Introduction

In figure 1, several disks of the same size form a tight configuration in their "*circum-rectangle*". By "*tight*", we mean the disks are not able to move.

Our motivation is "How to make the biggest or smallest circum-rectangle for a given number of disks?" We partially answer this question and find several new methods to construct tight configurations of any given number of disks.

Fig. 1 Tight configuration.

Fig. 2 Free configuration.

Section 1 Find the circum-rectangles with extreme areas of a few disks.

Dynamic geometry mathematical software *Geometer's Sketchpad* is used to explore all the possible tight configurations of 2~6 disks. We find the circum-rectangles with extreme areas, as shown in Table 1.

Number of disks	2	3	4	5	6
The maximal area of circum-rectangle	$\frac{\left(2+\sqrt{2}\right)^2}{\approx 11.66}$	16.65	$\left(\begin{array}{c} 2 + \frac{3\sqrt{2}}{2} + \frac{\sqrt{6}}{2} \\ \approx 28.58 \end{array}\right)^2$	35.51	$(2+2\sqrt{2}+\sqrt{6})^2$ ≈ 52.97
Corresponding circum-rectangle	\mathcal{C}	8			
The minimal area of circum-rectangle	8	12	16	20	24
Corresponding circum-rectangle	\bigcirc	$\overline{\mathbf{O}}$	∞		

Table 1. The circum-rectangles with extreme areas of 2~6 disks which have radius 1.

Section 2 Compare the areas of circum-rectangles in linear and equilateral triangular configuration.

A configuration is said to be equilateral triangular if the configuration can be divided into parallel layers and two adjacent layers are connected in the ways of (A) \bigcirc or (B) \bigcirc (with at least an (A)). We take three layers as examples:

Conclusions

- 1. The linear configuration results in a smaller area than the equilateral triangular configuration does when there are 2~10, 12, or 13 disks.
- 2. The equilateral triangular configuration results in a smaller area than the linear configuration does when there are 11, 14 disks or more.

Section 3 Construct tight configurations with a large number of disks.

Basic configurations

We discover that the circum-rectangles with maximal areas of 4, 5, 6 disks can be decomposed into *basic configurations*. We also find that the number of basic configurations is infinite. A basic configuration can be placed in a simpler configuration so that we can generate tight configurations with more disks.

Fig. 3 Basic configurations in circum-rectangles.

Fig. 4 Placing basic configurations.

Wave and ring configurations

However, only *wave* and *ring* configurations are able to generate tight configurations. We find that we can place infinite basic configurations in wave configurations and at most eight basic configurations in ring configurations.

Fig. 6 Wave configurations.

Fig. 5 Basic configurations.

Fig. 7 Ring configurations.

Basic configuration decomposition Method

If we denote a basic configuration by the number of the disks it contains, then a complicated configuration can be represented by a series of natural numbers. We call it the *"Basic configuration decomposition method"*. In this way, we can construct tight configurations of *any* number of disks. We take 12 disks as an example:

An example of basic configuration decomposition method

Given n = 3(2k)-s or 3(2k+1)-s ($k \in N$, $k \ge 3$, s = 0, 1, 2). Here are the corresponding tight configurations:

1. If n = 3(2k)-s:

Rearrangement

The lengths of the two adjacent sides of the circum-rectangles of configurations constructed by wave configurations can be quite different. However, we can make the length/width ratio by rearranging appropriate subconfigurations.

Fig. 8 Rearrangement

Extension

We can also extend a circum-rectangle by reflections with respect to the edges and get larger tight configurations with beautiful patterns.

Conclusions

- 1. We find the circum-rectangles that achieve the maximal and minimal areas when there are 2~6 disks.
- 2. The linear configuration results in a smaller area than the equilateral triangular configuration does when there are 2~10, 12, or 13 disks.
- 3. By using the *basic configuration decomposition method*, we can construct at least two tight configurations of *any* number of disks.
- 4. For the application, our work may be applied to pattern design, or optimal arrangements of the pipes in a filter or an optical fiber.

References

- [1] George G. Szpiro, Kepler's Conjecture, John Wiley & Sons. Inc, 2003.
- [2] Ivan Moscovich, Leonardo's Mirror & Other Puzzles, Sterling Publishing, 2005.
- [3] Packing problems, Wolfram math world: http://mathworld.wolfram.com/topics/PackingProblems.html
- [4] Erich's Packing Center: http://www.stetson.edu/~efriedma/packing.html