UNIVERSITY OF MICHIGAN

Creative Coding (PAT 204/504, Fall 2025)

Lecture 15: Polyphony

Instructor: Hao-Wen Dong

Example 1: FM Synthesis (“1_fm_synth.maxpat”)

e Send a sinusoid signal to the first inlet of the “cycle~" object that “modulates” the
frequency of the carrier signal (the second sinusoid signal)

cycle~ 1
I

"~ 440

cycle~
T

.a
o

selector~ [

el
. ’
¢
Y
’

g l
7
.

)

OHz 1000Hz 2000Hz

e Add a sinusoid signal to the carrier frequency to modulate the frequency

Modulator

Carrier P Modulator freqUenCy
[cycle~ | “ Modulation depth

- 5
selector~
T

“
1 -~
'

' b

OHz 1000Hz 2000Hz

e Use the “kslider” object to allow easy control of the carrier frequency and set the
modulator frequency as a specific multiple (doesn't need to be a perfect multiple)

key

lect 97 119 115 101 100 102 116 103 121 104 117 106 107

PSS
?????????????

m Harmonicity
391 995436 !

cn

-=|

OHz 1000Hz 2000Hz

e Use a “function” object to create an automation that controls the modulation depth

1000

OHz 1000Hz 2000Hz

¢ Use another “function” to create an ADSR envelope to control the magnitude

OHz 1000Hz 2000Hz

Example 2: FM Synthesis (Alternative) (“2_FMSynthesis.maxpat”)

e This is the official MAX tutorial on FM Synthesis, where it provides several nice

presets
Play a note Duration
setdomain $1
\

Carrier Freq. Harmonicity

t 0 ,
m sig~ Amplitude

T

FM tone settings

Copied from the official tutorial: "Synthesis Tutorial 5: Frquency Modulation”

o Use the “preset” object to store the values of all interactable objects as a
preset
o Click on a certain square to recall, and Shift-click it to store/update a preset

Example 3: Polyphony (“3_polyphony.maxpat”)

e Let's first create a simple sinusoid oscillator with an ADSR envelope

2

OHz 1000Hz 2000Hz

o Use the "adsr~" object to create an ADSR envelope without creating a
“function” object
e Now, let's make this single-note synthesizer a standalone Max patch

/127.

cycle~ adsr~ 10 100 0.5 500
T T

-
-
.
e

o The “thispoly~" object is connected to the third outlets of the “adsr” object,
which sends a “mute 1" message when it completes the envelope and sends

a “mute 0" message when it restarts. The “thispoly~" allows MAX MSP to know
whether the current voice is active. If a voice is not active, MAX MSP can
temporally pause the computation in that voice to avoid unnecessary
computation.
Now, we can create our polyphonic with the “poly~" object that creates multiple
instances of the Max patch we specify, e.g., the “mysound~" patch file in our case

notein

Swap the message order so that the voice is sent before
the pitch (note that outlets shoot from right to left)

target $1 Select the right voice

OHz 1000Hz 2000Hz

o The “poly” object handles the voice assignment that takes cares of the MIDI
note on and note off messages

o The “swap” object swaps the input message ordering (so the left inlet is sent
to the right outlet, and the right inlet is sent to the left outlet), but more
importantly, it changes the ordering when the message is sent. In Max, the
outlets shoot from right to left, and that's why we need the “swap” object so
that the voice and the “target $1” message is sent before the MIDI pitch and
velocity messages.

o The “poly~" object accepts a “target X" message to select voice X

