Generative AI for Music: Challenges & Opportunities

Hao-Wen (Herman) Dong

Department of Performing Arts Technology School of Music, Theatre & Dance University of Michigan <u>hermandong.com</u>

March 3, 2025

Can you? (I, Robot, 2004)

Can a robot write a Symphony?

Can a robot take a blank canvas and turn it into a masterpiece?

Can you?

Music & Technology Co-evolves

Hildegard Dodel, Public domain, via Wikimedia Commons. Taken at Hamamatsu Museum of Musical Instruments, August 2019. yan, <u>CC BY-SA 4.0</u>, via Wikimedia Commons.

(Source: Sankei Shimbun)

(Source: NBC DFW)

yamaha.com/en/news_release/2018/18013101/ sankei.com/article/20240113-CQCOSQHJWFIYPJJKZDCITRTRVI/ roboticgizmos.com/shimon-musical-robot-deep-learning/ nbcdfw.com/entertainment/the-scene/how-verdigris-ensemble-is-using-ai-to-create-a-new-concert-experience/3366031/ Shlizerman et al., "Audio to Body Dynamics," Proc. CVPR, 2018.

Generative AI for Content Creation

Universitaetsmedizin, <u>CC BY-SA 4.0</u>, via Wikimedia Commons <u>uploadvr.com/iron-man-vr-breaks-free-from-cords-load-screens-on-quest-2/</u> <u>descript.com/blog/article/what-is-the-best-audio-interface-for-recording-a-podcast</u> <u>denverpost.com/2019/08/02/colorado-symphony-movie-scores-harry-potter-star-wars/</u> <u>dailybruin.com/2023/08/04/theater-review-the-musical-les-misrables-offers-stellar-displays-and-impassioned-vocals</u>

Art challenges Technology

Technology inspires the Art

My Research on Al for Music

- Multitrack music generation (AAAI 2018, ISMIR 2018, ISMIR 2020, ICASSP 2023, ISMIR 2024, AIMG 2024)
- Text-to-symbolic music generation (ISMIR LBD 2024, arXiv 2024)
- Expressive violin performance synthesis (ICASSP 2022, ICASSP 2025)
- Music instrumentation (ISMIR 2021)
- Music harmonization (JNMR 2020)
- Music LLM (NLP4MusA 2024, ICASSP 2025)
- Choral music separation (ISMIR 2022)
- Optical music recognition (ISMIR 2021)

Multitrack Music Transformer

Hao-Wen DongKe ChenShlomo DubnovJulian McAuleyTaylor Berg-KirkpatrickUniversity of California San Diego

UC San Diego

Generating Text using Language Models

• Predicting the next word given the past sequence of words

Generating Text using Language Models

• How do we generate a new sentence with a language model?

A transformer is a	\rightarrow	Model	\rightarrow	deep
A transformer is a <mark>deep</mark>	\rightarrow	Model	\rightarrow	learning
A transformer is a deep learning		Model	\rightarrow	model
A transformer is a deep learning model		Model	\rightarrow	introduced
A transformer is a deep learning model introduced	\rightarrow	Model	\rightarrow	in
A transformer is a deep learning model introduced in	\rightarrow	Model	\rightarrow	2017

Designing a Machine-readable Music Language

• We represent a music piece as a sequence of "super words"

$$\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$$

• Each super word \mathbf{x}_i encodes:

An Example of the Proposed Representation

Structural events

	C		(0, 0, 0, 0, 0) Start of song	
uo	Ĉ		(1, 0, 0, 0, 15) Instrument: accordion	
ordi itch	itch		(1, 0, 0, 0, 36) Instrument: trombone Instrument events	
ACC P			(1, 0, 0, 0, 39) Instrument: brasses	
	C-		(2, 0, 0, 0, 0) Start of notes	
	0	7	(3, 1, 1, 41, 15, 36) Note: beat=1, position=1, pitch=E2, duration=48, instrument=trombone	
ne	Č		(3, 1, 1, 65, 4, 39) Note: beat=1, position=1, pitch=E4, duration=12, instrument=brasses	
oqu	tch 0		(3, 1, 1, 65, 17, 15) Note: beat=1, position=1, pitch=E4, duration=72, instrument=accordion	
Tron	id C		(3, 1, 1, 68, 4, 39) Note: beat=1, position=1, pitch=G4, duration=12, instrument=brasses	
	C-		(3, 1, 1, 68, 17, 15) Note: beat=1, position=1, pitch=G4, duration=72, instrument=accordion NOT	e
0	ç		(3, 1, 1, 73, 17, 15) Note: beat=1, position=1, pitch=C5, duration=72, instrument=accordion	ntc
tion			(3, 1, 13, 68, 4, 39) Note: beat=1, position=13, pitch=G4, duration=12, instrument=brasses	113
Sec	D tch		(3, 1, 13, 73, 4, 39) Note: beat=1, position=13, pitch=C5, duration=12, instrument=brasses	
ass	ja C		(3, 2, 1, 73, 12, 39) Note: beat=2, position=1, pitch=C5, duration=36, instrument=brasses	
Br	Č C-		(3, 2, 1, 77, 12, 39) Note: beat=2, position=1, pitch=E5, duration=36, instrument=brasses	
	C-	12345678	••• •••	
		time (beat)	(4, 0, 0, 0, 0) End of song	

An Example of the Proposed Representation

Accordion	pitch	(0, 0, 0, 0, (1, 0, 0, (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0) 0, 0, 15) 0, 0, 36) 0, 0, 39)	Start of song Instrument: accordion Instrument: trombone Instrument: brasses
Trombone	pitch	(2, 0, 0, (3, 1, 1, (3, 1, 1, 1, (3, 1, 1, 1, (3, 1, 1, 1, (3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	0, 0, 0) 41, 15, 36) 55, 4, 39) 55, 17, 15) 58, 4, 39)	<pre>Start of notes Note: beat=1, position=1, pitch=E2, duration=48, instrument=trombone Note: beat=1, position=1, pitch=E4, duration=12, instrument=brasses Note: beat=1, position=1, pitch=E4, duration=72, instrument=accordion Note: beat=1, position=1, pitch=G4, duration=12, instrument=brasses</pre>
Brass Section	bitch	(3, 1, 1, 1, (3, 1, 1, 1, (3, 1, 13, (3, 1, 13, (3, 2, 1, 13, (3, 2, 1, (3, 2, 1, (3, 2, 1, 13, (3, 2, 1, 13, 13, 13, 13, 13, 13, 13, 13, 13,	58, 17, 15) 73, 17, 15) 58, 4, 39) 73, 4, 39) 73, 12, 39) 77, 12, 39)	Note: beat=1, position=1, pitch=G4, duration=72, instrument=accordion Note: beat=1, position=1, pitch=C5, duration=72, instrument=accordion Note: beat=1, position=13, pitch=G4, duration=12, instrument=brasses Note: beat=1, position=13, pitch=C5, duration=12, instrument=brasses Note: beat=2, position=1, pitch=C5, duration=36, instrument=brasses Note: beat=2, position=1, pitch=E5, duration=36, instrument=brasses
	1 2 3 4 5 6 7 8 time (beat)	(4, 0, 0,	0, 0, 0)	End of song

Multitrack Music Transformer (MMT)

- A decoder-only transformer model
- Predicts six fields at the same time
- Trained autoregressively

Symbolic Orchestral Database (SOD)

- 5,743 orchestral pieces (**357 hours** in total)
- Contains various ensembles: choir, string quartet, symphony, etc.

Example Results

Unconditional generation

Three Sampling Modes

Unconditional generation

Input	(0, 0,	0,	0,	0,	0)	Start of song	
1	(1, 0,	0,	0,	-0,	15)	Instrument: accordion	
	(1, 0,	0,	0,	0,	36)	Instrument: trombone	
	(1, 0,	0,	0,	0,	39)	Instrument: brasses	
	(2, 0,	0,	0,	0,	0)		
	(3, 1,	1,	41,	15,	36)	Note: beat=1, position=1, pitch=E2, duration=48, instrument=trombone	
	(3, 1,	1,	65,	4,	39)	Note: beat=1, position=1, pitch=E4, duration=12, instrument=brasses	
	(3, 1,	1,	65,	17,	15)	Note: beat=1, position=1, pitch=E4, duration=72, instrument=accordion	n
	(3, 1,	1,	68,	4,	39)	Note: beat=1, position=1, pitch=G4, duration=12, instrument=brasses	
	(3, 1,	1,	68,	17,	15)	Note: beat=1, position=1, pitch=G4, duration=72, instrument=accordion	n
	(3, 1,	1,	73,	17,	15)	Note: beat=1, position=1, pitch=C5, duration=72, instrument=accordion	n
	(3, 1,	13,	68,	4,	39)	Note: beat=1, position=13, pitch=G4, duration=12, instrument=brasses	
	(3, 1,	13,	73,	4,	39)	Note: beat=1, position=13, pitch=C5, duration=12, instrument=brasses	
	(3, 2,	1,	73,	12,	39)	Note: beat=2, position=1, pitch=C5, duration=36, instrument=brasses	
	(3, 2,	1,	77,	12,	39)	Note: beat=2, position=1, pitch=E5, duration=36, instrument=brasses	
	(4, 0,	0,	0,	0,	0)		

Instrument-informed generation

Input	(0, 0 (1, 0 (1, 0 (1, 0 (2, 0	8, (8, (8, (8, (8, (8, (),),),),	0, 0, 0, 0,	0, 0, 0, 0,	0) 15) 36) 39) 0)	Start of song Instrument: accordion Instrument: trombone Instrument: brasses Start of notes
	(3, 1	1, 1	1,4	1, 1	15,	36)	Note: beat=1, position=1, pitch=E2, duration=48, instrument=trombone
	(3, 1	1, 1	1,6	5,	4,	39)	Note: beat=1, position=1, pitch=E4, duration=12, instrument=brasses
	(3, 1	1, 1	1, 6	5, 3	17,	15)	Note: beat=1, position=1, pitch=E4, duration=72, instrument=accordion
	(3, 1	1, 1	1,6	8,	4,	39)	Note: beat=1, position=1, pitch=G4, duration=12, instrument=brasses
	(3, 1	1, 1	1,6	8,	17,	15)	Note: beat=1, position=1, pitch=G4, duration=72, instrument=accordion
	(3, 1	1, 1	1, 7	3, 3	17,	15)	Note: beat=1, position=1, pitch=C5, duration=72, instrument=accordion
	(3, 1	1, 13	3,6	8,	4,	39)	Note: beat=1, position=13, pitch=G4, duration=12, instrument=brasses
	(3, 1	1, 13	3, 7	З,	4,	39)	Note: beat=1, position=13, pitch=C5, duration=12, instrument=brasses
	(3, 2	2, 1	1, 7	3, 1	12,	39)	Note: beat=2, position=1, pitch=C5, duration=36, instrument=brasses
	(3, 2	2, 1	1, 7	7,	12,	39)	Note: beat=2, position=1, pitch=E5, duration=36, instrument=brasses
						1	
	(4, 6), (),	0,	0,	0)	

N-beat continuation

	(0, 0, (1, 0, (1, 0, (1, 0, (1, 0,	0, 0, 0, 0,	0, 0, 0, 0,	0, 0, 0, 0,	0) 15) 36) 39)	Start of song Instrument: accordion Instrument: trombone Instrument: brasses Start of notes	
Input	(3, 1) (3, 1) (3, 1) (3, 1) (3, 1) (3, 1) (3, 1) (3, 1) (3, 1) (3, 1)	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 13,	41, 65, 65, 68, 73, 68, 73,	15, 4, 17, 4, 17, 17, 17, 4, 4,	36) 39) 15) 39) 15) 15) 15) 39) 39)	Note: beat=1, position=1, pitch=E2, duration=48, instrument=trombone Note: beat=1, position=1, pitch=E4, duration=12, instrument=brasses Note: beat=1, position=1, pitch=E4, duration=72, instrument=brasses Note: beat=1, position=1, pitch=64, duration=12, instrument=brasses Note: beat=1, position=1, pitch=64, duration=72, instrument=brasses Note: beat=1, position=1, pitch=64, duration=72, instrument=brasses Note: beat=1, position=13, pitch=64, duration=12, instrument=brasses Note: beat=1, position=13, pitch=64, duration=12, instrument=brasses	1
	(3, 2) (3, 2) (4, 0)	1, 1, 0.	73, 77,	12, 12,	39) 39)	Note: beat=2, position=1, pitch=C5, duration=36, instrument=brasses Note: beat=2, position=1, pitch=E5, duration=36, instrument=brasses	

Only needs to train ONE model!

Example Results

Unconditional generation

Instrumentinformed generation

church-organ, viola, contrabass, strings, voices, horn, oboe **4-beat continuation**

Mozart's Eine kleine Nachtmusik

The Magic of Transformers – Self-attention Mechanism

Transformers learn what to attend to from big data!

Visualizing Musical Self-attention (Huang et al., 2018)

(Each color represents an attention head)

(Source: Huang et al., 2018)

Visualizing Musical Self-attention (Huang et al., 2018)

(Each color represents an attention head)

(Source: Huang et al., 2018)

Can we go beyond case studies?

Systematically Analyzing Musical Self-attention

We proposed two new quantities for measuring mean relative attention

$$\gamma_k^{(d)} = \frac{\sum_{\mathbf{x}\in\mathcal{D}}\sum_{s>t} a_{s,t}(\mathbf{x}) \,\mathbbm{1}_{x_t^{(d)} - x_s^{(d)} = k}}{\sum_{\mathbf{x}\in\mathcal{D}}\sum_{s>t} a_{s,t}(\mathbf{x})} \qquad \qquad \tilde{\gamma}_k^{(d)} = \gamma_k^{(d)} - \frac{\sum_{\mathbf{x}\in\mathcal{D}}\sum_{s>t} \mathbbm{1}_{x_t^{(d)} - x_s^{(d)} = k}}{\sum_{\mathbf{x}\in\mathcal{D}}\sum_{s>t} 1}$$

• The MMT model attends more to notes

that are 4*N* beats away in the past

that has a pitch in an octave above which forms a consonant interval

- State-of-the-art orchestral music generation model
- Presented the **first systematic analysis** of **musical self-attention**
- Showed that MMT learns a relative self-attention for beat and pitch

Multitrack Music Transformer

Musical Self-attention

Paper: <u>arxiv.org/abs/2207.06983</u> Demo: <u>salu133445.github.io/mmt/</u> Code: <u>github.com/salu133445/mmt</u>

UC San Diego

Towards Automatic Instrumentation by Learning to Separate Parts in Multitrack Music

Hao-Wen Dong¹ Chris Donahue² Taylor Berg-Kirkpatrick¹ Julian McAuley¹

¹ University of California San Diego ² Stanford University

UC San Diego Stanford

Automatic Instrumentation

• **Goal**: Dynamically **assign instruments** to notes in solo music

How can we acquire paired data?

Learning Automatic Instrumentation without Paired Data

Online vs Offline Models

Online models

Can only look at the **past**

- LSTMs
- Transformer decoders

Offline models

Can look at both the **future** and the **past**

- BiLSTMs
- Transformer encoders

Representation & Datasets

A sequence of notes specified by

- Time Onset time (in time step)
- Pitch Pitch as a MIDI note number
- **Duration** Note length (in time step)
- Frequency Frequency of the pitch (in Hz)
- Beat Onset time (in beat)
- **Position** Position within a beat (in time step)

Representing music in a machine-readable format

Dataset	Hours	Files	Notes	Parts	Ensemble	Most common label
Bach chorales [31]	3.23	409	96.6K	4	soprano, alto, tenor, bass	bass (27.05%)
String quartets [32]	6.31	57	226K	4	first violin, second violin, viola, cello	first violin (38.72%)
Game music [33]	45.05	4.61K	2.46M	3	pulse wave I, pulse wave II, triangle wave	pulse wave II (39.35%)
Pop music [34]	1.02K	16.2K	63.6M	5	piano, guitar, bass, strings, brass	guitar (42.50%)

Example Results

Produce alternative convincing instrumentations for an existing arrangement

piano, guitar, bass, strings, brass

More Results

Bach chorales

no : #5 5#0 . 15 5

(Audio available.¹ Colors: first violin, second violin, viola, cello.)

Game music

Pop music

Ground truth	
Online LSTM prediction	
Offline BiLSTM prediction	
(Audio	o available. Colors: piano, guitar, bass, strings, brass.)

- First ever machine learning model for automatic instrumentation
- Potential applications in assistive creation tools and intelligent keyboards

Paper: <u>arxiv.org/abs/2107.05916</u> Demo: <u>salu133445.github.io/arranger</u> Code: <u>github.com/salu133445/arranger</u>

luiu

Generating Multi-instrument Music using GANs (AAAI 2018)

Multitrack Piano Roll

MuseGAN Generator

Hao-Wen Dong, Wen-Yi Hsiao, Li-Chia Yang, and Yi-Hsuan Yang, "MuseGAN: Multi-track Sequential Generative Adversarial Networks for Symbolic Music Generation and Accompaniment," AAAI, 2018.

MuseGAN Features in AWS DeepComposer (2020)

amazon.com/dp/B07YGZ4V5B/

Julien Simon, "AWS DeepComposer - Now Generally Available With New Features," AWS News Blog, April 2, 2020.

Synthesizing Expressive Violin Performance (ICASSP 2022)

Performance synthesis

Example results

Notes

Transformer

encoder

Polyphonic mixer

Transformer decoder Mel spectrogram

Onset Time

embedding

Duration

Duration

embedding

Velocity

Velocity

embedding

Alignment*

(onset & duration)

Performer

Performer

embedding

Note embedding

Frame embedding

Linear layer

Temp

Tempo

embedding

Challenges & Opportunities
The Five Challenges

Representations

Usability

Creativity

Multimodality

Personalization

Challenge 1: Representations

How can we best represent music for machine learning?

Music Generation – Four Paradigms

The Magic of Transformers – Self-attention Mechanism

Transformers learn what to attend to from big data!

Visualizing Musical Self-attention (Huang et al., 2018)

(Each color represents an attention head)

(Source: Huang et al., 2018)

Systematically Analyzing Musical Self-attention

We proposed two new quantities for measuring mean relative attention

$$\gamma_k^{(d)} = \frac{\sum_{\mathbf{x}\in\mathcal{D}}\sum_{s>t} a_{s,t}(\mathbf{x}) \,\mathbbm{1}_{x_t^{(d)} - x_s^{(d)} = k}}{\sum_{\mathbf{x}\in\mathcal{D}}\sum_{s>t} a_{s,t}(\mathbf{x})} \qquad \qquad \tilde{\gamma}_k^{(d)} = \gamma_k^{(d)} - \frac{\sum_{\mathbf{x}\in\mathcal{D}}\sum_{s>t} \mathbbm{1}_{x_t^{(d)} - x_s^{(d)} = k}}{\sum_{\mathbf{x}\in\mathcal{D}}\sum_{s>t} 1}$$

• The MMT model attends more to notes

that are 4*N* beats away in the past

that has a pitch in an octave above which forms a consonant interval

Music Generation – Four Paradigms

Piano Roll Representation

Why Piano Rolls?

Many musical patterns like melodies, chords, scales and arpeggios are translational invariant in the temporal and pitch axes

MuseGAN (Dong et al., 2018)

Examples of generated music

(Source: Dong et al., 2018)

Hao-Wen Dong, Wen-Yi Hsiao, Li-Chia Yang, and Yi-Hsuan Yang, "MuseGAN: Multi-track Sequential Generative Adversarial Networks for Symbolic Music Generation and Accompaniment," AAAI, 2018.

Polyffusion (Min et al., 2023)

(Source: Min et al., 2023)

polyffusion.github.io

Example: Cascaded Diffusion Models (Wang et al., 2024)

(Source: Wang et al., 2024)

wholesonggen.github.io

Ziyu Wang, Lejun Min, and Gus Xia, "Whole-Song Hierarchical Generation of Symbolic Music Using Cascaded Diffusion Models," ICLR, 2024.

Music Generation – Four Paradigms

Challenge 1: Representations

How can we best represent music for machine learning?

Challenge 2: Multimodality

Can AI learn to create music by "listening to" music rather than "reading" music?

Human-inspired Machine Learning for Music & Audio

A Baseline through Music Transcription

- Apply a music transcript model to acquire symbolic music data from audio
- But can we directly learn to compose symbolic music through "listening to music" and "practicing music," just like how humans do?

Multimodal Inputs for Generative Music AI

Challenge 2: Multimodality

Can AI learn to create music by "listening to" music rather than "reading" music?

Challenge 3: Usability

How can AI music tools be integrated into an artist's creative workflow?

WavJourney: Compositional Audio Creation (Liu et al., 2023)

Xubo Liu, Zhongkai Zhu, Haohe Liu, Yi Yuan, Meng Cui, Qiushi Huang, Jinhua Liang, Yin Cao, Qiuqiang Kong, Mark D. Plumbley, Wenwu Wanga, "<u>WavJourney: Compositional Audio</u> <u>Creation with Large Language Models</u>," arXiv preprint arXiv:2307.14335, 2023.

Integrating Generative AI into the Creative Workflow

Audio Type	Layout	ID	Character	Volume	Action	Content Description	Duratio
Music	Background	1	N/A	-30	Begin	Dramatic orchestral news theme.	Auto
Speech	Foreground	N/A	Host	-15	N/A	Welcome to Mars News	Auto
Music	Background	1	N/A	N/A	End	N/A	0 0 0
Speech	Foreground	N/A	Host	-15	N/A	Now let's connect with our on-site reporter	Bin: Javier Editing
Sound effect	Foreground	N/A	N/A	-35	N/A	Transition swoosh.	م ا
Sound effect	Background	2	N/A	-30	Begin	Background noise of busy engineering office.	
Speech	Foreground	N/A	Reporter	-15	N/A	We're here at the headquarters of \ldots	Edit Mode Javi
Speech	Foreground	N/A	Director	-15	N/A	Thank you, so it's a fantastic	
Speech	Foreground	N/A	Reporter	-15	N/A	This is truly an impressive feat	

Integrating Generative AI into the Creative Workflow

Audio Type	Layout	ID	Character	Volume	Action	Content Description	Dura
Music	Background	1	N/A	-30	Begin	Dramatic orchestral news theme.	Au
Speech	Foreground	N/A	Host	-15	N/A	Welcome to Mars News	Au
Music	Background	1	N/A	N/A	End	N/A	
Speech	Foreground	N/A	Host	-15	N/A	Now let's connect with our on-site reporter	
Sound effect	Foreground	N/A	N/A	-35	N/A	Transition swoosh.	
Sound effect	Background	2	N/A	-30	Begin	Background noise of busy engineering office.	
Speech	Foreground	N/A	Reporter	-15	N/A	We're here at the headquarters of \ldots	
Speech	Foreground	N/A	Director	-15	N/A	Thank you, so it's a fantastic	
Speech	Foreground	N/A	Reporter	-15	N/A	This is truly an impressive feat	

Integration into professional creative workflow

RAVE: Real-time Audio Synthesis (Caillon & Esling, 2022)

youtu.be/jAIRf4nGgYI

Misusable Music Tools (Nao Tokui, 2023)

- "Throughout history, music and technology have often intertwined, with new technologies being misused by artists (turntables, etc)" — Nao Tokui, 2024
- "Al is more challenging to misuse because it lacks a physical entity and operates as a black box."
 — Nao Tokui, 2024

Challenge 3: Usability

How can AI music tools be integrated into an artist's creative workflow?

Challenge 4: Personalization

How can we make "my personal AI music tools"?

YACHT & Google Magenta

"The band first took all 82 songs from their **back catalog** and isolated each part, from bass lines to vocal melodies to drum rhythms; they then took those isolated parts and broke them up into four-bar loops. Then, they put those loops into the machine learning model, which **put out new melodies based on their** old work. They did a similar process with lyrics, using their old songs plus other material they considered inspiring. The final task was to pick lyrics and melodies that made sense, and pair them together to make a song."

youtu.be/_yz8QYzcfxl

Ease of Personalization for Artists

- Through finetuning our own models
- Through finetuning with live inputs
- Python scripting vs friendly user interface

• Can we do better?

Overfitting vs Distortion

• Will overfitting be a new music expression, the "distortion" for AI music?

Personalized Text-to-Music Generation (Plitsis et al., 2024)

(Source: Plitsis et al., 2024)

Manos Plitsis, Theodoros Kouzelis, Georgios Paraskevopoulos, Vassilis Katsouros, and Yannis Panagakis, "Investigating Personalization Methods in Text to Music Generation," ICASSP, 2024.

Challenge 4: Personalization

How can we make "my personal AI music tools"?

Challenge 5: Creativity

Can AI ever be creative? How can AI augment human creativity?

The Curse of Machine Learning

- As the old saying goes, "Artificial intelligence is only as good as the data it learns from."
- Machine learning models are trained to approximate some distribution in its formal formulation.
- This seems to contradict the idea of creativity that requires the ability to extrapolate and think out of the box.

• Can Al ever be creative?

Creative Adversarial Network (Elgammal et al., 2017)

(Source: Elgammal et al., 2017)

Ahmed Elgammal, Bingchen Liu, Mohamed Elhoseiny, and Marian Mazzone, "CAN: Creative Adversarial Networks, Generating "Art" by Learning About Styles and Deviating from Style Norms," ICCC, 2017.

Creative Adversarial Network (Elgammal et al., 2017)

Example generated images

Best samples

(Source: Elgammal et al., 2017)

Ahmed Elgammal, Bingchen Liu, Mohamed Elhoseiny, and Marian Mazzone, "CAN: Creative Adversarial Networks, Generating "Art" by Learning About Styles and Deviating from Style Norms," ICCC, 2017.
How can Al Augment Human Creativity?

(Source: Huang et al., 2020)

Creativity vs Art

Creativity is allowing yourself to make mistakes. Art is knowing which ones to keep.

— Scott Adams

Challenge 5: Creativity

Can AI ever be creative? How can AI augment human creativity?

The Five Challenges

Representations Multimodality

Usability Personalization

Creativity

- **Representations**: How can we best represent music for machine learning?
- Multimodality: Can Al learn to create music by "listening to" music rather than "reading" music?
- **Usability**: How can AI music tools be integrated into an artist's creative workflow?
- **Personalization**: How can we make "my personal AI music tools"?
- **Creativity**: Can AI ever be creative? How can AI augment human creativity?

Conclusion

Music & Technology Co-evolves

Hildegard Dodel, Public domain, via Wikimedia Commons. Taken at Hamamatsu Museum of Musical Instruments, August 2019. yan, <u>CC BY-SA 4.0</u>, via Wikimedia Commons.

Art challenges Technology

Technology inspires the Art

The Five Challenges

Representations

Usability

Creativity

Multimodality

Personalization

Al Music @ Michigan

Hao-Wen Dong

Julie Zhu

Generative AI for Music: Challenges & Opportunities

Nothing would have been possible without all my fantastic collaborators!

hermandong.com / hwdong@umich.edu

