typetag: " + oscMessage.typetag());

 // Parse the integer value received
 value = oscMessage.get(0).intValue();
}

void draw() {
 background(0);
 textSize(24);
 textAlign(CENTER, CENTER);
 text(value, width / 2, height / 2);
}

• In the next example, we want to pass a 2D slider output to Processing.

o Here, we use the osc.plug() function to link OSC message with a matching

address pattern so that it will trigger a specific function. For example, after

// osc2.pde

import oscP5.*;
import netP5.*;

OscP5 osc;
NetAddress addr;
int x = 0, y = 0;

void setup() {
 size(400, 400);
 addr = new NetAddress("127.0.0.1", 8888);
 osc = new OscP5(this, 8888);
 osc.plug(this, "setX", "/x");
 osc.plug(this, "setY", "/y");
}

void setX(int data) {
 x = data;
}

void setY(int data) {
 y = height - data;
}

void draw() {
 background(0);
 circle(x, y, 50);
}

running osc.plug(this, "setX", "/x"), whenever we receive an OSC
message starting with “/x”, the setX() function will be triggered.

o This example shows how we can control Processing through Max via OSC
and UDP.

• To send a complete OSC message in Max, we will need to use the Odot package by

CNMAT, which can be installed via the package manager at the left panel (icon
shown below).

• Use “o.pack” to create an OSC bundled messages. In the following example, we

create an OSC bundle with two OSC messages “/x : 103” and “/y : 287”.

o Note that the OSC message still needs to be sent through the UDP protocol.
o The “o.display” object provides an easy way to inspect the OSC message.

o We can show the circle in Processing based on the values sent from Max.

• Use “o.compose” to manually create an OSC message

Example 3: OSC Processing→Max (“3_osc_processing_to_max.maxpat”)

• In this example, we want to send OSC messages from Processing to Max.

o This can be done by creating OscMessage objects and adding values to them

with OscMessage.add() and sending the messages through OscP5.send().
o In Max, we use an “udpreceive” object to receive the messages and an

“o.route” object to route OSC messages according to their address patterns.

// osc1.pde

import oscP5.*;
import netP5.*;

OscP5 osc;
NetAddress addr;
int x = 0, y = 0;

void setup() {
 size(400, 400);
 addr = new NetAddress("127.0.0.1", 8888);
 osc = new OscP5(this, 8888);
}

void mouseMoved() {
 OscMessage mesX = new OscMessage("/x");
 OscMessage mesY = new OscMessage("/y");

 // Add the x- and y-positions to the messages
 mesX.add(mouseX);
 mesY.add(mouseY);

 // Send the messages
 osc.send(mesX, addr);
 osc.send(mesY, addr);
}

void draw() {
 background(0);
 circle(mouseX, mouseY, 50);
}

• In the last example, we added one more function to the Processing sketch to
showcase how we can send a text string to Max through OSC:

o When we click on the Processing window, we can see that on the Max side,

we have received the “/clicked clicked” message. Also, note the difference
between the “o.route” and “o.select” objects, which have similar behaviors to
the “route” and “select” objects.

// Part of osc2.pde

void mouseClicked() {
 // Create an OSC message
 OscMessage mes = new OscMessage("/clicked");

 // Add the x- and y-positions to the messages
 mes.add("clicked");

 // Send the messages
 osc.send(mes, addr);
}

