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Generative AI has been transforming the way we interact with technology and con-

sume content. In the next decade, AI technology will reshape how we create audio content

in various media, including music, theater, films, games, podcasts, and short videos. In this

dissertation, I introduce the threemain directions ofmy research centered around generative

AI for music and audio: 1) multitrack music generation, 2) assistive music creation tools,

and 3) multimodal learning for audio and music. Through my research, I aim to answer the

following two fundamental questions: 1) How can AI help professionals or amateurs create

music and audio content? 2) Can AI learn to create music in a way similar to how humans

learn music? My long-term goal is to lower the barrier of entry for music composition and

democratize audio content creation.
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Chapter 1

Introduction

AI is the study of how to make computers do things

at which, at the moment, people are better.

—Elaine Rich and Kevin Knight

Generative AI has been transforming the way we interact with technology and con-

sume content. The recent success of large language model-based chatbots (e.g., OpenAI’s

ChatGPT1 and Google’s Gemini2), AI assistants (e.g., GitHub and Microsoft Copilot) and

text-to-image generation systems (e.g., Adobe Firefly,3 Midjourney4 and Stable Diffusion5)

showcases how AI-powered technology can be integrated into professional workflows and

boost human productivity. In the next decade, generative AI technology will also reshape

how we create audio content in the $2.3 trillion global entertainment industry, including the

music, film, TV, podcast and gaming sectors. Take AI-powered music creation for example:

On one hand, we have witnessed major progress in automatic music composition (Briot

et al., 2017; Huang et al., 2020), which has long been considered as a grand challenge of AI.

On the other hand, our expectations of AI Music today has expanded to cover the whole

music creation process—from composition, arrangement, sound production, recording to

mixing (De Man et al., 2019). With a growing momentum in both academia and industry,

AI-powered audio creation has been gaining attention in the broader AI community.

1https://chat.openai.com/
2https://gemini.google.com/
3https://firefly.adobe.com/
4https://www.midjourney.com/
5https://stability.ai/stable-image

1
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Figure 1.1. Looking back to the past, how music and technology interacts has always been a two-way
process. (Left) the violin-making industry grows with the classical music, and together create the
golden age of classical music. (Right) the invention and development of synthesizers and drum
machines helped popularize electronic music. Image sources (from left to right): 1) Mozart83, Public
domain, via Wikimedia Commons, 2) Hildegard Dodel, Public domain, via Wikimedia Commons,
3) yan, CC BY-SA 4.0, via Wikimedia Commons, and 4) taken at Hamamatsu Museum of Musical
Instruments, August 2019.

My research springs from two fundamental questions: 1) How can AI help profession-

als or amateurs create music and audio content? 2) Can AI learn to create music in a way

similar to how humans learn music? From a musical perspective, technology has always

been a driving factor of music evolution. For example, the study of acoustics and musical in-

strument making fostered the development of classical music; the invention of synthesizers

and drum machines helped popularize electronic music. I am thus interested in exploring

how the latest AI technology can empower artists to create novel contents. From a technical

perspective, music possesses a unique complexity in that music follows rules and patterns

while being creative and expressive at the same time. I am thus fascinated about the idea of

building intelligent systems that can learn, create and play music like humans do. I envision

the future development of AI Music to be a two-way process—new technology creates new

music; new music inspires new technology.

Motivated by this belief, I study a wide range of topics centered around Generative AI

for Music and Audio, including multitrack music generation (Dong et al., 2018a; Dong et al.,

2017; Dong and Yang, 2018; Dong et al., 2023a; Xu et al., 2023; Liu et al., 2018a), automatic

instrumentation (Dong et al., 2021), automatic arrangement (Dong et al., 2018a; Liu et al.,

2018a), automatic harmonization (Yeh et al., 2021), music performance synthesis (Dong et al.,

2



Figure 1.2. An overview of the three main directions of my research.

2022), text-queried sound separation (Dong et al., 2023d), text-to-audio synthesis (Dong et al.,

2023c; Dong et al., 2023b) and symbolic music processing software (Dong et al., 2018b; Dong

et al., 2020).

My research can be categorized into three main directions, as shown in Figure 1.2: 1)

multitrack music generation—advancing deep generative models for multitrack music, 2)

assistive music creation tools—developing AI tools that can help musicians and amateurs

create music, and 3)multimodal learning for audio and music—learning sound separation

and synthesis from noisy videos.

1.1 Multitrack Music Generation

Researchers have been working on automatic music composition for decades, and

it has long been viewed as a grand challenge of AI. I started this thread of research on

multitrack music generation in 2017. Back then, prior work on deep learning-based music

generation had focused on generating melodies, lead sheets (i.e., melodies and chords) or

four-part chorales Briot et al., 2017. However, modern pop music often consists of multiple

instruments or tracks. To make deep learning technology applicable in modern music

production workflow, it is important to modernize deep learning models for multitrack

music generation.

Witnessing the lack of infrastructure for symbolic music generation when conducting

these research projects, I developed libraries for processing symbolic music to consolidate

the infrastructure of music generation research (Dong et al., 2018b; Dong et al., 2020). The

Python toolkits I developed to process symbolic music for machine learning applications
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have been widely used in the field. With these libraries, researchers can easily download

commonly used datasets programmatically and be liberated from reimplementing tedious

data processing routines. The toolkits also allowed me to conduct the first large-scale ex-

periment that measures the cross-dataset generalizability of deep neural networks for music

(Dong et al., 2020). This work will be presented in Chapter 2.

Moreover, I study efficient music generation model with an eye to enabling real time

improvisation or near real time creative applications. In Dong et al., 2023a, I proposed the

Multitrack Music Transformer (MMT) model that achieves comparable performance with

state-of-the-art systems, landing in between two recently proposed models in a subjective

listening test, while achieving substantial speedups and memory reductions over both.

Further, I presented the first systematic analysis of musical self-attention, where I showed

that the trained model learns a relative attention in certain aspects of music. With the great

success brought by large-scale generative pretraining in natural language processing, my

ongoing work aims to scale this method up using the largest ever symbolic music dataset

containingmore than onemillion scores, which I collected and compiled from theMuseScore

forum. This work will be presented in Chapter 3.

1.2 Assistive Music Creation Tools

Music creation today is still largely limited to professional musicians for it requires

a certain level of knowledge in music theory, music notation and music production tools.

Apart from generating new music content from scratch, another line of my research focuses

on developing AI-augmented tools to assist amateurs to create and perform music. My long-

term goal along this research direction is to lower the entry barrier of music composition

and make music creation accessible to everyone.

For example, in (Dong et al., 2021), I developed the first deep learning model for auto-

matic instrumentation. Instrumentation refers to the process where a musician arranges a

solo piece for a certain ensemble such as a string quartet or a rock band. This can be chal-

lenging for amateur composers as it requires domain knowledge of each target instrument.

In this work, I proposed a new machine learning model that can produce convincing instru-

mentation for a solo piece by framing this problem as a sequential multi-class classification
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problem. Such an automatic instrumentation system can suggest potential instrumentation

for amateur composers, especially useful when arranging for an unfamiliar ensemble. Fur-

ther, the proposed model can empower a musician to play multiple instruments on a single

keyboard at the same time. This work will be presented in Chapter 4.

Another example is my work on music performance synthesis (Dong et al., 2022).

While synthesizers play a critical role and are intensively used in modern music production,

existing synthesizers either requires an input with expressive timing or allows only mono-

phonic inputs. In light of the similarities between text-to-speech (TTS) and score-to-audio

synthesis, I showed in this work that we can adapt a state-of-the-art TTS model for music

performance synthesis. Moreover, I proposed a novel mechanism to enable polyphonic mu-

sic synthesis. This work represents the first deep learning based polyphonic synthesizer that

can synthesize a score into a natural, expressive performance. This work will be presented in

Chapter 5.

1.3 Multimodal Learning for Audio and Music

The third line of my research focuses on multimodal learning for audio and music.

Sound is an integral part of movies, dramas, documentaries, podcasts, games, short videos

and audiobooks. In these media, audio and music production tools need to interact with

inputs from other modalities such as text and images, and thus multimodal models are

critical in enabling controllable creation tools for music and audio in these applications.

Along this direction, I have worked on text-queried sound separation (Dong et al.,

2023d) and text-to-audio synthesis (Dong et al., 2023c; Dong et al., 2023b). Unlike existing

work that relies on a large amount of paired audio-text data, I explore a new direction of

approaching bimodal learning for text and audio through leveraging the visual modality

as a bridge. The key idea behind my study is to combine the naturally-occurring audio-

visual correspondence in videos and the multimodal representation learned by contrastive

language-vision pretraining (CLIP). Based on this idea, I developed the first text-queried sound

separation model that can be trained without any text-audio pairs (Dong et al., 2023d). Text-

queried sound separation aims to separate a specific sound out from a mixture of sounds

given a text query, which has many downstream applications in audio post-production
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such as editing and remixing. I showed that the proposed model can successfully learn

text-queried sound separation using only noisy unlabeled videos, and it even achieves

competitive performance against a supervised model in some settings. Moreover, I built

the first text-to-audio synthesis model that requires no text-audio pairs during training (Dong

et al., 2023c; Dong et al., 2023b). The proposed model learns to synthesize audio given text

queries, which can find applications in video and audio editing software. One of the key

benefits of the approach studied in my work lies in its scalability to large video datasets

in the wild as we only need unlabeled videos for training. This work will be presented in

Chapters 6 and 7.

1.4 Dissertation Organization

The rest of this dissertation is organized as follows: Chapters 2 to 7 are reprints

of six conference papers published during my PhD. Specifically, Chapter 2 is a reprint of

“MusPy: A Toolkit for Symbolic Music Generation” (Dong et al., 2020) published in ISMIR 2020.

Chapter 3 is a reprint of “Multitrack Music Transformer” (Dong et al., 2023a) published in

ICASSP 2023. Chapter 4 is a reprint of “Towards Automatic Instrumentation by Learning to

Separate Parts in Symbolic Multitrack Music” (Dong et al., 2021) published in ISMIR 2021.

Chapter 5 is a reprint of “Deep Performer: Score-to-Audio Music Performance Synthesis”

(Dong et al., 2022) published in ICASSP 2022. Chapter 6 is a reprint of “CLIPSep: Learning

Text-queried Sound Separation with Noisy Unlabeled Videos” (Dong et al., 2023d) published in

ICLR 2023. Chapter 7 is a reprint of “CLIPSonic: Text-to-Audio Synthesis with Unlabeled Videos

and Pretrained Language-Vision Models” (Dong et al., 2023b) published in WASPAA 2023.

Finally, Chapter 8 concludes this dissertation and discusses my future research directions.

Think, Think, Think

—Winnie the Pooh
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Chapter 2

MusPy: A Toolkit for Symbolic Music Genera-
tion

Abstract

In this paper, we present MusPy, an open source Python library for

symbolic music generation. MusPy provides easy-to-use tools for essential

components in a music generation system, including dataset management,

data I/O, data preprocessing and model evaluation. In order to showcase

its potential, we present statistical analysis of the eleven datasets currently

supported by MusPy. Moreover, we conduct a cross-dataset generalizability

experiment by training an autoregressive model on each dataset and mea-

suring held-out likelihood on the others—a process which is made easier

by MusPy’s dataset management system. The results provide a map of do-

main overlap between various commonly used datasets and show that some

datasets contain more representative cross-genre samples than others. Along

with the dataset analysis, these results might serve as a guide for choosing

datasets in future research. Source code and documentation are available at

https://github.com/salu133445/muspy.

2.1 Introduction

Recent years have seen progress on music generation, thanks largely to advances

in machine learning (Briot et al., 2017). A music generation pipeline usually consists of

several steps—data collection, data preprocessing, model creation, model training andmodel
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Figure 2.1. An example of a learning-based music generation system. MusPy provides basic routines
specific to music as well as interfaces to machine learning frameworks.

evaluation, as illustrated in Figure 2.1. While some components need to be customized for

eachmodel, others can be shared across systems. For symbolicmusic generation in particular,

a number of datasets, representations and metrics have been proposed in the literature

(Briot et al., 2017). As a result, an easy-to-use toolkit that implements standard versions

of such routines could save a great deal of time and effort and might lead to increased

reproducibility. However, such tools are challenging to develop for a variety of reasons.

First, though there are a number of publicly-available symbolic music datasets, the

diverse organization of these collections and the various formats used to store them presents

a challenge. These formats are usually designed for different purposes. Some focus on

playback capability (e.g., MIDI), some are developed for music notation softwares (e.g., Mu-

sicXML (Good, 2001) and LilyPond (LilyPond n.d.)), some are designed for organizing musical

documents (e.g., Music Encoding Initiative (MEI) (Hankinson et al., 2011)), and others are

research-oriented formats that aim for simplicity and readability (e.g., MuseData (Hewlett,

1997) and Humdrum (Huron, 1997). Oftentimes researchers have to implement their own

preprocessing code for each different format. Moreover, while researchers can implement

their own procedures to access and process the data, issues of reproducibility due to the

inconsistency of source data have been raised in (Bittner et al., 2019) for audio datasets.

Second, music has hierarchy and structure, and thus different levels of abstraction

can lead to different representations (Dannenberg, 1993). Moreover, a number of music

representations designed specially for generativemodeling ofmusic have also been proposed

in prior art, for example, as a sequence of pitches (Mozer, 1994; Eck and Schmidhuber, 2002;

Boulanger-Lewandowski et al., 2012; Roberts et al., 2018), events (Oore et al., 2020; Huang
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et al., 2019; Donahue et al., 2019; Huang and Yang, 2020), notes (Mogren, 2016) or a time-pitch

matrix (i.e., a piano roll) (Yang et al., 2017; Dong et al., 2018a).

Finally, efforts have been made toward more robust objective evaluation metrics

for music generation systems (Yang and Lerch, 2018) as these metrics provide not only an

objective way for comparing different models but also indicators for monitoring training

progress in machine learning-based systems. Given the success of mir_eval (Raffel et al.,

2014) in evaluating common MIR tasks, a library providing implementations of commonly

used evaluation metrics for music generation systems could help improve reproducibility.

To manage the above challenges, we find a toolkit dedicated for music generation a

timely contribution to the MIR community. Hence, we present in this paper a new Python

library, MusPy, for symbolic music generation. It provides essential tools for developing a

music generation system, including dataset management, data I/O, data preprocessing and

model evaluation.

With MusPy, we provide a statistical analysis on the eleven datasets currently sup-

ported by MusPy, with an eye to unveiling statistical differences between them. Moreover,

we conduct three experiments to analyze their relative diversities and cross-dataset domain

compatibility of the various datasets. These results, along with the statistical analysis, to-

gether provide a guide for choosing proper datasets for future research. Finally, we also

show that combining multiple heterogeneous datasets could help improve generalizability

of a music generation system.

2.2 Related Work

Few attempts, to the best of our knowledge, have been made to develop a dedicated

library for music generation. The Magenta project (Magenta n.d.) represents the most

notable example. While MusPy aims to provide fundamental routines in data collection,

preprocessing and analysis, Magenta comes with a number of model instances, but is tightly

bound with TensorFlow (Abadi et al., 2016). In MusPy, we leave the model creation and

training to dedicated machine learning libraries, and design MusPy to be flexible in working

with different machine learning frameworks.

There are several libraries for working with symbolic music. music21 (Cuthbert and
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Figure 2.2. System diagram of MusPy. The MusPy Music object at the center is the core element of
MusPy.

Ariza, 2010) is one of the most representative toolkits and targets studies in computational

musicology. While music21 comes with its own corpus, MusPy does not host any dataset.

Instead, MusPy provides functions to download datasets from the web, along with tools for

managing different collections, whichmakes it easy to extend support for new datasets in the

future. jSymbolic (Mckay and Fujinaga, 2006) focuses on extracting statistical information

from symbolic music data. While jSymbolic can serve as a powerful feature extractor for

training supervised classification models, MusPy focuses on generative modeling of music

and supports different commonly used representations in music generation. In addition,

MusPy provides several objective metrics for evaluating music generation systems.

Related cross-dataset generalizability experiments (Donahue et al., 2019) show that

pretraining on a cross-domain data can improve music generation results both qualitatively

and quantitatively. MusPy’s dataset management systemmakes it easier for us to thoroughly

verify this hypothesis by examining pairwise generalizabilities between various datasets.

2.3 MusPy

MusPy is an open source Python library dedicated for symbolic music generation.

Figure 2.2 presents the system diagram of MusPy. It provides a core class, MusPy Music class,

as a universal container for symbolic music. Dataset management system, I/O interfaces

and model evaluation tools are then built upon this core container. We provide in Figure 2.3

examples of data preparation and result writing pipelines using MusPy.
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(a) (b)

Figure 2.3. Examples of (a) training data preparation and (b) result writing pipelines using MusPy.

2.3.1 MusPy Music class and I/O interfaces

We aim at finding a middle ground among existing formats for symbolic music and

design a unified format dedicated for music generation. MIDI, as a communication protocol

between musical devices, uses velocities to indicate dynamics, beats per minute (bpm)

for tempo markings, and control messages for articulation, but it lacks the concepts of

notes, measures and symbolic musical markings. In contrast, MusicXML, as a sheet music

exchanging format, has the concepts of notes, measures and symbolic musical markings

and contains visual layout information, but it falls short on playback-related data. For a

music generation system, however, both symbolic and playback-specific data are important.

Hence, we follow MIDI’s standard for playback-related data and MusicXML’s standard for

symbolic musical markings.

In fact, the MusPy Music class naturally defines a universal format for symbolic

music, which we will refer to as the MusPy format, and can be serialized into a human-

readable JSON/YAML file. Table 2.1 summarizes the key differences among MIDI, MusicXML

and the proposed MusPy formats. Using the proposed MusPy Music class as the internal

representation for music data, we then provide I/O interfaces for common formats (e.g.,

MIDI, MusicXML and ABC) and interfaces to other symbolic music libraries (e.g., music21

(Cuthbert and Ariza, 2010), mido (Mido: MIDI Objects for Python n.d.), pretty_midi (Raffel
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Table 2.1. Comparisons of MIDI, MusicXML and the proposed MusPy formats. Triangle marks
indicate optional or limited support.

MIDI MusicXML MusPy

Sequential timing X X
Playback velocities X 4 X
Program information X 4 X

Layout information X
Note beams and slurs X
Song/source meta data 4 X X
Track/part information 4 X X
Dynamic/tempo markings X X
Concept of notes X X
Measure boundaries X X
Human readability 4 X

and Ellis, 2014) and Pypianoroll (Dong et al., 2018b)). Figure 2.3(b) provides an example of

result writing pipeline using MusPy.

2.3.2 Dataset management

MusPy provides an easy-to-use dataset management system similar to torchvision

datasets (Marcel and Rodriguez, 2010) and TensorFlow Dataset (TensorFlow Datasets n.d.).

Table 2.2 presents the list of datasets currently supported by MusPy and their comparisons.

Each supported dataset comes with a class inherited from the base MusPy Dataset class. The

modularized and flexible design of the dataset management system makes it easy to handle

local data collections or extend support for new datasets in the future. Figure 2.4 illustrates

the two internal processing modes when iterating over a MusPy Dataset object. In addition,

MusPy provides interfaces to PyTorch (Paszke et al., 2019) and TensorFlow (Abadi et al.,

2016) for creating input pipelines for machine learning (see Figure 2.3(a) for an example).

2.3.3 Representations

Music has multiple levels of abstraction, and thus can be expressed in various repre-

sentations. For music generation in particular, several representations designed for genera-

tive modeling of symbolic music have been proposed and used in the literature (Briot et al.,

2017). These representations can be broadly categorized into four types—the pitch-based

(Mozer, 1994; Eck and Schmidhuber, 2002; Boulanger-Lewandowski et al., 2012; Roberts et al.,
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Table 2.2. Comparisons of datasets currently supported by MusPy. Triangle marks indicate partial
support. Note that, in this version, only MusicXML and MIDI files are included for the music21
Corpus.

Dataset Format Hours Songs Genre Melody Chords Multitrack

Lakh MIDI Dataset (LMD)
(Raffel, 2016)

MIDI >9000 174,533 misc 4 4 4

MAESTRO Dataset
(Hawthorne et al., 2019)

MIDI 201.21 1,282 classical

Wikifonia Lead Sheet Dataset
(Wikifonia n.d.)

MusicXML 198.40 6,405 misc X X

Essen Folk Song Database
(Essen Folk Song Database n.d.)

ABC 56.62 9,034 folk X X

NES Music Database
(Donahue et al., 2018)

MIDI 46.11 5,278 game X X

Hymnal Tune Dataset
(Hymnal n.d.)

MIDI 18.74 1,756 hymn X

Hymnal Dataset
(Hymnal n.d.)

MIDI 17.50 1,723 hymn

music21 Corpus
(Cuthbert and Ariza, 2010)

misc 16.86 613 misc 4 4

Nottingham Database (NMD)
(Nottingham Database n.d.)

ABC 10.54 1,036 folk X X

music21 JSBach Corpus
(Cuthbert and Ariza, 2010)

MusicXML 3.46 410 classical X

JSBach Chorale Dataset
(Boulanger-Lewandowski et al.,
2012)

MIDI 3.21 382 classical X

(a) on-the-fly mode

(b) preconverted mode

Figure 2.4. Two internal processing modes for iterating over a MusPy Dataset object.
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Table 2.3. Comparisons of representations supported by MusPy. ) and # denote the numbers of
time steps and notes, respectively. Note that the configurations can be modified to meet specific
requirements and use cases.

Representation Shape Values Default configurations

Pitch-based ) × 1 {0, 1, . . . , 129} 128 note-ons, 1 hold, 1 rest (support only monophonic
music)

Event-based ) × 1 {0, 1, . . . , 387} 128 note-ons, 128 note-offs, 100 time shifts, 32 velocities

Piano-roll ) × 128 {0, 1} or R+ {0, 1} for binary piano rolls; R+ for piano rolls with ve-
locities

Note-based # × 4 N or R+ List of (B7;4, >7B2ℎ, 3C@0B7=<, D4:=27B G) tuples

2018), the event-based (Oore et al., 2020; Huang et al., 2019; Donahue et al., 2019; Huang and

Yang, 2020), the note-based (Mogren, 2016) and the piano-roll (Yang et al., 2017; Dong et al.,

2018a) representations. Table 2.3 presents a comparison of them. We provide in MusPy

implementations of these representations and integration to the datasetmanagement system.

Figure 2.3(a) provides an example of preparing training data in the piano-roll representation

from the NES Music Database using MusPy.

2.3.4 Model evaluation tools

Model evaluation is another critical component in developing music generation

systems. Hence, we also integrate into MusPy tools for audio rendering as well as score

and piano-roll visualizations. These tools could also be useful for monitoring the training

progress or demonstrating the final results. Moreover, MusPy provides implementations of

several objective metrics proposed in the literature (Mogren, 2016; Dong et al., 2018a; Wu

and Yang, 2020). These objective metrics, as listed below, could be used to evaluate a music

generation system by comparing the statistical difference between the training data and the

generated samples, as discussed in (Yang and Lerch, 2018).

• Pitch-related metrics—polyphony, polyphony rate, pitch-in-scale rate, scale consistency,

pitch entropy and pitch class entropy.

• Rhythm-related metrics—empty-beat rate, drum-in-pattern rate, drum pattern consis-

tency and groove consistency.
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2.3.5 Summary

To summarize, MusPy features the following:

• Dataset management system for commonly used datasets with interfaces to PyTorch

and TensorFlow.

• Data I/O for common symbolic music formats (e.g., MIDI, MusicXML and ABC) and

interfaces to other symbolic music libraries (e.g., music21, mido, pretty_midi and

Pypianoroll).

• Implementations of common music representations for music generation, including

the pitch-based, the event-based, the piano-roll and the note-based representations.

• Model evaluation tools for music generation systems, including audio rendering, score

and piano-roll visualizations and objective metrics.

All source code and documentation can be found at https://github.com/salu133445/muspy.

2.4 Dataset Analysis

Analyzing datasets is critical in developing music generation systems. With MusPy’s

dataset management system, we can easily work with different music datasets. Below we

compute the statistics of three key elements of a song—length, tempo and key using MusPy,

with an eye to unveiling statistical differences among these datasets. First, Figure 2.5 shows

the distributions of song lengths for different datasets. We can see that they differ greatly in

their ranges, medians and variances.

Second, we present in Figure 2.6 the distributions of initial tempo for datasets that

come with tempo information. We can see that all of them are generally bell-shaped but

with different ranges and variances. We also note that there are two peaks, 100 and 120

quarter notes per minute (qpm), in Lakh MIDI Dataset (LMD), which is possibly because

these two values are often set as the default tempo values in music notation programs and

MIDI editors/sequencers. Moreover, in Hymnal Tune Dataset, only around ten percent of

songs have an initial tempo other than 100 qpm.
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Figure 2.5. Length distributions for different datasets.
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Figure 2.6. Initial-tempo distributions for different datasets (those without tempo information are
not presented).
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Figure 2.7. Key distributions for different datasets. The keys are sorted w.r.t. their frequencies in
Lakh MIDI Dataset.

Finally, Figure 2.7 shows the histograms of keys for different datasets. We can see

that the key distributions are rather imbalanced. Moreover, only less than 3% of songs are

in minor keys for most datasets except the music21 Corpus. In particular, LMD has the most

imbalanced key distributions, which might be due to the fact that C major is often set as the

default key in music notation programs and MIDI editors/sequencers.1 These statistics could

provide a guide for choosing proper datasets in future research.

2.5 Experiments and Results

In this section, we conduct three experiments to analyze the relative complexities

and the cross-dataset generalizabilities of the eleven datasets currently supported by MusPy

(see Table 2.2). We implement four autoregressive models—a recurrent neural network

(RNN), a long short-term memory (LSTM) network (Hochreiter and Schmidhuber, 1997), a

gated recurrent unit (GRU) network (Cho et al., 2014) and a Transformer network (Vaswani

et al., 2017).

1Note that key information is considered as a meta message in a MIDI file. It does not affect the playback and
thus can be unreliable sometimes.
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2.5.1 Experiment settings

For the data, we use the event representation as specified in Table 2.3 and discard

velocity events as some datasets have no velocity information (e.g., datasets using ABC

format). Moreover, we also include an end-of-sequence event, leading to in total 357 possible

events. For simplicity, we downsample each song into four time steps per quarter note and

fix the sequence length to 64, which is equivalent to four measures in 4/4 time. In addition,

we discard repeat information inMusicXML data and use only melodies inWikifonia dataset.

We split each dataset into train–test–validation sets with a ratio of 8 : 1 : 1. For the training,

the models are trained to predict the next event given the previous events. We use the cross

entropy loss and the Adam optimizer (Kingma and Ba, 2015). For evaluation, we randomly

sample 1000 sequences of length 64 from the test split, and compute the perplexity of these

sequences. We implement the models in Python using PyTorch. For reproducibility, source

code and hyperparmeters are available at https://github.com/salu133445/muspy-exp.

2.5.2 Autoregressive models on different datasets

In this experiment, we train the model on some dataset D and test it on the same

datasetD. We present in Figure 2.8 the perplexities for differentmodels on different datasets.

We can see that all models have similar tendencies. In general, they achieve smaller per-

plexities for smaller, homogeneous datasets, but result in larger perplexities for larger, more

diverse datasets. That is, the test perplexity could serve as an indicator for the diversity

of a dataset. Moreover, Figure 2.9 shows perplexities versus dataset sizes (in hours). By

categorizing datasets into multi-pitch (i.e., accepting any number of concurrent notes) and

monophonic datasets, we can see that the perplexity is positively correlated to the dataset

size within each group.

2.5.3 Cross-dataset generalizability

In this experiment, we train a model on some dataset D, while in addition to testing

it on the same dataset D, we also test it on each other dataset D′. We present in Figure 2.10

the perplexities for each train–test dataset pair. Here are some observations:

• Cross dataset generalizability is not symmetric in general. For example, a model

18

https://github.com/salu133445/muspy-exp


st
ra

tif
ie

d

un
ifi

ed lm
d

m
ae

st
ro ne
s

hy
m

na
l

m
us

ic
21 js
b

m
us

ic
21

js
b

w
ik

ifo
ni

a

hy
m

na
l-t

un
e

es
se

n

nm
d

Dataset

6

8

10

12

14

16

18

20

Lo
g-

pe
rp

le
xi

ty

rnn
lstm
gru
transformer

Figure 2.8. Log-perplexities for different models on different datasets, sorted by the values for the
LSTM model.

101 102 103 104

Size (hour)

6

8

10

12

14

16

18

Lo
g-

pe
rp

le
xi

ty

jsb
music21jsb

music21
hymnal

nes

maestro

lmd

nmd

hymnal-tune

essen

wikifonia

unified

stratifiedmultipitch
monophonic
unified/stratified

Figure 2.9. Log-perplexities for the LSTMmodel versus dataset size in hours. Each point corresponds
to a dataset.

19



trained on LMD generalizes well to all other datasets, while not all models trained on

other datasets generalize to LMD, which is possibly due to the fact that LMD is a large,

cross-genre dataset.

• Models trained on multi-pitch datasets generalize well to monophonic datasets, while

models trained on monophonic datasets do not generalize to multi-pitch datasets (see

the red block in Figure 2.10).

• The model trained on JSBach Chorale Dataset does not generalize to any of the other

datasets (see the orange block in Figure 2.10). This is possibly because its samples are

downsampled to a resolution of quarter note, which leads to a distinct note duration

distribution.

• Most datasets generalize worse to NES Music Database compared to other datasets (see

the green block in Figure 2.10). This is possibly due to the fact that NES Music Database

contains only game soundtracks.

2.5.4 Effects of combining heterogeneous datasets

From Figure 2.10 we can see that LMD has the best generalizability, possibly because

it is large, diverse and cross-genre. However, a model trained on LMD does not generalize

well to NES Music Database (see the brown block in the close-up of Figure 2.10). We are

thus interested in whether combing multiple heterogeneous datasets could help improve

generalizability.

We combine all eleven datasets listed in Table 2.2 into one large unified dataset. Since

these datasets differ greatly in their sizes, simply concatenating the datasets might lead to

severe imbalance problem and bias toward the largest dataset. Hence, we also consider a

version that adopts stratified sampling during training. Specifically, to acquire a data sample

in the stratified dataset, we uniformly choose one dataset out of the eleven datasets, and

then randomly pick one sample from that dataset. Note that stratified sampling is disabled

at test time.

We also include in Figures 2.8 to 2.10 the results for these two datasets. We can see

from Figure 2.10 that combining datasets from different sources improves the generalizabil-
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(column). The datasets are sorted by the diagonal values, i.e., trained and tested on the same dataset.
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ity of the model. This is consistent with the finding in (Donahue et al., 2019) that models

trained on certain cross-domain datasets generalize better to other unseen datasets. More-

over, stratified sampling alleviates the source imbalance problem by reducing perplexities

in most datasets with a sacrifice of an increased perplexity on LMD.

2.6 Conclusion

We have presented MusPy, a new toolkit that provides essential tools for developing

music generation systems. We discussed the designs and features of the library, along with

data pipeline examples. WithMusPy’s datasetmanagement system,we conducted a statistical

analysis and experiments on the eleven currently supported datasets to analyze their relative

diversities and cross-dataset generalizabilities. These results could help researchers choose

appropriate datasets in future research. Finally, we showed that combining heterogeneous

datasets could help improve generalizability of a machine learning model.

∗ ∗ ∗

This chapter, in full, is a reprint of the material as it appears in “MusPy:

A Toolkit for Symbolic Music Generation” by Hao-Wen Dong, Ke Chen, Julian

McAuley and Taylor Berg-Kirkpatrick, which was published in the Proceedings

of the International Society for Music Information Retrieval Conference (ISMIR)

in 2020. The dissertation author was the primary investigator and author of

this paper.
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Chapter 3

Multitrack Music Transformer

Abstract

Existing approaches for generating multitrack music with transformer

models have been limited in terms of the number of instruments, the length

of the music segments and slow inference. This is partly due to the memory

requirements of the lengthy input sequences necessitated by existing repre-

sentations. In this work, we propose a new multitrack music representation

that allows a diverse set of instruments while keeping a short sequence length.

Our proposed Multitrack Music Transformer (MMT) achieves comparable

performance with state-of-the-art systems, landing in between two recently

proposed models in a subjective listening test, while achieving substantial

speedups and memory reductions over both, making the method attractive

for real time improvisation or near real time creative applications. Further,

we propose a new measure for analyzing musical self-attention and show that

the trained model attends more to notes that form a consonant interval with

the current note and to notes that are 4N beats away from the current step.

3.1 Introduction

Prior work has investigated various approaches for symbolic music generation (Briot

et al., 2017; Ji et al., 2020), among which, the transformer model (Vaswani et al., 2017)

has become popular given its recent successes in piano music generation (Huang et al.,

2019; Huang and Yang, 2020; Hsiao et al., 2021; Muhamed et al., 2021). At the core of a
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transformer model is the self-attention mechanism that allows the model to dynamically

attend to different parts of the input sequence and aggregate information from the whole

sequence. Such capabilities make it suitable for modeling the complex structures and

textures in music. However, while prior work has also explored applying transformer

models to generate multitrack music (Payne, 2019; Donahue et al., 2019; Ens and Pasquier,

2020; Rütte et al., 2022), successful implementations have only been reported either on a

limited set of instruments (Payne, 2019; Donahue et al., 2019) or short music segments (Ens

and Pasquier, 2020; Rütte et al., 2022). This is partly due to the long sequence length in

existing multitrack music representations, which results in a large memory requirement in

training. For example, a GPU with 11GB of memory can only generate 29 seconds of music

on average using the REMI+ representation (Rütte et al., 2022) on an orchestral music dataset.

Moreover, it can only generate less than four notes per second. These limitations together

pose a challenge in scaling transformer models to longer music with many instruments, e.g.,

orchestral music, and for real-time use cases, e.g., automatic improvisation and human-AI

music co-creation.

In this paper, we propose a new multitrack music representation to address the

long sequence issue in existing multitrack music representations. Using the proposed rep-

resentation, we present the Multitrack Music Transformer (MMT) for multitrack music

generation. Unlike a standard transformer model, the proposed model uses a decoder-only

transformer with multi-dimensional inputs and outputs to reduce its memory complexity.

On an orchestral dataset, we show that our proposed model can generate longer music

in a faster inference speed than two existing approaches. Through a subjective listening

test, we show that the proposed model achieves reasonably good performance in terms of

coherence, richness and arrangement as well as the overall quality. Moreover, our proposed

representation allows a trained autoregressive model to generate music for a specific set of

instruments, a task that has not been well studied in prior work.

Further, while the transformer model has been widely used on symbolic music, it

remains unclear how self-attention work for symbolic music. Understanding musical self-

attention could reveal future research directions in improving transformermodels formusic.

To the best of our knowledge, existing analysis (Huang et al., 2019; Huang et al., 2018; Chen

24



Table 3.1. Comparisons of related transformer-based music models.

Model Multitrack
Instrument
control

Compound
tokens

Generative
modeling

REMI (Huang and Yang, 2020) X
MMM (Ens and Pasquier, 2020) X X
CP (Hsiao et al., 2021) X X
MusicBERT (Zeng et al., 2021) X X
FIGARO (Rütte et al., 2022) X X

MMT (ours) X X X X

and Su, 2021; Wang and Xia, 2021) provides only case studies on few selected samples,

lacking a systematic analysis on self-attention for music. Hence, we propose a new quantity

to measure the average attention weights that a transformer model assigns to a certain key

of a certain difference from the query. Our analysis shows that the proposed model learns a

relative self-attention for certain aspects of music, specifically, beat, position and pitch.

Our proposed model provides a novel foundation for future work exploring longer-

form and real-time capable multitrack music generation. The systematic analysis also

provide insights into improving the self-attention mechanism for music. Audio samples

can be found on our demo website: https://salu133445.github.io/mmt/. For reproducibility,

all source code and hyperparameters are made publicly available at https://github.com/

salu133445/mmt.

3.2 Related Work

Multitrack music generation. Prior work has explored various approaches for

symbolic music generation (Briot et al., 2017; Ji et al., 2020), among which generating multi-

track music is considered more challenging for its complex interdependency between voices

and instruments. In (Dong et al., 2018a; Dong and Yang, 2018), the authors used a convo-

lutional generative adversarial network to generate short, five-track pop music segments.

In (Simon et al., 2018), the authors used a variational autoencoder with recurrent neural

networks to learn a latent space for multitrack measures. In (Donahue et al., 2019; Payne,

2019), the authors used decoder-only transformer models to generate four-track game music

and multi-instrument classical music, respectively. In (Rütte et al., 2022), the authors used
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a transformer model to generate multitrack music given a fine-grained description of the

characteristics of the desired music. Unlike these systems, our proposed model is built upon

a more compact representation that allows it to accommodate longer sequences under the

same GPU memory constraint.

Transformers for symbolic music. Another relevant line of research is on model-

ing symbolic music with transformermodels (Vaswani et al., 2017). Some prior work focused

on unconditioned generation, including generating piano music (Huang and Yang, 2020;

Hsiao et al., 2021), lead sheets (Wu and Yang, 2020) and guitar tabs (Chen et al., 2020b) from

scratch. Others studied controllable music generation (Shih et al., 2022; Rütte et al., 2022),

polyphonic music score infilling (Chang et al., 2021) and general-purpose pre-training for

symbolic music understanding (Chou et al., 2021; Zeng et al., 2021; Wang and Xia, 2021). In

this work, we focus on unconditioned generation for evaluation purposes. However, our

proposed model can also generate music for a specific set of instruments.

3.3 Proposed Method

3.3.1 Data Representation

We represent a music piece as a sequence of events x = (x1, . . . , x<), where each event

x7 is encoded as a tuple of six variables:

(Ftype
7

, Fbeat7 , F
position
7

, F
pitch
7

, Fduration7 , Finstrument7 ) .

The first variable Ftype determines the type of the event, among the following five event types:

• Start-of-song: Indicates the beginning of the song.

• Instrument: Specifies an instrument used in the song.

• Start-of-notes: Indicates the end of the instrument list and the beginning of the note

list. (This event splits the sequence into two parts: a list of instrument events followed

by a list of note events, making a trained autoregressive model readily applicable to

instrument-informed generation task; see Section 3.3.2.)
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Figure 3.1. An example of the proposed representation—(a) an example of the first eight beats of a
song in the orchestra dataset, shown as a multitrack piano roll, (b) the same song encoded by our
proposed representation, where the grayed out zeros denote undefined values and (c) a human-
readable translation of the codes shown in (b).

• Note: Specifies a note, whose onset, pitch, duration and instrument are defined by the

other five variables: Fbeat, Fposition, Fpitch, Fduration and Finstrument.

• End-of-song: Indicates the end of the song.

For any non-note-type event, the variables Fbeat, Fposition, Fpitch, Fduration, Finstrument are set to

zero, which is reserved for undefined values. Figure 3.1 shows an example of our proposed

representation.

Following (Huang and Yang, 2020), we decompose the note onset information into

beat and position information, where Fbeat denotes the index of the beat that the note lies in,

and Fposition the position of the note within that beat. To be specific, the actual onset of the note

is equivalent to @ · Fbeat + Fposition, where @ is the temporal resolution of a beat. For simplicity,

we assume that the beats are always a quarter note apart in this work. This decomposition

reduces the size of the vocabulary and helps the model learn the music meter system, as

evidenced by (Huang and Yang, 2020). For the duration field, following (Rütte et al., 2022), we

only allow a carefully-chosen set of common note duration values and replace any duration

outside of this set with the closest known duration. For the instrument field, we map similar

MIDI programs to the same instrument to reduce the total number of instruments, resulting

in 64 unique instruments from the 128 MIDI programs. For example, both ‘acoustic grand

piano’ and ‘bright acoustic piano’ are mapped to the same ‘piano’ instrument.

27



We note that the proposed representation leads to a significantly shorter sequence

length as compared to two existing representations (Ens and Pasquier, 2020; Rütte et al.,

2022) for multitrack music generation. On an orchestral dataset (Crestel et al., 2017), an

encoded sequence of length 1,024 using our propsoed representation can represent 2.6 and

3.5 times longer music samples compared to (Ens and Pasquier, 2020) and (Rütte et al., 2022),

respectively. Further, because the timing information is embedded into each note event, the

proposed representation is invariant to permutation, i.e., reordering the note events do not

affect the decoded music. For the sake of autoregressive training for the transformer model,

we sort the notes with respect to the beat field, and subsequently the position, pitch, duration,

instrument fields. This allows a trained autoregressive model to be readily applicable to the

song continuation task.

3.3.2 Model

We present the Multitrack Music Transformer (MMT) for generating multitrack music

using the representation proposed in Section 3.3.1. We base the proposed model on a

decoder-only transformer model (Liu et al., 2018b; Brown et al., 2020). Unlike a standard

transformer model, whose inputs and outputs are one-dimensional, the proposed model has

multi-dimensional input and output spaces similar to (Hsiao et al., 2021), as illustrated in

Figure 3.2. The model is trained to minimize the sum of the cross entropy losses of different

fields under an autoregressive setting. We adopt a learnable absolute positional embedding

(Vaswani et al., 2017). Once the training is done, the trained transformer model can be used

in three different modes, depending on the inputs given to the model to start the generation:

• Unconditioned generation: Only a ‘start-of-song’ event is provided to the model. The

model generates the instrument list and subsequently the note sequence.

• Instrument-informed generation: The model is given a ‘start-of-song’ event followed

by a sequence of instrument codes and a ‘start-of-notes’ event to start with. The model

then generates the note sequence. Note that we need the ‘start-of-notes’ event as it

marks the end of the instrument list, otherwise the model may continue to generate

instrument events.
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Figure 3.2. Illustration of the proposed MMT model.

• # -beat continuation: All instrument and note events in the first # beats are provided

to the model. The model then generates subsequent note events that continue the input

music.

During inference, the sampling process is stopped when an ‘end-of-song’ event is

generated or themaximum sequence length is reached. We adopt the top-9 sampling strategy

on each field and set 9 to 10% of the number of possible outcomes per field. Moreover, since

the type and beat fields in our representation are always sorted, we further enforce a

monotonic constraint during decoding. For example, when sampling for F
type
7+1 , we set the

probability of getting a value smaller than F
type
7

to zero. This prohibits the model from

generating events in certain invalid order, e.g., an ‘note’ event before an ‘instrument’ event.

Finally, while existing multitrack music generation systems (Ens and Pasquier, 2020;

Rütte et al., 2022) need to combine several generated tokens to form a note, the proposed

MMT model generates a note at each inference step, i.e., a line in Figure 3.1(b) and (c). This

offersMMT a significantly faster inference speed and smallermemory footprint thanks to the
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reduced size of the self-attention matrix. However, since MMT predicts the six output fields

nonautoregressively (i.e., independently), it cannot model the interdependencies between

these fields of the same note. Wewill discuss this trade-off between time/memory complexity

and modeling capacity in Section 3.4.2.

3.4 Results

3.4.1 Experiment Setup

In this work, we consider the Symbolic Orchestral Database (SOD) (Crestel et al.,

2017). We set the temporal resolution to 12 time steps per quarter note. We discard tempo

and velocity information as not all data contains such information. Further, we discard

all drum tracks. We end up with 5,743 songs (357 hours). We reserve 10% of the data for

validation and 10% for testing. We use MusPy (Dong et al., 2020) to process the data. For

the proposed MMT model, we use 6 transformer decoder blocks, with a model dimension

of 512 and 8 self-attention heads. All input embeddings have 512 dimensions. We trim the

code sequences to a maximum length of 1,024 and a maximum beat of 256. During training,

we augment the data by randomly shifting all the pitches by A ∼ * (−5, 6) (A ∈ Z) semitones

and randomly selecting a starting beat. We validate the model every 1K steps and stop

the training at 200K steps or when there was no improvements for 20 validation rounds.

We render all audio samples using FluidSynth with the MuseScore General SoundFont.

We encourage the readers to listen to the sample generated music for the unconditional

generation, instrument-informed generation and # -beat continuation tasks on our demo

website: https://salu133445.github.io/mmt/.

3.4.2 Subjective Listening Test

To assess the quality of music samples generated by our proposed model, we con-

ducted a listening test with 9 music amateurs recruited from our social networks, where

all survey participants can play at least one musical instrument. In the questionnaire, each

participant was asked to listen to 10 audio samples generated by each model and rate each

audio sample according to three criteria—coherence, richness and arrangement.1 We com-

1To be specific, we ask the following questions: coherence—“Is it temporally coherent? Is the rhythm steady?
Are there many out-of-context notes?”; richness—“Is it rich and diverse in musical textures? Are there any
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Table 3.2. Performance comparison of our proposedmodel against the baseline models. Mean values
and 95% confidence intervals are reported.

Number
of param-
eters

Average
sample
length (sec)

Inference
speed (notes
per second)

Subjective listening test results

Coherence Richness Arrangement Overall

MMM (Ens and
Pasquier, 2020)

19.81 M 38.69 5.66 3.48 ± 0.35 3.05 ± 0.38 3.28 ± 0.37 3.17 ± 0.43

REMI+ (Rütte et
al., 2022)

20.72 M 28.69 3.58 3.90 ± 0.52 3.74 ± 0.21 3.74 ± 0.44 3.77 ± 0.41

MMT (ours) 19.94 M 100.42 11.79 3.55 ± 0.46 3.53 ± 0.35 3.40 ± 0.44 3.33 ± 0.47

pared the MMT model against two baseline models based on the standard decoder-only

transformer model. The first baseline model used the MultiTrack representation proposed

in the MMMmodel (Ens and Pasquier, 2020), where we replaced the bar tokens with beat

tokens. The other used a simplified version of the REMI+ representation used in the FIGARO

model (Rütte et al., 2022), where we removed the time signature, tempo and chord tokens as

such information is not generally available in our datasets. We will refer to the two baseline

models as the MMM and REMI+ models. For a fair comparison, we trimmed all generated

samples to a maximum of 64 beats. Moreover, as discussed in Section 3.1, the long sequence

length of existing multitrack music representations restricts the model from learning long-

term dependencies. Hence, we also computed the mean length of the generated samples

and the inference speed in this experiment.

We summarize in Table 3.2 the evaluation results. Compared to the MMMmodel, our

proposed MMT model achieves a higher score across all criteria. Further, MMT generates

2.6 times longer samples and is twice faster in inference speed. As compared to the REMI+

model, our proposed model achieves a mean opinion score (MOS) of 3.33, while the REMI+

model achieves an MOS of 3.77. However, MMT can generate 3.5 times longer samples and

is 3.3 times faster in inference speed. This is because the baseline models need multiple

inference passes to combine several generated tokens and form a note, whereas the MMT

model generate a note in a single inference pass. Finally, we note that while offering a faster

inference speed and longer generated sample length, our proposed model cannot model

the interdependencies between the six output heads as it predicts each field independently.

repetitions and variations? Is it too boring?”; arrangement—“Are the instruments used reasonably? Are the
instruments arranged properly?”
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Table 3.3. Objective evaluation results. Mean values and 95% confidence intervals are reported. A
closer value to that of the ground truth is considered better.

Pitch class entropy
Scale consistency

(%)
Groove consistency

(%)

Ground truth 2.974 ± 0.018 92.26 ± 1.25 93.05 ± 1.00

MMM (Ens and Pasquier, 2020) 2.884 ± 0.023 93.13 ± 0.49 91.90 ± 0.64
REMI+ (Rütte et al., 2022) 2.897 ± 0.019 93.12 ± 0.51 92.90 ± 0.49
MMT (ours) 2.802 ± 0.025 94.74 ± 0.42 92.09 ± 0.49

For example, the REMI+ model first generates an instrument token and then generates

the pitch token given the instrument token, which allows the model to rule out unsuitable

pitches for that particular instrument. In contrast, theMMTmodel samples from each output

head independently. We can clearly observe this trade-off between quality and between

time/memory complexity can be clearly observed from Table 3.2.

3.4.3 Objective Evaluation

In addition the subjective listening test, we follow (Mogren, 2016; Wu and Yang, 2020)

andmeasure the pitch class entropy, scale consistency and groove consistency for evaluating

the performance of the proposed model on the unconditioned generation task. For these

metrics, we consider a closer value to that of the ground truth better. Table 3.3 shows the

evaluation results. We can see that the REMI+ model achieves closest values to those of the

ground truth. We also notice that while the MMMmodel result in closer values of pitch class

entropy and scale consistency to those of the ground truth, it achieves a lower score in the

subjective listening test presented in Section 3.4.2 than our proposed MMT model.

3.4.4 Musical Self-attention

Despite the growing interests in applying transformermodels tomusic, little effort has

been made to understand how self-attention works for symbolic music—existing analyses

(Huang et al., 2019; Huang et al., 2018; Chen and Su, 2021; Wang and Xia, 2021) provide

only case studies on few selected samples. In this section, we aim to investigate musical

self-attention in a systematic way. To this end, we propose two new quantities to measure

the average relative attention. Mathematically, given a test setD, we define themean relative

32



attention for a field 3 (e.g., pitch or beat) as:

W
(3 )
9

=

∑
x∈D

∑
A>B 0A,B (x) 1(

x (3)
B −x (3)

A

)
=9∑

9′
∑

x∈D
∑
A>B 0A,B (x) 1(

x (3)
B −x (3)

A

)
=9′

, (3.1)

where 1[·] is the indicator function and 0A,B (x) ∈ [0, 1] denotes the attention weight assigned

by xA to xB. Intuitively, W
(3 )
9

measures the average attention weight that model assigns to a

certain key of a certain difference from the query. Note that each attention head has its own

attention weight 0A,B and thus its own W9. Moreover, we notice that W (3 )
9

is biased towards

differences that occur more frequently. Thus we further propose themean relative attention

gain:

W̃
(3 )
9

= W
(3 )
9

−

∑
x∈D

∑
A>B 1

(
x (3)
B −x (3)

A

)
=9∑

9′
∑

x∈D
∑
A>B 1

(
x (3)
B −x (3)

A

)
=9′

, (3.2)

which measures the difference between W (3 )
9

and the same quantity obtained by assuming a

uniform attention matrix.

In this experiment, we compute W̃beat
9

, W̃
position
9

and W̃
pitch
9

on 100 test samples for the last

attention layer of a trained MMT model. As shown in Figure 3.3(a), we can see that the 2nd

and 6th attention heads attend more to nearby beats, while the other attention heads attend

to beats in further past. In addition, several attention heads assign relatively larger weights

to the beats that are 4# (i.e., 4, 8, 12, 16, etc.) beats away from the current one, as highlighted

by the ‘★’ symbols. From Figure 3.3(b) we observe that the model pays most attention to

notes that have the same position as the current note. That is, a note on beat attends more to

the last note on beat, and a note off beat attends more to the last note off beat. Figure 3.3(c)

shows that the model attends more to pitches within one octave above, and it pays more

attention to pitches that form a consonant interval with the current note, e.g., a 4th, a 5th

and an octave. We note that the learned self-attention generally comply with music theory

principles.

While recent advances in symbolic music generation has borrowed various tech-

niques from natural language modeling, music is fundamentally different from text in that

music has a underlying temporal axis embedded and contains strong recurrence patterns
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Figure 3.3. Mean relative attention gains (a) W̃beat
9

, (b) W̃
position
9

and (c) W̃
pitch
9

(see Section 3.4.4 for
definitions) of a trained MMT model. Red and blue colors indicate positive and negative values,
respectively.
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in many aspects. Our analysis here shows that our proposed model learns a relative self-

attention for certain aspects of music, specifically, beat, position and pitch. We hope our

analysis can shed light on further improvements in optimizing the self-attention mechanism

for symbolic music modeling.

3.5 Conclusion

We have presented the Multitrack Music Transformer for multitrack music genera-

tion. Built upon a new multitrack representation, our proposed model can generate longer

multitrack music in a faster inference speed than two existing approaches. We showed

in a subjective listening test that the proposed model perform reasonably well against the

two baseline models in terms of the quality of the generated music. Through a systematic

analysis, we showed that our proposed model learns relative self-attention in certain aspects

of music such as beats, positions and pitches. Our findings provide a novel foundation

for future work exploring longer-form, real-time capable multitrack music generation and

improving the self-attention mechanism for music.

∗ ∗ ∗

This chapter, in full, is a reprint of the material as it appears in “Multi-

track Music Transformer” by Hao-Wen Dong, Ke Chen, Shlomo Dubnov, Julian

McAuley and Taylor Berg-Kirkpatrick, which was published in the Proceedings

of the IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP) in 2023. The dissertation author was the primary investigator and

author of this paper.
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Chapter 4

Towards Automatic Instrumentation by
Learning to Separate Parts in Symbolic Multi-
track Music

Abstract

Modern keyboards allow amusician to playmultiple instruments at the

same time by assigning zones—fixed pitch ranges of the keyboard—to different

instruments. In this paper, we aim to further extend this idea and examine the

feasibility of automatic instrumentation—dynamically assigning instruments

to notes in solo music during performance. In addition to the online, real-time-

capable setting for performative use cases, automatic instrumentation can

also find applications in assistive composing tools in an offline setting. Due to

the lack of paired data of original solo music and their full arrangements, we

approach automatic instrumentation by learning to separate parts (e.g., voices,

instruments and tracks) from their mixture in symbolic multitrack music,

assuming that the mixture is to be played on a keyboard. We frame the

task of part separation as a sequential multi-class classification problem and

adopt machine learning to map sequences of notes into sequences of part

labels. To examine the effectiveness of our proposed models, we conduct a

comprehensive empirical evaluation over four diverse datasets of different

genres and ensembles—Bach chorales, string quartets, game music and pop

music. Our experiments show that the proposed models outperform various

baselines. We also demonstrate the potential for our proposed models to
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produce alternative convincing instrumentations for an existing arrangement

by separating its mixture into parts. All source code and audio samples can

be found at https://salu133445.github.io/arranger/.

4.1 Introduction

Music is an art of time and sound. It often contains complex textures and possibly

parts for multiple voices, instruments and tracks. While jointly following the global style

and flow of the song, each part possesses its own characteristics and can develop different

musical ideas independently. For example, in popmusic, guitar and piano tend to play chords

and might span across a large pitch range, while bass is usually monophonic and stays in

a lower range. While playing multiple instruments usually requires multiple performers,

keyboardists potentially have the ability to control many instruments at once. Modern

keyboards often offer the functionality of zoning, which allows a player to divide the pitch

range into zones and assign each zone to a certain instrument. However, zoning is not ideal

given its low flexibility that requires careful configuration and sometimes rearrangement of

the music, and incapability for handling certain genres of music that have close and possibly

overlapping harmony.

In this paper, we aim for the more ambitious goal of automatic instrumentation—a

process that we define as dynamically assigning instruments to notes in solo music. A real-

time, online automatic instrumentationmodel could allow amusician to have their keyboard

performance instantaneously and seamlessly performed by a different ensemble. In addition

to performative use cases, an offline automatic instrumentation model can also be useful

to assist composers in suggesting proper instrumentation or providing a starting point for

arranging a solo piece, especially for composers who have less experience arranging for a

particular ensemble.

Automatic instrumentation is challenging as it requires domain knowledge of each

target instrument, i.e., which pitches, rhythms, chords, and sequences thereof are playable,

and it is hard to specify such knowledge by some fixed set of rules. In view of recent

advances in machine learning, we propose to adopt a data-driven approach to this task.
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(Audio available.1)

Figure 4.1. Proposed pipeline. By downmixing a symbolic multitrack into a single-track mixture,
we acquire paired data of solo music and its instrumentation. We then use these paired data to
train a part separationmodel that aims to infer the part label (e.g., one out of the five instruments
in this example) for each single note in a mixture. Automatic instrumentation can subsequently
be accomplished by treating input from a keyboard player as a downmixed mixture (bottom) and
separating out the relevant parts (top). Themusic is visualized in the piano roll representation, where
the x- and y-axes represent time and pitch, respectively. Colors indicate the instruments.

However, it can be laborious to acquire paired data of original solo music and their full

arrangements. Given the abundance of multitrack music data, we approach automatic

instrumentation by learning to separate parts from their mixture in multitrack music, a

task we call part separation (see Figure 4.1). Assuming that the mixture is to be played

on a keyboard and the multitrack is the target arrangement that we want to generate by

an automatic instrumentation model, we thereby have paired data for solo music and full

arrangements.

We frame the new task of part separation as a sequential multi-class classification

problem that aims to map sequences of notes into sequences of part labels. We adopt

long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) and Transformer

(Hsiao et al., 2021) models for the task. We conduct an extensive empirical evaluation

showing the superiority of our proposed models to baselines for the related task of voice

separation as well as strategies found in commodity keyboards. To showcase the potential of

our proposed models, we also demonstrate their ability to produce alternative convincing

instrumentations for existing arrangements. Audio for all examples and more samples are
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available on the demo website.1 All source code can be found in the project repository.2

4.2 Prior Work

Voice separation is a related task to part separationwhich involves separating blended

scores into individual monophonic voices. While useful, voice separation is agnostic to con-

straints imposed by specific instruments—a composer using a voice separation algorithm

would have to manually align voices to appropriate instruments. Some prior work investi-

gates voice separation in small, carefully-annotated pop music datasets (Gray and Bunescu,

2016; Guiomard-Kagan et al., 2015). Some priorwork on voice separation allows synchronous

or overlapping notes in a voice (Kilian and Hoos, 2002; Cambouropoulos, 2006; Karydis et al.,

2007; Cambouropoulos, 2008). However, their results are only reported on small test sets

in certain genres. Others have adopted multilayer perceptrons (Gray and Bunescu, 2016;

Valk and Weyde, 2018) and convolutional neural networks (Gray and Bunescu, 2020) with

hand-crafted input features for voice separation. Another relevant work on hand detection

in piano music used LSTMs to separate notes played by right and left hands in piano MIDI

data (Hadjakos et al., 2019). To the best of our knowledge, no past work has examined the

task of part separation in a general setting for multiple music genres.

In addition to voice separation, prior work has explored automatic music arrange-

ment. The primary focus of prior work for automatic music arrangement has been on

reduction—mapping musical scores for large ensembles to parts playable by a single specific

instrument such as the piano (Chiu et al., 2009; Onuma and Hamanaka, 2010; Huang et al.,

2012; Nakamura and Sagayama, 2015; Takamori et al., 2017; Nakamura and Yoshii, 2018),

guitar (Tuohy and Potter, 2005; Hori et al., 2012; Hori et al., 2013) or bass (Abe et al., 2012).

This past work focuses on identifying the least important notes to delete so that the resultant

score is playable on a single instrument, whereas our work seeks to preserve the original

score in its entirety and satisfy playability for multiple instruments simultaneously. As

an exception, Crestel and Esling (Crestel and Esling, 2016) explore strategies for arranging

orchestral music from piano, though their approach does not guarantee that all notes in the

1https://salu133445.github.io/arranger/
2https://github.com/salu133445/arranger
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input piano map to parts in the output.

Music generation is another body of work that has used neural network sequential

models for processing symbolic music (Briot et al., 2017). Simon and Oore (Simon and

Oore, 2017) proposed a convenient approach for music generation which involved training

recurrent neural network language models on a language-like “event-based” representa-

tion of music. Subsequently, recent work has explored event-based representations using

Transformers (Huang et al., 2019; Payne, 2019; Donahue et al., 2019; Huang and Yang, 2020;

Ens and Pasquier, 2020; Hsiao et al., 2021; Muhamed et al., 2021). In this work, we explore a

more compact input representation of music that passes all of the information about a note

into the model at once, rather than spreading it out across several events. We also note that

Payne (Payne, 2019) generate music which contains parts for several instruments, but their

model cannot be directly used to perform part separation of existing musical material.

4.3 Problem Formulation

Mathematically, we consider a piece of music F as a sequence of notes (F1, . . . , F# ),

where # is the number of notes. Each note is represented by a tuple of time B7 and pitch

>7 , i.e., F7 = (B7 , >7). Alternatively, we could also include duration 37 as an input and have

F7 = (B7 , >7 , 37). Each note is associated with a label G7 ∈ {1, . . . ,  } that represents the part it

is in, where  is the number of parts. The goal of part separation is to learn the mapping

between notes and part labels. This formulation is rather flexible and has no assumptions

on whether a part is monophonic or not—it can be a voice, an instrument, a track, etc.

In terms of the context given for predicting the label of each note, we can categorize

part separation models into three classes: An independent model predicts the label for each

note independently, without any context. An online model predicts the label of the current

note F7 given only past information, i.e., notes (F1, . . . , F7−1), as context. An offline model

predicts the label of the current note F7 given past and future information, i.e., the full

sequence of (F1, . . . , F# ), as context. While independent and online models are preferable for

use cases that require real-time outputs, e.g., live performance. Moreover, the inability to

look into the future makes the real-time setting more challenging than the offline setting.

On the other hand, offline models can find applications in assisstive composing tools.
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4.4 Models

We consider the following input features for our models—(1) time: onset time, in

time step,3 (2) pitch: pitch as a MIDI note number, (3) duration: note length, in time step,

and (4) frequency: fundamental frequency of the pitch, in Hz, computed by the formula

5 = 440 · 2(>−69)/12. In addition, we also consider features that encode the metric time grid of

music similar to the Bar and Position events proposed in (Huang and Yang, 2020)—(5) beat:

onset time, in beat, and (6) position: position within a beat, in time step.

Moreover, to help the models better disambiguate parts, we also include two simple

hints—(7) entry hints: onset position for each instrument, encoded as a unit step function

centered at its onset time and all zero if the instrument is not used, and (8) pitch hints:

average pitch of each track. These hints allow the musician to use interactively to make the

instrumentation process more controllable. For example, entry hints can be used to control

the instruments available as they serve as switches for the instruments.

For the machine learning models, we consider the LSTM (Hochreiter and Schmid-

huber, 1997) and its bidirectional version (BiLSTM) (Schuster and Paliwal, 1997). We use a

three-layer stacked LSTM with 128 hidden units in each layer (64 hidden units per layer for

BiLSTM). We also consider two variants of Transformer (Vaswani et al., 2017)—one based on

the encoder (Transformer-Enc) and one based on the decoder (Transformer-Dec). They share

the same architecture that is composed of three Transformer blocks, each of which has 128

hidden units and 8 heads in self-attention computation and 256 hidden units in the internal

feedforward network. However, they have different attention masks: Transformer-Enc

uses only the padding mask, while Transformer-Dec uses both the padding mask and the

lookahead mask, which blocks its access to future information and makes it a online model.

In this paper, the LSTM and Transformer-Dec models are made online models, and the

BiLSTM and Transformer-Enc models are made offline models that take durations as inputs.

3Assuming that the music is in metrical timing, a time step is a factor of some musically-meaningful unit (e.g.,
a quarter note) and can be adjusted to match the desired temporal resolution.
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4.5 Baseline Models

In order to gain an insight into how the proposed models perform, we include two

heuristic algorithms and a voice separation model from the literature in our empirical study.

4.5.1 Zone-based algorithm

This algorithm simulates a common feature in modern keyboards where a player

can preassign a pitch range (i.e., the ‘zone’) for each instrument and notes will automatically

be assigned to the corresponding instrument as the player performs. This algorithm finds

the optimal zones for the whole training data and uses these optimal zones at test time. For

the oracle case, the optimal zones for each sample are computed and used at test time. We

note that the oracle case might not be easily achievable as it can be hard for a musician to

set the zones optimally beforehand, especially for improvisation.

4.5.2 Closest-pitch algorithm

The closest-pitch algorithm keeps track of the last active pitches >′
7
for each track 7.

For each incoming pitch >, it finds the pitch among the last active pitches that has the closest

pitch to > and assigns the upcoming note with the same label as the chosen pitch. This is a

casual model and it also relies on the onset hints. We can formulate this algorithm as follows.

For 7 = 1, . . . , # , we have

Ĝ7 =


G7 , if F7 is an onset

argmin
8∈{1,..., }

(>7 − >′8)
2 +"07 , otherwise

,

where >′
7
is the last active pitch of track 7 before time B and 07 indicates whether track 7 is

active, i.e., a concurrent note has not yet been released. We set " to a large positive number

when we assume each part is monophonic, which we will refer to as the ‘mono’ version of

this algorithm, otherwise set " = 0.
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Table 4.1. Statistics of the four datasets considered in this paper.

Dataset Hours Files Notes Parts Ensemble Most common label

Bach chorales
(Cuthbert and Ariza, 2010)

3.23 409 96.6K 4 soprano,
alto,
tenor,
bass

bass
(27.05%)

String quartets
(Thickstun et al., 2017)

6.31 57 226K 4 first violin,
second violin,
viola,
cello

first violin
(38.72%)

Game music
(Donahue et al., 2018)

45.05 4.61K 2.46M 3 pulse wave I,
pulse wave II,
triangle wave

pulse wave II
(39.35%)

Pop music
(Raffel, 2016)

1.02K 16.2K 63.6M 5 piano,
guitar,
bass,
strings,
brass

guitar
(42.50%)

4.5.3 Multilayer perceptron (MLP)

We adapt the voice separation model proposed in (Valk and Weyde, 2018) to the task

of part separation. This model uses multilayer perceptron (MLP) to predict the label for the

current note based on hand-crafted features that encodes its nearby context. We use entry

hints rather than predicting them by the proposed voice entry estimation heuristics. We

remove the ‘interval’ feature as there is no upper bound for the number of concurrent notes

and change the proximity function to L1 distance. The oracle case of this model replaces

error-prone prior predictions with ground truth history labels. In our implementation, we

use three fully-connected layers with 128 hidden units each.

4.6 Data

In order to examine the effectiveness of the proposed models, we consider four

datasets—(1) Bach chorales in Music21 (Cuthbert and Ariza, 2010), (2) string quartets in

MusicNet (Thickstun et al., 2017), (3) game music in Nintendo Entertainment System (NES)

Music Database (Donahue et al., 2018) and (4) pop music in Lakh MIDI Dataset (Raffel, 2016),

which are diverse in their genres, sizes and ensembles (see Table 4.1 for a comparison).
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As these datasets are noisy in different ways, we need to further clean the data. For

the game music dataset, we discard the percussive noise track in the original dataset as they

do not follow the standard 128-pitch system used in other tracks. For the pop music dataset,

we use a cleaned subset derived in (Dong et al., 2018a), which contains only pop songs. We

mapped the instruments to the five most common instrument families—piano, guitar, bass,

strings and brass. We follow the General MIDI 1 specification on the mapping from an

instrument to its instrument family. Instruments that fall outside of these five families are

discarded. We note that the lead melody track might occasionally be discarded during the

mapping process due to the high variance on instruments used for the melody track.

Moreover, we discard songs with only one active track as the task becomes trivial

in this case. We note that all Bach chorales, string quartets and most pop songs are in

metrical timing, where a time step corresponds to some fraction of a quarter note. Thus,

we downsample them into 24 time steps per quarter note, which can cover 32nd notes and

triplets. As songs in the game music dataset are in absolute time, we downsample them to a

temporal resolution equivalent to 24 time steps per quarter note in a tempo of 125 quarter

notes per minute (qpm).

Finally, we split each dataset into train–test–validation sets with a ratio of 8 : 1 : 1

except the gamemusic dataset, where we use the original splits provided with the NESMusic

Database. We use MusPy (Dong et al., 2020) and music21 (Cuthbert and Ariza, 2010) for

processing MIDI and MusicXML files.

4.7 Experiments

4.7.1 Implementation details

We use a batch size of 16, a sequence length of 500 for training and a maximum

sequence length of 2000 for validation and testing. We clip the time by 4096 time steps (i.e.,

roughly 170 quarter notes), the beat by 4096 beats, and durations by 192 time steps (i.e., 8

quarter notes). We randomly transpose the music by -5 to +6 semitones during training for

data augmentation. We use the cross entropy loss with the Adam optimizer with U = 0.001,

V1 = 0.9 and V2 = 0.999 (Kingma and Ba, 2015). We apply dropout (Srivastava et al., 2014) to
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Musical score

Ground truth

Online LSTM
prediction

Offline BiLSTM
prediction

(Audio available.1 Colors: soprano, alto, tenor, bass.)

Figure 4.2. Example of the Bach chorales dataset—Wer nur den lieben Gott läßt walten, BWV 434,
measures 1–5. The LSTMmodel makes two errors for the bass, as indicated by the arrow. The BiLSTM
model gives a perfect prediction.

prevent overfitting and layer normalization (Ba et al., 2016) to speed up the training. All

models are implemented in TensorFlow (Abadi et al., 2016) and experiments are run on

NVIDIA GeForce RTX 2070s.

4.7.2 Qualitative results and error analysis

We present in Figures 4.2 to 4.5 several examples in the four datasets. Some repre-

sentative cases include overlapping pitch ranges or chords for two polyphonic instruments

(see Figures 4.3 and 4.5), overlapping melodies and chords (see Figure 4.5) and a sequence

of short notes crossing a single long note (see Figure 4.4).

4.7.3 Quantitative results

We conduct an extensive empirical evaluation over different dataset and models

in different settings. We present the results in Table 4.2.4 First, we notice the improved

performance for the oracle cases on the MLP baseline. The large gap of performance is

possibly because it predicts each note independently and the errors can propagate over

time. This emphasizes the need to incorporate sequential models for this task. Moreover,

the BiLSTM model outperforms its LSTM counterpart for most cases. This is reasonable

4Due to high computation cost, we report the oracle cases for the zone-based algorithm and MLP model on a
subset of 100 test samples, and omit the oracle case of the zone-based algorithm for the pop music dataset.
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Musical score

Mixture (input)

Ground truth

Online LSTM
prediction

Offline BiLSTM
prediction

(Audio available.1 Colors: first violin, second violin, viola, cello.)

Figure 4.3. Hard excerpt in the string quartets dataset—Beethoven’s String Quartet No. 11 in F minor,
Op. 95,movement 1, measures 72–83. The tremolos of the first violin (measures 1–3 and 6–10), the
double stops for the second violin, viola and cello (measures 2–3) and the overlapping pitch ranges
(measures 2–5) together compose a complex texture. Both models fail to handle the violins and viola
properly, especially the second violin.

Ground truth

Online LSTM
prediction

Offline BiLSTM
prediction

(Audio available.1 Colors: pulse wave I, pulse wave II, triangle wave.)

Figure 4.4. Hard excerpt in the gamemusic dataset—Themeof Universe fromMiracle Ropit’s Adventure
in 2100. Both models perform poorly when there is a sequence of short notes crossing a single long
note.
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Ground truth

Online LSTM
prediction

Offline BiLSTM
prediction

(Audio available.1 Colors: piano, guitar, bass, strings, brass.)

Figure 4.5. Hard excerpt in the pop music dataset—Blame It On the Boogie by The Jacksons. The
BiLSTMmodel correctly identify and separate the overlapping guitar melody and piano chords, while
the LSTM model fails in this case.

as the BiLSTM model has access to the future information, which could, for example, help

identify the direction of an arpeggio. Further, the LSTM and BiLSTMmodels outperform their

Transformer counterparts—Transformer-Dec and Transformer-Enc, respectively—across

all settings. However, the Transformer models benefits from faster inference speed at test

time as compared to the LSTM models. Finally, we notice that the proposed models perform

relatively poorly on the string quartets and game music datasets, possibly because the two

violins in the string quartets dataset and the two pulse waves in the game music dataset are

sometimes used interchangeably. We examine the use of pitch hints to help the models in

the following section.

4.7.4 Effect of input features

In order to compare the effectiveness of different input features, we also report in

Table 4.3 the performance for the LSTM model with different input features. First of all,

pitch, note and beat embedding leads to improvements on all datasets, especially significant

on the string quartet (30% gain) and pop music (15% gain) datasets. Second, entry hints

improve the performance by 10% for the game music dataset, which is possibly because

it helps disambiguate the two interchangeable pulse wave tracks. Interestingly, they have

negative impacts on the Bach chorales and pop music datasets. Third, duration inputs are

always helpful and help achieve the highest accuracy on the Bach chorales and pop music
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Table 4.2. Comparison of our proposed models and baseline algorithms. Performance is measured
in accuracy (%).

Model Bach String Game Pop

Online models
Zone-based 73.14 58.85 43.67 57.07
MLP (Valk and Weyde, 2018) 81.63 29.85 43.08∗ 33.50∗

LSTM 93.02 67.43 50.22 74.14
Transformer-Dec 91.51 57.03 45.82 62.14

Zone-based (oracle) 78.33 66.89 79.54∗ †

MLP (Valk and Weyde, 2018) (oracle) 97.59 58.16 65.30 44.62

Offline models
BiLSTM 97.13 74.38 52.93 77.23
Transformer-Enc 96.81 58.86 49.14 66.57

Online models (+entry hints)
Closest-pitch 68.87 50.69 57.14 47.45
Closest-pitch (mono) 89.76 42.82 49.91 32.28
LSTM 92.70 62.64 62.11 74.19
Transformer-Dec 91.17 62.12 56.73 67.19

Offline models (+entry hints)
BiLSTM 97.39 71.51 64.79 75.59
Transformer-Enc 93.81 56.72 54.67 67.23
∗Reported on a subset of 100 test samples due to high computation cost.
†Omitted due to high computation cost.

Table 4.3. Effects of input features to the online LSTM model. Performance is measured in accuracy
(%). Abbreviations: ‘Emb’—pitch, beat and position embedding, ‘Dur’—duration, ‘EH’—entry hints,
‘PH’—pitch hints.

Emb Dur EH PH Bach String Game Pop

92.10 37.29 43.89 58.78
X 93.02 67.43 50.22 74.14
X X 96.17 66.96 51.38 78.17
X X 92.70 62.64 62.11 74.19
X X X 95.95 68.17 63.35 74.74
X X 92.87 70.20 67.45 75.89
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Table 4.4. Comparisons of time encoding and data augmentation strategies for the online LSTM
model. Performance is measured in accuracy (%).

Strategy Bach String Game Pop

Time encoding
Raw time 91.97 37.26 44.10 37.92
Raw beat and position 93.13 66.72 48.60 68.42
Time embedding 92.21 68.31 49.32 70.64
Beat and position emb. 93.02 67.43 50.22 74.14

Data augmentation
No augmentation 93.03 69.36 49.03 70.73
Light augmentation 92.85 68.66 46.38 71.10
Strong augmentation 93.02 67.43 50.22 74.14

datasets. For example, durations would be critical in distinguishing the overlapping guitar

melody and piano chords in the example shown in Figure 4.5. Last, pitch hints improve the

performance for all datasets but Bach chorales, possibly because the vocal ranges for SATB

are strict in chorales. Pitch hints help achieve the highest accuracies for the string quartets

and game music datasets as they help disambiguate interchangeable tracks.

4.7.5 Effects of time encoding

In this experiment, we examine the effects of time encoding. In particular, we consider

four variants—(1) raw time as a number, (2) raw beat and position as two numbers, (3) time

embedding and (4) beat and position embedding (see Section 4.4 for the definition of beat

and position). We report in Table 4.4 the results and we can see that using raw time gives the

worst performance. Interestingly, the other three encoding strategies achieve comparable

performance.

4.7.6 Effects of data augmentation

In this experiment, we compare the following three strategies of data augmentation—

(1) no augmentation, (2) light augmentation, where each song is randomly transposed by -1

to +1 semitone during training and (3) strong augmentation, where each song is randomly

transposed by -5 to +6 semitones during training. We report in Table 4.4 the results. We can

see that data augmentation is generally harmful for the Bach chorales and string quartets

datasets, possibly because classical music has strict rules on the pitch ranges of voices and
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(a)

(b)

(c)

(Audio available.1 Colors: piano, guitar, bass, strings, brass.)

Figure 4.6. Quando Quando Quando by Tony Renis—(a) original instrumentation and the versions
produced by (b) the online LSTM model without entry hints and (b) the offline BiLSTM model with
entry hints. The LSTMmodel assigns the chords to the guitar, the most common instrument in the
pop music dataset except the high pitches, which are assigned to the strings. The BiLSTM model is
able to separate the long chords from the short ones and assigns the former to the piano.

instruments. However, for game and pop music datasets, where rules on keys and pitch

ranges in classical music are loosened, the models yield better performance with proper

data augmentation.

4.8 Discussion

In Figure 4.6, we depict the original instrumentation of the song Quando Quando

Quando alongside the instrumentations generated by our best performing models for both

the online and offline settings. While neither model produces an instrumentation identical

to that of the original, both produce instrumentations that “cluster” notes similarly to the

original and are reasonable rearrangements of the song. This indicates a fundamental

ambiguity of the task, though we note that such ambiguity is less present in some genres

than others—our models are able to achieve high accuracy on the Bach chorales dataset

despite its small size. However, for larger and more diverse datasets (e.g., the pop music

dataset), accuracymight not be the best metric for measuring the performance of the models,

and we plan to include human evaluations in future work.

One limitation of this work lies in the generalizability to real keyboard music since

the downmixed music might not be playable on a keyboard, e.g., having more than ten

concurrent notes or impossible fingering. Moreover, we did not use the MIDI velocity

50



information in our models, and it could provide an additional signal for separation.

Finally, in addition to its immediate musical applications, we believe that our pro-

posed part separation task may be useful for large-scale pre-training of symbolic music

models. Pre-training music generation models on large, heterogeneous music corpora has

already been observed to improve performance (Donahue et al., 2019; Hung et al., 2019).

Given that our proposed task represents an additional source of musical knowledge supervi-

sion, we speculate that additionally pre-training on this task could improve performance for

many downstream tasks, e.g., genre classification and melody extraction.

4.9 Conclusion

In this paper, we have proposed a new task of part separation inmultitrackmusic and

examined its feasibility under both the online and offline settings. Through a comprehensive

empirical evaluation over four diverse datasets, we showed the effectiveness of our proposed

models against various baselines. We also presented promising results for applying part

separation models to automatic instrumentation. Moreover, we discussed the fundamental

ambiguity and limitations of the task and future research directions.

∗ ∗ ∗

This chapter, in full, is a reprint of the material as it appears in “Towards

Automatic Instrumentation by Learning to Separate Parts in SymbolicMultitrack

Music” by Hao-Wen Dong, Chris Donahue, Taylor Berg-Kirkpatrick and Julian

McAuley, which was published in the Proceedings of the International Society

for Music Information Retrieval Conference (ISMIR) in 2021. The dissertation

author was the primary investigator and author of this paper.
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Chapter 5

Deep Performer: Score-to-Audio Music Per-
formance Synthesis

Abstract

Music performance synthesis aims to synthesize a musical score into

a natural performance. In this paper, we borrow recent advances in text-to-

speech synthesis and present the Deep Performer—a novel system for score-

to-audio music performance synthesis. Unlike speech, music often contains

polyphony and long notes. Hence, we propose two new techniques for han-

dling polyphonic inputs and providing a fine-grained conditioning in a trans-

former encoder-decoder model. To train our proposed system, we present

a new violin dataset consisting of paired recordings and scores along with

estimated alignments between them. We show that our proposed model can

synthesize music with clear polyphony and harmonic structures. In a listening

test, we achieve competitive quality against the baseline model, a conditional

generative audio model, in terms of pitch accuracy, timbre and noise level.

Moreover, our proposed model significantly outperforms the baseline on an

existing piano dataset in overall quality.

5.1 Introduction

Music synthesis is a complex process that involves both the physics behind a musical

instrument and the art of music performance. It remains challenging for a machine to

synthesize a natural performance for several reasons. First, it requires a computational
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Figure 5.1. An overview of the proposed three-stage pipeline for score-to-audio music performance
synthesis.

model for interpreting and phrasing a musical score. Second, it requires either an explicit

or implicit model of the physics and acoustics by which a musical instrument sounds. Third,

it requires an understanding of different playing techniques and styles for a musical instru-

ment. While most existing systems only address one of these three challenges at a time, we

aim to tackle all these challenges with a data-driven approach using machine learning in

this work. We present the Deep Performer—a novel three-stage system for score-to-audio

music synthesis, as illustrated in Figure 5.1.

Prior work has studied music synthesis via various approaches. One line of research

focuses on generating realistic samples of musical notes (Engel et al., 2017; Défossez et al.,

2018; Engel et al., 2019), while in this work we aim to generate the full performance. Some

approach music synthesis by conditioning generative audio models with aligned piano rolls

(Manzelli et al., 2018; Hawthorne et al., 2019), which we will include as the baseline model

in our experiments. Others study synthesizing audio from the fundamental frequency (F0)

contour and loudness curve extracted from a recording (Engel et al., 2020; Hayes et al., 2021),

or from lyrics and demo singing audio (Ren et al., 2020). On the other hand, some use neural

networks to generate expressive timing and dynamics from raw scores (Oore et al., 2020).

Many have also studied inverting mel spectrograms back to waveforms (Shen et al., 2018;

Prenger et al., 2019; Kumar et al., 2019; Kong et al., 2020a), including Hifi-GAN (Kong et al.,

2020a), which we will use as the inversion model in our proposed system. To the best of our
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knowledge, prior work on deep neural network based music synthesis either requires an

input with expressive timing (Manzelli et al., 2018; Wang and Yang, 2019; Hawthorne et al.,

2019; Schimbinschi et al., 2019; Kim et al., 2019; Ren et al., 2020; Engel et al., 2020; Hayes

et al., 2021) or allows only monophonic (i.e., one pitch at a time) inputs (Ren et al., 2020;

Engel et al., 2020; Wu et al., 2022b). Our proposed system represents the first that allows

unaligned, polyphonic scores as inputs.

In light of the similarity between text-to-speech (TTS) and score-to-audio synthesis,

we borrow recent advances from TTS synthesis (Tan et al., 2021) to music synthesis and

propose a three-stage system for score-to-audiomusic synthesis. Despite the similarity, music

synthesis differs from speech synthesis in that music often contains polyphony, and that

long notes are common in music. In order to handle polyphonic music, we propose a new

polyphonic mixer for aligning the encoder and decoder in a transformer encoder-decoder

network (Vaswani et al., 2017; Wang et al., 2017). To provide a fine-grained conditioning

to the model, we propose a new note-wise positional encoding so that the model can learn

to behave differently at the beginning, middle and end of a note. Due to the lack of a

proper dataset for training a score-to-audio music synthesis model, we collect and release

a new dataset of 6.5 hours of high-quality violin recordings along with their scores and

estimated alignments. Through our experiments, we show the effectiveness of our proposed

system both qualitatively and quantitatively. Finally, we conduct a subjective listening test

to compare our proposed model against a baseline model that uses Hifi-GAN (Kong et al.,

2020a) to synthesize the waveform directly from an aligned piano roll. Audio samples can

be found on our project website.1

5.2 Methods

We illustrate in Figure 5.1 the proposed three-stage system for score-to-audio music

synthesis, which consists of the following three components: (1) an alignment model that

predicts the expressive timing for each note from a musical score, (2) a synthesis model that

synthesizes the mel spectrogram from the aligned score, and (3) an inversion model that

generates the audio waveform given the synthesized mel spectrogram.

1https://salu133445.github.io/deepperformer/
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5.2.1 Alignment model

The alignmentmodel consists of a transformer encoder that takes as inputs a sequence

of notes and the tempo, followed by a fully-connected layer that outputs the onset and

duration of each note. The input score uses metric time with a musically-meaningful unit,

e.g., quarter notes, while the output alignment is in the unit of frames. Each note is specified

by its pitch, onset, duration and (optional) velocity. In addition, we provide the performer

IDs so that the model can learn the different playing styles of performers. The alignment

model is trained to minimize the mean squared error (MSE) between the ground truth and

predicted onsets and durations, in frames.

5.2.2 Synthesis model

Given the similarity between TTS and score-to-audio synthesis, we propose a trans-

former encoder-decoder model for our synthesis model based on (Ren et al., 2019). In (Ren

et al., 2019), each text embedding produced by the encoder is expanded multiple times

according to its duration, and then the expanded text embeddings are concatenated to

obtain the frame embeddings to be fed to the decoder. This is called the state expansion

mechanism (Ren et al., 2019; Yu et al., 2020). However, unlike speech, music often contains

polyphony. In order to handle polyphonic inputs, we propose the polyphonic mixer. As

illustrated in Figure 5.2, the encoder first encodes the input notes into a sequence of note

embeddings. Then, the polyphonic mixer mixes the note embeddings into a sequence of

frame embeddings by summing up the note embeddings for the same frame according

to their onsets and durations. Finally, the decoder decodes the frame embeddings into a

sequence of mel spectrogram frames.

In the state expansion mechanism (Ren et al., 2019; Yu et al., 2020), the output vectors

remain constant for the duration of a note, and the positional information within each note

is missing. However, we argue that such note-wise positional information is critical for the

model to behave differently at the beginning, middle and end of a note. Hence, we propose

the note-wise positional encoding to provide a fine-grained conditioning to the decoder.

Mathematically, let > ∈ [0, 1] be the relative position within a note. For a note embedding

vnote, we have the corresponding frame embedding at position > as vframe = (1 + >w) � vnote,
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Figure 5.2. An illustration of the proposed synthesis model.
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where w is a learnable vector initialized to small random numbers so that vframe ≈ vnote

initially. The synthesis model is trained to minimize the MSE between the synthesized mel

spectrograms and the ground truth, in log scale.

5.2.3 Inversion model

Prior work has studied various approaches for synthesizing waveforms from mel

spectrograms (Shen et al., 2018; Prenger et al., 2019; Kumar et al., 2019; Kong et al., 2020a). In

this work, we adopt the state-of-the-art Hifi-GAN model (Kong et al., 2020a) as our inversion

model. We note that the proposed three-stage pipeline allows us to use different datasets for

training the models. For example, training the inversion model does not require aligned

data and thus it can be trained on a larger dataset as unaligned data are relatively easier to

acquire.

5.3 Data

Due to the lack of a dataset that provides paired audios and scoreswith fine alignments

for training our proposed system, we compile a new dataset of 6.5 hours of professional

violin recordings along with their scores and estimated alignments. For copyright concern,

we choose Bach’s sonatas and partitas for solo violin (BWV 1001–1006) for the ease to acquire

high-quality public recordings from the web. The dataset consists of performances by

17 violinists recorded in various recording setups. To acquire the alignment between a

recording and its score, we synthesize the scores using FluidSynth (FluidSynth n.d.), an

open-source software synthesizer, with MuseScore General SoundFont (MuseScore General

SoundFont n.d.) and perform dynamic time warping on the constant-Q spectrogram of the

synthesized audio and that of the recording. We present in Figure 5.3 an example of the

dataset and its estimated alignment. To facilitate future research on score-to-audio music

synthesis, we release the dataset and the source code for the alignment process to the public.2

As discussed in Section 5.2.3, the inversion model does not require aligned data for training,

and thuswe also collect an internal dataset of 156 hours of commercial recordings to train the

inversionmodel. Apart from violin, we also consider theMAESTRO dataset (Hawthorne et al.,

2https://salu133445.github.io/bach-violin-dataset/
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Figure 5.3. An example of the constant-Q spectrogram of the first 20 seconds of a violin recording
and the estimated onsets (white dots) and durations (green lines).

2019), which contains 200 hours of piano recordings with finely-aligned MIDI recordings

for 10 competition years of the International Piano-e-Competition (International Piano-e-

Competition n.d.). However, since it does not provide the raw scores, we can only train the

synthesis and inversion models on this dataset.

5.4 Experiments & Results

5.4.1 Implementation details

We use 3 transformer layers in the encoder for the alignment model. The synthesis

model shares the same encoder architecture as the alignment model and has 6 transformer

layers in the decoder. We use 128 dimensions for all embeddings. For the inversion model,

we use the same network architecture as the Hifi-GAN v2 model in (Kong et al., 2020a). We

use velocity information only for the piano dataset as it is only available in this dataset.

Since performer information is unavailable for the piano dataset, we use the competition

years as the performer IDs. We use a temporal resolution of 24 time steps per quarter note

for the scores. We downsample the audios to 16 kHz mono and use a hop size of 256 in

spectrogram computation, i.e., a temporal resolution of 16 ms. The audios are sliced into

5-second clips for training, where 10% of them are reserved for validation purpose. We use

the Adam optimizer (Kingma and Ba, 2015) with a batch size of 16. Unlike (Ren et al., 2019),

we train the alignment and synthesis models separately as we find that joint training hinders

convergence. We train the alignment model for 10K steps and all the synthesis models for

100K (violin) and 250K (piano) steps. For each dataset, the inversion model is trained for 1M

steps and shared by different synthesis models. We base our implementation on the code
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(a)

(b)

(c)

Figure 5.4. Examples of the alignments predicted by (a) the constant-tempo baseline model and (b)
Deep Performer, our proposed model. (c) shows the input score.

kindly released in (Chien et al., 2021; Kong et al., 2020a). We use pretty_midi (Raffel and Ellis,

2014) and MusPy (Dong et al., 2020) to process the scores.

5.4.2 Qualitative and quantitative results

We show in Figure 5.4 an example of the alignment predicted by our proposed

alignment model alongside that generated by assuming a constant tempo. We can see that

our proposed model is able to predict realistic timing and insert rests between notes. To

showcase the effectiveness of the proposed polyphonic mixer, we present in Figure 5.5

examples of the synthesized mel spectrograms for two polyphonic scores, where we can

observe clear harmonic structures and polyphony.

Next, we compare our proposed synthesis model against a baseline model that uses

a Hifi-GAN (Kong et al., 2020a) to synthesize the waveform directly from an aligned piano

roll. For a fair comparison, we condition this model with the performer IDs and provide a

position roll that encodes the note-wise position information. (A position roll is similar to

a piano roll, but the values decrease linearly from 1 to 0, from the beginning of a note to

its end.) As can be seen from Figure 5.6(a) and (b), our proposed model produces smoother

contours and clearer harmonic structures, especially on the high frequency end, while the

baseline model generates sharper yet noisier results. Table 5.1 shows the final MSE between

the synthesized mel spectrograms and the ground truths. We can see that our proposed

model achieves a lower MSE than the baseline model on both datasets. Finally, due to the

reduced temporal resolution of a mel spectrogram compared to that of a waveform, our
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(a)

(b)

(c)

(d)

Figure 5.5. Examples of the mel spectrograms, in log scale, synthesized by our proposed model for
(a) violin and (c) piano. (b) and (d) show the input scores for (a) and (c), respectively.

Table 5.1. Comparisons of the final MSE between the synthesized mel spectrograms and the ground
truths, in log scales.

Violin Piano

Hifi-GAN baseline 0.892 0.722
Deep Performer (ours) 0.700 0.436
- without note-wise positional encoding 0.700 0.433
- without performer embedding 1.030 0.523
- without encoder (using piano roll input) 0.844 0.621

proposed model is faster in training than the baseline model. Audio samples can be found

on our project website.1

5.4.3 Subjective listening test

To further evaluate our proposed system, we conduct a subjective listening test

with 15 participants recruited from our social networks, where 14 of them plays a musical

instrument. We randomly choose 5 musical scores from each dataset and synthesize them

with different models. The participants are instructed to rate the synthesized audios in a

5-point Likert scale in terms of pitch accuracy, timbre and noise level as well as the overall

quality. We report the results in Table 5.2. We can see that our proposed model significantly

outperforms the baseline model on the piano dataset and achieves comparable performance
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.6. Examples of the mel spectrograms, in log scale, synthesized by (a) the baseline model, (b)
our proposed synthesis model, and (d) our proposed synthesis model without the note-wise positional
encoding. (c) and (e) show the waveforms for (b) and (d), respectively. (f) shows the input score.

Table 5.2. Results of the subjective listening test. The mean opinion scores (MOS) and 95% confidence
intervals are reported.

Violin Piano

Pitch accuracy Timbre Noise level Overall Overall

Hifi-GAN baseline 4.02 ± 0.31 3.13 ± 0.26 2.51 ± 0.29 2.57 ± 0.22 1.49 ± 0.17
Deep Performer (ours) 4.22 ± 0.30 3.26 ± 0.30 2.67 ± 0.31 2.58 ± 0.21 2.17 ± 0.24
- without note-wise positional encoding 4.13 ± 0.29 3.24 ± 0.27 2.52 ± 0.29 2.61 ± 0.23 2.37 ± 0.23
- without performer embedding 3.05 ± 0.52 2.54 ± 0.42 2.04 ± 0.31 2.01 ± 0.25 2.26 ± 0.25
- without encoder (using piano roll input) 4.30 ± 0.36 2.91 ± 0.28 2.39 ± 0.28 2.22 ± 0.18 1.43 ± 0.16
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to the baseline on the violin dataset.

5.4.4 Ablation study

To measure the contributions of different components of the proposed model, we

consider three ablated versions of our model. The first removes the note-wise positional

encoding. The second removes the performer embedding. The third removes the encoder

and uses piano rolls and position rolls (see Section 5.4.2) as the inputs to the decoder, while

keeping the performer embedding. As we can see from Figure 5.6(b)–(e), note-wise positional

encoding help the model produce clearer note transitions and a more realistic waveform

envelope (see the highlighted regions). We also report in Tables 5.1 and 5.2 the results for

these ablated models. We can see that the performer embedding significantly improves the

quality across all criteria. While we show above the effectiveness of the note-wise positional

encoding, its impact does not reach statistical significance in our subjective listening test,

possibly overshadowed by the artifacts produced by the models. Finally, including an

encoder network improves the quality significantly, suggesting that the encoder can learn a

more effective representation of the score as compared to the piano roll representation.

5.5 Conclusion

We presented a novel three-stage system for synthesizing natural music performance

from unaligned musical scores. We proposed the polyphonic mixer for aligning the encoder

and decoder with polyphonic inputs. In addition, we also proposed the note-wise positional

encoding for providing a fined-grained conditioning to the synthesis model. Through the

subjective listening test, we show that our proposed model significantly outperforms the

baseline model on the piano dataset and achieves competitive quality against the baseline on

the violin dataset. For future work, we plan to utilize the articulation marks and ornaments

on scores to better model playing techniques (Yang et al., 2016; Shih et al., 2017), disentangle

the timbre from roomacoustics to enhance controllability (Engel et al., 2020), and incorporate

adversarial losses (Isola et al., 2017; Yang et al., 2021) to improve the sharpness of the results.

∗ ∗ ∗

62



This chapter, in full, is a reprint of the material as it appears in “Deep

Performer: Score-to-Audio Music Performance Synthesis” by Hao-Wen Dong,

Cong Zhou, Taylor Berg-Kirkpatrick and Julian McAuley, which was published in

the Proceedings of the IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP) in 2022. The dissertation author was the primary

investigator and author of this paper.
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Appendices

5.A Preprocessing details

We downmix the recordings to mono and downsample them to 16 kHz using FFm-

peg. We then convert them into mel spectrograms using librosa. For the mel spectrogram

computation, we use a filter length of 1024, a hop length of 256 and a window size of 1024 in

the short-time Fourier transform (STFT), and we use 80 mel bands in mel scale conversion.

We summarize these parameters in Table 5.3.

Table 5.3. Preprocessing parameters

Parameter Value

Audio channels mono
Sampling rate 16 kHz
STFT filter length 1024
STFT hop length 256
STFT window size 1024
Mel bands 80

5.B Network architectures

5.B.1 Alignment model

We illustrate the proposed alignment model in Figure 5.7. We use 128 dimensions for

all embeddings. For the transformer encoder, we use 3 transformer layers, each consisting

of a multi-head attention (MHA) and a position-wise feed-forward network (FFN) sub-layer.

We use 64 hidden neurons and 2 attention heads for each MHA layer. For each FFN layer,

we use 256 hidden neurons with kernel sizes of 9 and 1 for the two convolutional layers.

Further, we use a maximum sequence length of 1000 and clip the time and duration to 96.

We summarize these hyperparameters in Table 5.4.

5.B.2 Synthesis model

For the synthesis model, we use 128 dimensions for all embeddings. For the trans-

former model, we use 3 and 6 transformer layers for the encoder and decoder, respectively.

We use 128 hidden neurons and 2 attention heads for each MHA layer. For each FFN layer,
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Figure 5.7. An illustration of the proposed alignment model.

Table 5.4. Alignment model architecture

Parameter Value

Encoder layers 3
MHA heads 2
MHA hidden neurons 64
FFN hidden neurons 256
FFN kernel sizes 9, 1
Max sequence length 1000
Max time 96
Max duration 96
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we use 256 hidden neurons with kernel sizes of 9 and 1 for the two convolutional layers. In

addition, we use a maximum sequence length of 1000. We also clip the time and duration to

96 and 100 for the violin and piano datasets, respectively. We summarize these hyperpa-

rameters in Table 5.5. We base our implementation on the source code kindly provided in

(Chien et al., 2021).3

Table 5.5. Synthesis model architecture

Parameter Value

Encoder layers 3
Decoder layers 6
MHA heads 2
MHA hidden neurons 128
FFN hidden neurons 512
FFN kernel sizes 9, 1
Max sequence length 1000
Max time 96∗

Max duration 96∗

∗100 for the piano dataset

5.B.3 Inversion model

For the inversion model, we use the network architecture of the Hifi-GAN v2 model

proposed in (Kong et al., 2020a). We base our implementation on the source code kindly

provided in (Kong et al., 2020a).4

5.B.4 Baseline model

We base the baseline model on the same Hifi-GAN v2 model (Kong et al., 2020a). In

addition, we include an additional linear layer that maps the input piano roll to a hidden

vector whose dimension matches the input dimension of the Hifi-GAN v2 model. Further,

we include an additional embedding layer to condition the baseline model on the input

performer IDs. The outputs of these two layers are summed up and fed as the input to the

Hifi-GAN v2 model.

3https://github.com/ming024/FastSpeech2
4https://github.com/jik876/hifi-gan
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5.C Training details

We use a batch size of 16 and apply a dropout rate of 0.2 after each sub-layer. We

use the same optimizer settings as the original implementation of transformer (Vaswani

et al., 2017). For the alignment model, we apply the learning rate annealing schedule used

in (Chien et al., 2021). We summarize these hyperparameters in Table 5.6. Unlike (Ren et al.,

2019), we train the alignment and synthesis models separately as we find that joint training

hinders convergence. For the violin dataset, we train the alignment, synthesis and inversion

models for 10K, 100K and 1M steps, respectively. For the piano dataset, we train the synthesis

and inversion models for 250K and 1M steps, respectively. For each dataset, the inversion

model is trained once and used with different synthesis models.

Table 5.6. Training hyperparameters

Parameter Value

Batch size 16
Dropout 0.2
Adam optimizer V1 0.9
Adam optimizer V2 0.98
Adam optimizer n 10−9
Gradient clipping threshold 1.0
Warm up steps (alignment model) 1000
Warm up steps (synthesis model) 4000
Learning rate annealing steps∗ 10K, 20K, 50K
Learning rate annealing rate∗ 0.5
∗Applied to the alignment model only
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Chapter 6

CLIPSep: Learning Text-queried Sound Sepa-
ration with Noisy Unlabeled Videos

Abstract

Recent years have seen progress beyond domain-specific sound sepa-

ration for speech or music towards universal sound separation for arbitrary

sounds. Prior work on universal sound separation has investigated separating

a target sound out of an audio mixture given a text query. Such text-queried

sound separation systems provide a natural and scalable interface for speci-

fying arbitrary target sounds. However, supervised text-queried sound sepa-

ration systems require costly labeled audio-text pairs for training. Moreover,

the audio provided in existing datasets is often recorded in a controlled envi-

ronment, causing a considerable generalization gap to noisy audio in the wild.

In this work, we aim to approach text-queried universal sound separation

by using only unlabeled data. We propose to leverage the visual modality as

a bridge to learn the desired audio-textual correspondence. The proposed

CLIPSep model first encodes the input query into a query vector using the

contrastive language-image pretraining (CLIP) model, and the query vector is

then used to condition an audio separation model to separate out the target

sound. While the model is trained on image-audio pairs extracted from unla-

beled videos, at test time we can instead query the model with text inputs in a

zero-shot setting, thanks to the joint language-image embedding learned by

the CLIP model. Further, videos in the wild often contain off-screen sounds
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and background noise that may hinder the model from learning the desired

audio-textual correspondence. To address this problem, we further propose

an approach called noise invariant training for training a query-based sound

separation model on noisy data. Experimental results show that the proposed

models successfully learn text-queried universal sound separation using only

noisy unlabeled videos, even achieving competitive performance against a

supervised model in some settings.

6.1 Introduction

Humans can focus on to a specific sound in the environment and describe it using

language. Such abilities are learned using multiple modalities—auditory for selective listen-

ing, vision for learning the concepts of sounding objects, and language for describing the

objects or scenes for communication. In machine listening, selective listening is often cast

as the problem of sound separation, which aims to separate sound sources from an audio

mixture (Cherry, 1953; Bach and Jordan, 2005). While text queries offer a natural interface

for humans to specify the target sound to separate from a mixture (Liu et al., 2022; Kilgour

et al., 2022), training a text-queried sound separationmodel in a supervisedmanner requires

labeled audio-text paired data of single-source recordings of a vast number of sound types,

which can be costly to acquire. Moreover, such isolated sounds are often recorded in con-

trolled environments and have a considerable domain gap to recordings in the wild, which

usually contain arbitrary noise and reverberations. In contrast, humans often leverage

the visual modality to assist learning the sounds of various objects (Baillargeon, 2002). For

instance, by observing a dog barking, a human can associate the sound with the dog, and

can separately learn that the animal is called a “dog.” Further, such learning is possible even

if the sound is observed in a noisy environment, e.g., when a car is passing by or someone

is talking nearby, where humans can still associate the barking sound solely with the dog.

Prior work in psychophysics also suggests the intertwined cognition of vision and hearing

(Sekuler et al., 1997; Shimojo and Shams, 2001; Rahne et al., 2007).

Motivated by this observation, we aim to tackle text-queried sound separation using
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Figure 6.1. An illustration of modality transfer.

only unlabeled videos in the wild. We propose a text-queried sound separation model called

CLIPSep that leverages abundant unlabeled video data resources by utilizing the contrastive

image-language pretraining (CLIP) (Radford et al., 2021) model to bridge the audio and

text modalities. As illustrated in Figure 6.1, during training, the image feature extracted

from a video frame by the CLIP-image encoder is used to condition a sound separation

model, and the model is trained to separate the sound that corresponds to the image query

in a self-supervised setting. Thanks to the properties of the CLIP model, which projects

corresponding text and images to close embeddings, at test time we instead use the text

feature obtained by the CLIP-text encoder from a text query in a zero-shot setting.

However, such zero-shot modality transfer can be challenging when we use videos

in the wild for training as they often contain off-screen sounds and voice overs that can

lead to undesired audio-visual associations. To address this problem, we propose the noise

invariant training (NIT), where query-based separation heads and permutation invariant

separation heads jointly estimate the noisy target sounds. We validate in our experiments

that the proposed noise invariant training reduces the zero-shot modality transfer gap when

the model is trained on a noisy dataset, sometimes achieving competitive results against a

fully supervised text-queried sound separation system.

Our contributions can be summarized as follows: 1) We propose the first text-queried

universal sound separation model that can be trained on unlabeled videos. 2) We propose a

new approach called noise invariant training for training a query-based sound separation
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model on noisy data in the wild. Audio samples can be found on an our demo website.1 For

reproducibility, all source code, hyperparameters and pretrained models are available at:

https://github.com/sony/CLIPSep.

6.2 Related Work

Universal sound separation. Much prior work on sound separation focuses on

separating sounds for a specific domain such as speech (Wang and Chen, 2018) or music

(Takahashi and Mitsufuji, 2021; Mitsufuji et al., 2021). Recent advances in domain specific

sound separation lead several attempts to generalize to arbitrary sound classes. Kavalerov

et al. (2019) reported successful results on separating arbitrary sounds with a fixed number

of sources by adopting the permutation invariant training (PIT) (Yu et al., 2017), which was

originally proposed for speech separation. While this approach does not require labeled

data for training, a post-selection process is required as we cannot not tell what sounds are

included in each separated result. Follow-up work (Ochiai et al., 2020; Kong et al., 2020b)

addressed this issue by conditioning the separation model with a class label to specify the

target sound in a supervised setting. However, these approaches still require labeled data

for training, and the interface for selecting the target class becomes cumbersome when

we need a large number of classes to handle open-domain data. Wisdom et al. (2020) later

proposed an unsupervised method called mixture invariant training (MixIT) for learning

sound separation on noisy data. MixIT is designed to separate all sources at a time and also

requires a post-selection process such as using a pre-trained sound classifier (Scott et al.,

2021), which requires labeled data for training, to identify the target sounds. We summarize

and compare related work in Table 6.1.

Query-based sound separation. Visual information has been used for selecting

the target sound in speech (Ephrat et al., 2019; Afouras et al., 2020), music (Zhao et al., 2018;

Zhao et al., 2019; Tian et al., 2021) and universal sounds (Owens and Efros, 2018; Gao et al.,

2018; Rouditchenko et al., 2019). While many image-queried sound separation approaches

require clean video data that contains isolated sources, Tzinis et al. (2021) introduced an

unsupervised method called AudioScope for separating on-screen sounds using noisy videos

1https://sony.github.io/CLIPSep/
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Table 6.1. Comparisons of related work in sound separation. ‘(X)’ indicates that the problem of
noisy training data is partially addressed. CLIPSep-NIT denotes the proposed CLIPSep model trained
with the noise invariant training. To the best of our knowledge, no previous work has attempted the
problem of label-free text-queried sound separation.

Method Query type Unlabeled data Noisy data

USS (Kavalerov et al., 2019) × X
MixIT (Wisdom et al., 2020) × X X

Universal Sound Selector (Ochiai et al., 2020) Label
USS-Label (Kong et al., 2020b) Label (X)

PixelPlayer (Zhao et al., 2018) Image X (X)
AudioScope (Tzinis et al., 2021) Image X X
SoundFilter (Gfeller et al., 2021) Audio X
Zero-shot audio separation (Chen et al., 2022) Audio (X)
Text-Queried (Liu et al., 2022) Text
Text/Audio-Queried (Kilgour et al., 2022) Text / Audio

CLIPSep (ours) Text / Image X
CLIPSep-NIT (ours) Text / Image X X

based on theMixITmodel. While image queries can serve as a natural interface for specifying

the target sound in certain use cases, images of target sounds become unavailable in low-light

conditions and for sounds from out-of-screen objects.

Another line of research uses the audio modality to query acoustically similar sounds.

Chen et al. (2022) showed that such approach can generalize to unseen sounds. Later, Gfeller

et al. (2021) cropped two disjoint segments from single recording and used them as a query-

target pair to train a sound separation model, assuming both segments contain the same

sound source. However, in many cases, it is impractical to prepare a reference audio sample

for the desired sound as the query.

Most recently, text-queried sound separation has been studied as it provides a natural

and scalable interface for specifying arbitrary target sounds as compared to systems that use

a fixed set of class labels. Liu et al. (2022) employed a pretrained language model to encode

the text query, and condition the model to separate the corresponding sounds. Kilgour

et al. (2022) proposed a model that accepts audio or text queries in a hybrid manner. These

approaches, however, require labeled text-audio paired data for training. Different from

prior work, our goal is to learn text-queried sound separation for arbitrary sound without

labeled data, specifically using unlabeled noisy videos in the wild.
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Contrastive language-image-audio pretraining. The CLIP model (Radford et al.,

2021) has been used as a pretraining of joint embedding spaces among text, image and audio

modalities for downstream tasks such as audio classification (Wu et al., 2022a; Guzhov et al.,

2022) and sound guided image manipulation (Lee et al., 2022). Pretraining is done either in a

supervised manner using labels (Guzhov et al., 2022; Lee et al., 2022) or in a self-supervised

manner by training an additional audio encoder to map input audio to the pretrained CLIP

embedding space (Wu et al., 2022a). In contrast, we explore the zero-shot modality transfer

capability of the CLIP model by freezing the pre-trained CLIP model and directly optimizing

the rest of the model for the target sound separation task.

6.3 Method

6.3.1 CLIPSep—Learning text-queried sound separation without labeled data

In this section, we propose the CLIPSep model for text-queried sound separation

without using labeled data. We base the CLIPSep model on Sound-of-Pixels (SOP) (Zhao

et al., 2018) and replace the video analysis network of the SOP model. As illustrated in

Figure 6.2, during training, the model takes as inputs an audio mixture x =
∑<
7=1 s7 , where

s1, . . . , s< are the < audio tracks, along with their corresponding images y1, . . . , y< extracted

from the videos. We first transform the audio mixture x into a magnitude spectrogram -

and pass the spectrogram through an audio U-Net (Ronneberger et al., 2015; Jansson et al.,

2017) to produce 9 (≥ <) intermediate masks "̃1, . . . , "̃9. On the other stream, each image

is encoded by the pretrained CLIP model (Radford et al., 2021) into an embedding e7 ∈ R512.

The CLIP embedding e7 will further be projected to a query vector q7 ∈ R9 by a projection

layer, which is expected to extract only audio-relevant information from e7 .2 Finally, the

query vector q7 will be used to mix the intermediate masks into the final predicted masks

"̂7 =
∑9
8=1 f

(
E7 8?7 8"̃ 8 + 17

)
, where w7 ∈ R9 is a learnable scale vector, 17 ∈ R a learnable bias,

and f(·) the sigmoid function. Now, suppose "7 is the ground truth mask for source s7 . The

training objective of the model is the sum of the weighted binary cross entropy losses for

2We extract three frames with 1-sec intervals and compute their mean CLIP embedding as the input to the
projection layer to reduce the negative effects when the selected frame does not contain the objects of interest.
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Figure 6.2. An illustration of the proposed CLIPSep model for < = 2. During training, we mix audio
from two videos and train the model to separate each audio source given the corresponding video
frame as the query. At test time, we instead use a text query in the form of “a photo of [user input
query]” to query the sound separation model. Thanks to the properties of the pretrained CLIP model,
the query vectors we obtain for the image and text queries are expected to be close.

each source:

LCLIPSep =

<∑
7=1

WBCE("7 , "̂7) =
<∑
7=1

- �
(
−"7 log "̂7 − (1 −"7) log

(
1 − "̂7

) )
. (6.1)

At test time, thanks to the joint image-text embedding offered by the CLIP model, we feed a

text query instead of an image to the query model to obtain the query vector and separate

the target sounds accordingly (see Section 6.A for an illustration). As suggested by Radford

et al. (2021), we prefix the text query into the form of “a photo of [user input query]” to reduce

the generalization gap.3
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Figure 6.3. An illustration of the proposed CLIPSep-NIT model for < = 2. Similar to CLIPSep, we train
the model to separate each audio source given the corresponding query image during training and
switch to using a text query at test time. The two predicted noise masks are interchangeable for loss
computation during training, and they are discarded at test time (grayed out paths).

6.3.2 Noise invariant training—Handling noisy data in the wild

While the CLIPSep model can separate sounds given image or text queries, it assumes

that the sources are clean and contain few query-irrelevant sounds. However, this assump-

tion does not hold for videos in the wild as many of them contain out-of-screen sounds and

various background noises. Inspired by the mixture invariant training (MixIT) proposed

by Wisdom et al. (2020), we further propose the noise invariant training (NIT) to tackle the

challenge of training with noisy data. As illustrated in Figure 6.3, we introduce < additional

permutation invariant heads called noise heads to the CLIPSep model, where the masks

predicted by these heads are interchangeable during loss computation. Specifically, we

introduce < additional projection layers, and each of them takes as input the sum of all query

vectors produced by the query heads (i.e.,
∑<
7=1 q7) and produce a vector that is later used to

mix the intermediate masks into the predicted noise mask. In principle, the query masks

produced by the query vectors are expected to extract query-relevant sounds due to their

stronger correlations to their corresponding queries, while the interchangeable noise masks

should ‘soak up’ other sounds. Mathematically, let "
&
1 , . . . , "

&
< be the predicted query masks

3Similar to how we prepare the image queries, we create four queries from the input text query using four
query templates (see Section 6.B) and take their mean CLIP embedding as the input to the projection layer.
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and "#
1 , . . . , "

#
< be the predicted noise masks. Then, the noise invariant loss is defined as:

LNIT = min
( 81,..., 8< ) ∈Σ<

<∑
7=1

WBCE
(
"7 ,min

(
1, "̂&

7
+ "̂#

87

) )
, (6.2)

where Σ< denotes the set of all permutations of {1, . . . , <}.4 Take < = 2 for example.5 We

consider the two possible ways for combining the query heads and the noise heads:

(Arrangement 1) "̂1 = min
(
1, "̂&

1 + "̂#
1
)
, "̂2 = min

(
1, "̂&

2 + "̂#
2
)
, (6.3)

(Arrangement 2) "̂ ′
1 = min

(
1, "̂&

1 + "̂#
2
)
, "̂ ′

2 = min
(
1, "̂&

2 + "̂#
1
)
. (6.4)

Then, the noise invariant loss is defined as the smallest loss achievable:

L (2)
NIT = min

(
WBCE

(
"1, "̂1

)
+WBCE

(
"2, "̂2

)
,WBCE

(
"1, "̂

′
1
)
+WBCE

(
"2, "̂

′
2
) )
. (6.5)

Once the model is trained, we discard the noise heads and use only the query heads for

inference (see Section 6.A for an illustration). Unlike the MixIT model (Wisdom et al., 2020),

our proposed noise invariant training still allows us to specify the target sound by an input

query, and it does not require any post-selection process as we only use the query heads

during inference.

In practice, we find that the model tends to assign part of the target sounds to the

noise heads as these heads can freely enjoy the optimal permutation to minimize the loss.

Hence, we further introduce a regularization term to penalize producing high activations

on the noise masks:

LREG = max
(
0,

<∑
7=1

mean
(
"̂#
7

)
− W

)
, (6.6)

where W ∈ [0, <] is a hyperparameter that we will refer to as the noise regularization level.

The proposed regularization has no effect when the sum of the means of all the noise masks

4We note that CLIPSep-NIT considers 2< sources in total as the model has < queried heads and < noise heads.
While PIT (Yu et al., 2017) and MixIT (Wisdom et al., 2020) respectively require O((2<)!) and O(22<) search to
consider 2< sources, the proposed NIT only requires O(<!) permutation in the loss computation.

5Since our goal is not to further separate the noise into individual sources but to separate the sounds that
correspond to the query, <may not need to be large. In practice, we find that the CLIPSep-NIT model with < = 2
already learns to handle the noise properly and can successfully transfer to the text-queried mode. Thus, we
use < = 2 throughout this paper and leave the testing on larger < as future work.

76



Table 6.2. Results on the MUSIC dataset. Standard errors are reported in the mean SDR column. Bold
values indicate the largest SDR achieved per group.

Model
Unlabeled

data
Post-proc.

free

Query type SDR [dB]

Training Test Mean Median

Mixture - - - - 0.00 ± 0.89 0.00

Text-queried models
CLIPSep X X Image Text 5.49 ± 0.72 4.97

CLIPSep-Text X Text Text 7.91 ± 0.81 7.46
CLIPSep-Hybrid X Text + Image Text 8.36 ± 0.83 8.72

Image-queried models
SOP (Zhao et al., 2018) X X Image Image 6.59 ± 0.85 6.22
CLIPSep X X Image Image 7.03 ± 0.70 5.85

CLIPSep-Text X Text Image 6.25 ± 0.72 6.19
CLIPSep-Hybrid X Text + Image Image 8.06 ± 0.79 8.01

Nonqueried models
LabelSep X Label Label 8.18 ± 0.80 7.82
PIT (Yu et al., 2017) X × × 8.68 ± 0.76 7.67

is lower than a predefined threshold W, while having a linearly growing penalty when the

sum is higher than W. Finally, the training objective of the CLIPSep-NIT model is a weighted

sum of the noise invariant loss and regularization term: LCLIPSep-NIT = LNIT + _LREG, where

_ ∈ R is a weight hyperparameter. We set _ = 0.1 for all experiments, which we find work

well across different settings.

6.4 Experiments

Webase our implementations on the code provided by Zhao et al. (2018) (https://github.

com/hangzhaomit/Sound-of-Pixels). Implementation details can be found in Section 6.C.

6.4.1 Experiments on clean data

We first evaluate the proposed CLIPSep model without the noise invariant training

on musical instrument sound separation task using the MUSIC dataset, as done in (Zhao

et al., 2018). This experiment is designed to focus on evaluating the quality of the learned

query vectors and the zero-shot modality transferability of the CLIPSep model on a small,

clean dataset rather than showing its ability to separate arbitrary sounds. The MUSIC dataset

is a collection of 536 video recordings of people playing a musical instrument out of 11
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Figure 6.4. Mean SDR and standard errors of the models trained and tested on different modalities.

instrument classes. Since no existing work has trained a text-queried sound separation

model using only unlabeled data to our knowledge, we compare the proposed CLIPSepmodel

with two baselines that serve as upper bounds—the PITmodel (Yu et al., 2017, see Section 6.D

for an illustration) and a version of the CLIPSep model where the query model is replaced

by learnable embeddings for the labels, which we will refer to as the LabelSep model. In

addition, we also include the SOP model (Zhao et al., 2018) to investigate the quality of the

query vectors as the CLIPSep and SOP models share the same network architecture except

the query model.

We report the results in Table 6.2. Our proposed CLIPSep model achieves a mean

signal-to-distortion ratio (SDR) (Vincent et al., 2006) of 5.49 dB and a median SDR of 4.97 dB

using text queries in a zero-shot modality transfer setting. When using image queries, the

performance of the CLIPSep model is comparable to that of the SOP model. This indicates

that the CLIP embeddings are as informative as those produced by the SOP model. The

performance difference between the CLIPSepmodel using text and image queries at test time

indicates the zero-shot modality transfer gap. We observe 1.54 dB and 0.88 dB differences on

themean andmedian SDRs, respectively. Moreover, we also report in Table 6.2 and Figure 6.4

the performance of the CLIPSep models trained on different modalities to investigate their

modality transferability in different settings. We notice that when we train the CLIPSep

model using text queries, dubbed as CLIPSep-Text, the mean SDR using text queries increases

to 7.91 dB. However, when we test this model using image queries, we observe a 1.66 dB

difference on the mean SDR as compared to that using text queries, which is close to the
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Table 6.3. Results of the MUSIC+ and VGGSound-Clean+ evaluations (see Section 6.4.2). Standard
errors are reported in the mean SDR [dB] columns. Bold values indicate the largest SDR achieved per
group. We use W = 0.25 for CLIPSep-NIT. Note that the LabelSep model does not work on the MUSIC
dataset due to the different label taxonomies of the MUSIC and VGGSound datasets.

MUSIC+ VGGSound-Clean+

Model
Unlabeled

data
Post-proc.

free
Mean SDR

Median
Mean SDR

Median
SDR SDR

Mixture - - 4.49 ± 1.41 2.04 -0.77 ± 1.31 -0.84

Text-queried models
CLIPSep X X 9.71 ± 1.21 8.73 2.76 ± 1.00 3.95
CLIPSep-NIT X X 10.27 ± 1.04 10.02 3.05 ± 0.73 3.26

BERTSep X 4.67 ± 0.44 4.41 5.09 ± 0.80 5.49
CLIPSep-Text X 10.73 ± 0.99 9.93 5.49 ± 0.82 5.06

Image-queried models
SOP (Zhao et al., 2018) X X 11.44 ± 1.18 11.18 2.99 ± 0.84 3.89
CLIPSep X X 12.20 ± 1.17 12.42 5.46 ± 0.79 5.35
CLIPSep-NIT X X 11.28 ± 1.08 10.83 4.84 ± 0.66 3.57

CLIPSep-Text X 9.89 ± 1.04 8.09 2.45 ± 0.70 1.74

Nonqueried models
PIT (Yu et al., 2017) X 12.24 ± 1.20 12.53 5.73 ± 0.79 4.97
LabelSep X - - 5.55 ± 0.81 5.29

mean SDR difference we observe for the model trained with image queries. Finally, we

train a CLIPSep model using both text and image queries in alternation, dubbed as CLIPSep-

Hybrid. We see that it leads to the best test performance for both text and image modalities,

and there is only a mean SDR difference of 0.30 dB between using text and image queries.

As a reference, the LabelSep model trained with labeled data performs worse than the

CLIPSep-Hybrid model using text queries. Further, the PIT model achieves a mean SDR of

8.68 dB and a median SDR of 7.67 dB, but it requires post-processing to figure out the correct

assignments.

6.4.2 Experiments on noisy data

Next, we evaluate the proposed method on a large-scale dataset aiming at universal

sound separation. We use the VGGSound dataset (Chen et al., 2020a), a large-scale audio-

visual dataset containing more than 190,000 10-second videos in the wild out of more than

300 classes. We find that the audio in the VGGSound dataset is often noisy and contains

off-screen sounds and background noise. Although we train the models on such noisy data,
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it is not suitable to use the noisy data as targets for evaluation because it fails to provide

reliable results. For example, if the target sound labeled as “dog barking” also contains

human speech, separating only the dog barking sound provides a lower SDR value than

separating the mixture of dog barking sound and human speech even though the text query

is “dog barking”. (Note that we use the labels only for evaluation but not for training.) To

avoid this issue, we consider the following two evaluation settings:

• MUSIC+: Samples in the MUSIC dataset are used as clean targets and mixed with a

sample in the VGGSound dataset as an interference. The separation quality is evaluated

on the clean target from the MUSIC dataset. As we do not use the MUSIC dataset for

training, this can be considered as zero-shot transfer to a new data domain containing

unseen sounds (Radford et al., 2019; Brown et al., 2020). To avoid the unexpected

overlap of the target sound types in the MUSIC and VGGSound datasets caused by

the label mismatch, we exclude all the musical instrument playing videos from the

VGGSound dataset in this setting.

• VGGSound-Clean+: We manually collect 100 clean samples that contain distinct target

sounds from the VGGSound test set, which we will refer to as VGGSound-Clean. We

mix an audio sample in VGGSound-Clean with another in the test set of VGGSound.

Similarly, we consider the VGGSound audio as an interference sound added to the

relatively cleaner VGGSound-Clean audio and evaluate the separation quality on the

VGGSound-Clean stem.

Table 6.3 shows the evaluation results. First, CLIPSep successfully learns text-queried

sound separation even with noisy unlabeled data, achieving 5.22 dB and 3.53 dB SDR im-

provements over the mixture on MUSIC+ and VGGSound-Clean+, respectively. By comparing

CLIPSep and CLIPSep-NIT, we observe that NIT improves the mean SDRs in both settings.

Moreover, on MUSIC+, CLIPSep-NIT’s performance matches that of CLIPSep-Text, which

utilizes labels for training, achieving only a 0.46 dB lower mean SDR and even a 0.05 dB

highermedian SDR. This result suggests that the proposed self-supervised text-queried sound

separation method can learn separation capability competitive with the fully supervised

model in some target sounds. In contrast, there is still a gap between them on VGGSound-
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Clean+, possibly because the videos of non-music-instrument objects are more noisy in both

audio and visual domains, thus resulting in a more challenging zero-shot modality transfer.

This hypothesis is also supported by the higher zero-shot modality transfer gap (mean SDR

difference of image- and text-queried mode) of 1.79 dB on VGGSound-Clean+ than that of 1.01

dB onMUSIC+ for CLIPSep-NIT. In addition, we consider another baselinemodel that replaces

the CLIP model in CLIPSep with a BERT encoder (Devlin et al., 2019), which we call BERTSep.

Interestingly, although BERTSep performs similarly to CLIPSep-Text on VGGSound-Clean+,

the performance of BERTSep is significantly lower than that of CLIPSep-Text on MUISC+,

indicating that BERTSep fails to generalize to unseen text queries. We hypothesize that the

CLIP text embedding captures the timbral similarity of musical instruments better than the

BERT embedding do, because the CLIP model is aware of the visual similarity between musi-

cal instruments during training. Moreover, it is interesting to see that CLIPSep outperforms

CLIPSep-NIT when an image query is used at test time (domain-matched condition), possibly

because images contain richer context information such as objects nearby and backgrounds

than labels, and the models can use such information to better separate the target sound.

While CLIPSep has to fully utilize such information, CLIPSep-NIT can use the noise heads to

model sounds that are less relevant to the image query. Since we remove the noise heads

from CLIPSep-NIT during the evaluation, it can rely less on such information from the image,

thus improving the zero-shot modality transferability. Figure 6.5 shows an example of the

separation results on MUSIC+ (see Figures 6.12 to 6.15 for more examples). We observe that

the two noise heads contain mostly background noise. Audio samples can be found on our

demo website.1

6.4.3 Examining the effects of the noise regularization level W

In this experiment, we examine the effects of the noise regularization level W in

Equation (6.6) by changing the value from 0 to 1. As we can see from Figure 6.6 (a) and

(b), CLIPSep-NIT with W = 0.25 achieves the highest SDR on both evaluation settings. This

suggests that the optimal W value is not sensitive to the evaluation dataset. Further, we also

report in Figure 6.6 (c) the total mean noise head activation,
∑<
7=1mean("̂#

7
), on the validation

set. As "̂#
7
is the mask estimate for the noise, the total mean noise head activation value
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(a) Input mixture (b) Ground truth (c) Interference

(d) Prediction (e) Noise head 1 (f) Noise head 2

Figure 6.5. Example results of the proposed CLIPSep-NIT model with W = 0.25 on the MUSIC+ dataset.
We mix the an audio sample (“violin” in this example) in the MUSIC dataset with an interference
audio sample (“people sobbing” in this example) in the VGGSound dataset to create an artificial
mixture. (b) and (c) show the reconstructed signals using the ground truth ideal binary masks. The
spectrograms are shown in the log frequency scale. We observe that the proposed model successfully
separates the desired sounds (i.e., (d)) from query-irrelevant noise (i.e., (e) and (f)).
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Figure 6.6. Effects of the noise regularization level W for the proposed CLIPSep-NIT model—mean
SDR for the (a) MUSIC+ and (b) VGGSound-Clean+ evaluations, and (c) the total mean noise head
activation,

∑<
7=1mean("̂#

7
), on the validation set. The shaded areas show standard errors.

indicates to what extent signals are assigned to the noise head. We observe that the proposed

regularizer successfully keeps the total mean noise head activation close to the desired level,

W, for W ≤ 0.5. Interestingly, the total mean noise head activation is still around 0.5 when

W = 1.0, suggesting that the model inherently tries to use both the query-heads and the noise

heads to predict the noisy target sounds. Moreover, while we discard the noise heads during

evaluation in our experiments, keeping the noise heads can lead to a higher SDR as shown

in Figure 6.6 (a) and (b), which can be helpful in certain use cases where a post-processing

procedure similar to the PIT model (Yu et al., 2017) is acceptable.

6.5 Discussions

For the experiments presented in this paper, we work on labeled datasets so that

we can evaluate the performance of the proposed models. However, our proposed models
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do not require any labeled data for training, and can thus be trained on larger unlabeled

video collections in the wild. Moreover, we observe that the proposed model shows the

capability of combing multiple queries, e.g., “a photo of [query A] and [query B],” to extract

multiple target sounds, and we report the results on the demo website. This offers a more

natural user interface against having to separate each target sound and mix them via an

additional post-processing step. We also show in Section 6.G that our proposed model is

robust to different text queries and can extract the desired sounds.

In our experiments, we often observe a modality transfer gap greater than 1 dB

difference of SDR. A future research direction is to explore different approaches to reduce

the modality transfer gap. For example, the CLIP model is pretrained on a different dataset,

and thus finetuning the CLIP model on the target dataset can help improve the underlying

modality transferability within the CLIP model. Further, while the proposed noise invariant

training is shown to improve the training on noisy data and reduce the modality transfer

gap, it still requires a sufficient audio-visual correspondence for training video. In other

words, if the audio and images are irrelevant in most videos, the model will struggle to

learn the correspondence between the query and target sound. In practice, we find that the

data in the VGGSound dataset often contains off-screen sounds and the labels sometimes

correspond to only part of the video content. Hence, filtering on the training data to enhance

its audio-visual correspondence can also help reduce the modality transfer gap. This can

be achieved by self-supervised audio-visual correspondence prediction (Arandjelović and

Zisserman, 2017a; Arandjelović and Zisserman, 2017b) or temporal synchronization (Korbar

et al., 2018; Owens and Efros, 2018).

Another future direction is to explore the semi-supervised setting where a small

subset of labeled data can be used to improve the modality transferability. We can also

consider the proposed method as a pretraining on unlabeled data for other separation tasks

in the low-resource regime. We include in Section 6.H a preliminary experiment in this

aspect using the ESC-50 dataset (Piczak, 2015).
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6.6 Conclusion

In this work, we have presented a novel text-queried universal sound separation

model that can be trained on noisy unlabeled videos. In this end, we have proposed to use

the contrastive image-language pretraining to bridge the audio and text modalities, and

proposed the noise invariant training for training a query-based sound separation model

on noisy data. We have shown that the proposed models can learn to separate an arbitrary

sound specified by a text query out of a mixture, even achieving competitive performance

against a fully supervised model in some settings. We believe our proposed approach closes

the gap between the ways humans and machines learn to focus on a sound in a mixture,

namely, themulti-modal self-supervised learning paradigmof humans against the supervised

learning paradigm adopted by existing label-based machine learning approaches.
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Appendices

6.A Inference Pipeline of CLIPSep and CLIPSep-NIT

Figure 6.7 illustrates the inference pipeline for the proposed CLIPSep and CLIPSep-NIT

models. For the CLIPSep-NIT model, we discard the noise heads at test time. The masked

spectrogram is combined with the input phase and converted to the waveform by the inverse

short-time Fourier transform (STFT).

6.B Query Ensembling

Radford et al., 2021 suggest that using a prompt template in the form of “a photo of

[user input query]” helps bridge the distribution gap between text queries used for zero-shot

image classification and text in the training dataset for the CLIP model. They further show

that the ensemble of various prompt templates improve the generalizability. Motivated

by this observation, we adopt a similar idea and use several query templates at test time

(see Table 6.4). These query templates are heuristically chosen to handle the noisy images

extracted from videos.

6.C Implementation Details

We implement the audio model as a 7-layer U-Net (Ronneberger et al., 2015). We use

9 = 32. We use binary masks as the ground truth masks during training while using the raw,

real-valued masks for evaluation. We train all the models for 200,000 steps with a batch

size of 32. We use the Adam optimizer (Kingma and Ba, 2015) with V1 = 0.9, V2 = 0.999 and

n = 10−8. In addition, we clip the norm of the gradients to 1.0 (Zhang et al., 2020). We adopt

the following learning rate schedule with a warm-up—the learning rate starts from 0 and

grows to 0.001 after 5,000 steps, and then it linearly drops to 0.0001 at 100,000 steps and keeps

this value thereafter. We validate the model every 10,000 steps using image queries as we do

not assume labeled data is available for the validation set. We use a sampling rate of 16,000

Hz and work on audio clips of length 65,535 samples (≈ 4 seconds). During training, we

randomly sample a center frame from a video and extract three frames (images) with 1-sec
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Figure 6.7. Inference pipeline of the proposed CLIPSep and CLIPSep-NIT models. Note that the
mixture spectrogram and the masks are shown in log frequency scale, while the masked spectrogram
is shown in linear frequency scale.

Table 6.4. Query templates used in our experiments.

Query template Example query for the label “dog barking”

a photo of [user input query] a photo of dog barking
a photo of the small [user input query] a photo of the small dog barking
a low resolution photo of a [user input query] a low resolution photo of a dog barking
a photo of many [user input query] a photo of many dog barking

intervals and 4-sec audio around the center frame. During inference, for image-queried

models, we extract three frameswith 1-sec intervals around the center of the test clip. For the

spectrogram computation, we use a filter length of 1024, a hop length of 256 and a window

size of 1024 in the short-time Fourier transform (STFT). We resize images extracted from

video to a size of 224-by-224 pixels. For the CLIPSep-Hybrid model, we alternatively train the

model with text and image queries, i.e., one batch with all image queries and next with all

text queries, and so on. We implement all the models using the PyTorch library (Paszke et al.,

2019). We compute the signal-to-distortion ratio (SDR) using museval (Stöter et al., 2018).

In our preliminary experiments, we also tried directly predicting the final mask by

conditioning the audio model on the query vector. We applied this modification for both SOP

and CLIPSep models, however, we observe that this architecture is prone to overfitting. We

hypothesize that this is because the audio model is powerful enough to remember the subtle

clues in the query vector, which hinder the generalization to a new sound and query. In

contrast, the proposed architecture first predicts over-determined masks and then combines
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Figure 6.8. An illustration of the PIT model for < = 2. The two predicted masks are interchangeable
during the loss computation. Since the two predicted masks are interchangeable, the PIT model
requires an additional post-selection step to obtain the target sound.

them on the basis of the query vector, which avoids the overfitting problem due to the simple

fusion step.

6.D Permutation Invariant Training

Figure 6.8 illustrates the permuatation invariant training (PIT) model (Yu et al., 2017).

The permutation invariant loss is defined as follows for < = 2.

LPIT = min
(
WBCE("1, "̂1) +WBCE("2, "̂2),WBCE("1, "̂2) +WBCE("2, "̂1)

)
, (6.7)

where "̂1 and "̂2 are the predicted masks. Note that the PIT model requires an additional

post-selection step to obtain the target sound.

6.E Qualitative Example Results

We show in Figures 6.12 to 6.15 some example results. More results and audio samples

can be found at https://sony.github.io/CLIPSep/.
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Table 6.5. Subjective test results.

Model Query type Correct [%] Wrong [%] Both [%] None [%]

Mixture - 17.5 10.0 72.5 0.0

CLIPSep
Image 70.6 0.0 29.4 0.0
Text 66.3 3.8 30.0 0.0

CLIPSep-NIT
Image 68.8 1.9 28.1 1.3
Text 83.8 0.6 15.0 0.6

6.F Subjective Evaluation

We conduct a subjective test to evaluate whether the SDR results aligned with percep-

tual quality. As done in the Sound of Pixel (Zhao et al., 2018), separated audio samples are

randomly presented to evaluators, and the following question is asked: “Which sound do

you hear? 1. A, 2. B, 3. Both, or 4. None of them”. Here A and B are replaced by labels of their

mixture sources, e.g. A=accordion, B=engine accelerating. Ten samples (including naturally

occurring mixture) are evaluated for each model and 16 evaluators have participated in

the evaluation. Table 6.5 shows the percentages of samples which are correctly identified

the target sound class (Correct), which are incorrectly identified the target sound sources

(Wrong), which are selected as both sounds are audible (Both), and which are selected as

neither of the sounds are audible (None). The results indicate that the evaluators more often

choose the correct sound source for CLIPSep-NIT (83.8%) than CLIPSep (66.3%) with text

queries. Notably, CLIPSep-NIT with text-query obtained a higher correct score than that with

image-query, which matches the training mode. This is probably because image queries

often contain information about backgrounds and environments, hence, some noise and

off-screen sounds are also suggested by the image-queries and leak to the query head. In

contrast, text-queries purely contain the information of target sounds, thus, the query head

more aggressively extract the target sounds.

6.G Robustness to different queries

To examine the model’s robustness to different queries, we take the same input

mixture and query the model with different text queries. We use the CLIPSep-NIT model on

the MUSIC+ dataset and report in Figure 6.16 the results. We see that the model is robust to
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Table 6.6. Results on the ESC-50 dataset. Standard errors are reported in the mean SDR column.

Model Post-processing

free

Dataset SDR

Training Finetuning Mean Median

Mixture - - - 0.00 ± 0.44 0.00

PIT × VGGSound - 4.90 ± 0.26 2.44

CLIPSep
X VGGSound - 1.07 ± 0.28 2.34
X ESC-50 - 5.18 ± 0.26 5.09
X VGGSound ESC-50 6.73 ± 0.26 5.89

different text queries and can extract the desired sounds. Audio samples can be found at

https://sony.github.io/CLIPSep/.

6.H Finetuning Experiments on the ESC-50 Dataset

In this experiment, we aim to examine the possibilities of having a clean dataset

for further finetuning. We consider the ESC-50 dataset (Piczak, 2015), a collection of 2,000

high-quality environmental audio recordings, as the clean dataset here.6 We report the

experimental results in Table 6.6. We can see that the model pretrained on VGGSound does

not generalize well to the ESC-50 dataset as the ESC-50 contains much cleaner sounds, i.e.,

without query-irrelevant sounds and background noise. Further, if we train the CLIPSep

model from scratch on the ESC-50 dataset, it can only achieve a mean SDR of 5.18 dB and a

median SDR of 5.09 dB. However, if we take the model pretrained on the VGGSound dataset

and finetune it on the ESC-50 dataset, it can achieve a mean SDR of 6.73 dB and a median

SDR of 4.89 dB, resulting in an improvement of 1.55 dB on the mean SDR.

6.I Training Behaviors

We present in Figure 6.9 the training and validation losses along the training progress.

Please note that we only show the results obtained using text queries for reference but do not

use them for choosing the best model. We also evaluate the intermediate checkpoints every

10,000 steps and present in Figure 6.10 the test SDR along the training progress. In addition,

for the CLIPSep-NIT model, we visualize in Figure 6.11 the total mean noise head activation,

6https://github.com/karolpiczak/ESC-50
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(d) CLIPSep-NIT (W = 0.5) (e) CLIPSep-NIT (W = 0.25) (f) CLIPSep-NIT (W = 0.1)

Figure 6.9. Training and validation losses along the training progress on the VGGSound dataset.
We also include the losses computed using text queries instead of image queries. The y-axes are
intentionally set to the same range for easy comparison. Note that we do not use the validation
results obtained with text queries for choosing the best model.

∑<
7=1mean("̂#

7
), along the training progress. We can see that the total mean noise head

activation stays around the desired level for W = 0.1, 0.25. For W = 0.5 and the unregularized

version, the total mean noise head activation converges to a similar value around 0.55.
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(d) CLIPSep-NIT (W = 0.5) (e) CLIPSep-NIT (W = 0.25) (f) CLIPSep-NIT (W = 0.1)

Figure 6.10. Test SDR along the training progress on the VGGSound-Clean dataset. The y-axes are
intentionally set to the same range for easy comparison.
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Figure 6.11. Total mean noise head activation,
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), on the validation set for the CLIPSep-

NIT models along the training progress.
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Mixture Ground truth
Ground truth
(Interference)

CLIPSep
CLIPSep-NIT

(W = 0.25)
PIT

(Yu et al., 2017)

Noise head 1
(CLIPSep-NIT)

Noise head 2
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Figure 6.12. Example results on the MUSIC+ dataset. Target source—“violin”; interference—“people
sobbing”; query—“violin”. The spectrograms and masks are shown in the log and linear frequency
scales, respectively.
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Figure 6.13. Example results on the MUSIC+ dataset. Target source—“acoustic guitar”; interference—
“cheetah chirrup”, query—“acoustic guitar”. The spectrograms and masks are shown in the log and
linear frequency scales, respectively.
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Figure 6.14. Example results on the VGGSound-Clean+ dataset. Target source—“cat growling”;
interference—“railroad car train wagon”; query—“cat growling”. The spectrograms and masks are
shown in the log and linear frequency scales, respectively.
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Figure 6.15. Example results on the VGGSound-Clean+ dataset. Target source—“electric grinder
grinding”; interference—“vehicle horn car horn honking”; query—“electric grinder grinding”. The
spectrograms and masks are shown in the log and linear frequency scales, respectively. Note that the
PIT model requires a post-selection step to get the correct source. Without the post-selection step, the
PIT model return the right source in only a 50% chance.
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Figure 6.16. Query robustness experiment on the MUSIC+ dataset. Target source—“acoustic guitar”;
interference—“cheetah chirrup”. The spectrograms are shown in the log frequency scale.
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Chapter 7

CLIPSonic: Text-to-Audio Synthesis with
Unlabeled Videos and Pretrained Language-
Vision Models

Abstract

Recent work has studied text-to-audio synthesis using large amounts

of paired text-audio data. However, audio recordings with high-quality text

annotations can be difficult to acquire. In this work, we approach text-to-audio

synthesis using unlabeled videos and pretrained language-vision models. We

propose to learn the desired text-audio correspondence by leveraging the

visual modality as a bridge. We train a conditional diffusion model to gener-

ate the audio track of a video, given a video frame encoded by a pretrained

contrastive language-image pretraining (CLIP) model. At test time, we first

explore performing a zero-shot modality transfer and condition the diffusion

model with a CLIP-encoded text query. However, we observe a noticeable

performance drop with respect to image queries. To close this gap, we further

adopt a pretrained diffusion prior model to generate a CLIP image embedding

given a CLIP text embedding. Our results show the effectiveness of the pro-

posed method, and that the pretrained diffusion prior can reduce the modality

transfer gap. While we focus on text-to-audio synthesis, the proposed model

can also generate audio from image queries, and it shows competitive perfor-

mance against a state-of-the-art image-to-audio synthesis model in a subjective

listening test. This study offers a new direction of approaching text-to-audio
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synthesis that leverages the naturally-occurring audio-visual correspondence

in videos and the power of pretrained language-vision models.

7.1 Introduction

With the advance of generative modeling (Radford et al., 2019; Ho et al., 2020; Rom-

bach et al., 2022) and language-audio contrastive learning (Wu et al., 2023; Huang et al.,

2022; Guzhov et al., 2022), various deep learning-based text-to-audio synthesis systems have

recently emerged (Yang et al., 2022; Kreuk et al., 2023; Liu et al., 2023a; Huang et al., 2023b;

Huang et al., 2023a; Agostinelli et al., 2023). However, these systems typically require a

large amount of paired text-audio data for training. Despite extensive human annotation

efforts, the current largest public text-audio dataset contains around 630k text-audio pairs

(Wu et al., 2023). Given the relative scarcity of text-audio data on the web as compared

to text-image data, it remains unclear whether we can scale up text-audio datasets to a

size comparable with large scale text-image datasets, e.g., the LAION-5B dataset (Schuh-

mann et al., 2022), which contains 5.85 billion text-image pairs. In this work, we approach

text-to-audio synthesis without text-audio pairs through leveraging the naturally-occurring

audio-visual correspondence in videos and the multimodal representation learned by pre-

trained language-vision models (see Figure 7.1).

The proposed CLIPSonic model is based on a conditional diffusion model (Nichol

and Dhariwal, 2019), a constrastive language-image pretraining (CLIP) model (Radford

et al., 2021), and a pretrained diffusion prior model (Ramesh et al., 2022), as illustrated in

Figure 7.2. Given a video, CLIPSonic is trained to synthesize themel spectrogram of the audio

given a CLIP-encoded frame, randomly selected from the video. Since CLIP embeds images

and texts into a cross-modal semantic space, CLIPSonic learns to map the CLIP embedding

space to audio. At test time, we first explore performing a zero-shot modality transfer and

conditioning the diffusion model directly with a CLIP-encoded text query. However, we

observe in practice a noticeable performance drop with respect to image queries. To close

this gap, we adopt a pretrained diffusion prior model to generate a CLIP image embedding

given a CLIP text embedding. We note that our proposed system requires only 1) unlabeled
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Figure 7.1. We learn the text-audio correspondence by leveraging the audio-visual correspondences
in videos and the multimodal representation learned by pretrained language-vision models.

videos, for training the conditional diffusion model, and 2) image-text pairs, for pre-training

the language-vision models. Through a subjective listening test and an objective evaluation,

our experimental results demonstrate the effectiveness of the proposed method. Audio

samples are available on our demo website.1

Our study differs from prior work in several ways. Existing text-to-audio models

rely on large amounts of text-audio training pairs (Yang et al., 2022; Kreuk et al., 2023;

Liu et al., 2023a; Huang et al., 2023b; Huang et al., 2023a; Agostinelli et al., 2023), whereas

CLIPSonic learns text-queried audio synthesis without text-audio pairs. Prior work studied

image-to-audio synthesis (Owens et al., 2016; Iashin and Rahtu, 2021; Sheffer and Adi, 2023),

but they do not examine the zero-shot modality transfer between texts and images. CLIPSep

(Dong et al., 2023d) and CLIPSynth (Dong et al., 2023c) propose to learn text-queried source

separation and audio synthesis from unlabeled videos, respectively, but they do not address

the issue of the zero-shot modality transfer gap. DALL-E 2 (Ramesh et al., 2022) proposes the

diffusion prior model to address the zero-shot modality transfer gap in CLIP-based text-to-

image synthesis, and we explore leveraging a pretrained diffusion prior model to transfer

the knowledge learned from videos for text-to-audio synthesis. Other related works are

AudioLDM (Liu et al., 2023a) and MusicLM (Agostinelli et al., 2023), which rely on language-

audio models (Wu et al., 2023; Huang et al., 2022) to perform a zero-shot audio-to-text

modality transfer, but such language-audio models are trained on audio-text pairs.

1https://salu133445.github.io/clipsonic/
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7.2 CLIPSonic

In this section, we introduce the proposed CLIPSonic model for learning text-to-

audio synthesis from unlabeled videos. As illustrated in Figure 7.2(a), CLIPSonic uses a mel

spectrogram-based diffusion model for audio synthesis. We adopt the diffusion framework

for its strong performance in audio synthesis (Kong et al., 2021; Pascual et al., 2023; Liu

et al., 2023a). Given a video, CLIPSonic is trained to synthesize the mel spectrogram of

the audio from the image in a randomly extracted video frame. Specifically, we first use

a pretrained CLIP image encoder to encode the image into a query vector qimg. Then, this

query vector is used as a conditional signal to guide the diffusion model to generate a mel

spectrogram x̂0. We adopt a denoising diffusion probabilistic model (Nichol and Dhariwal,

2019) and classifier-free guidance (Jonathan Ho, 2021), which allows us to control the degree

of conditioning signal through the guidance level variable E during inference.2 The gener-

ated mel spectrograms are inverted back to waveforms using a separately-trained BigVGAN

(Lee et al., 2023). We choose to perform diffusion on the mel spectrogram domain for its

lower dimensionality than waveforms, and because BigVGAN shows good quality when

synthesizing general audio from mel spectrograms.

CLIPSonic-ZS (zero-shotmodality transfer). At inference time, we aim to leverage

the language-vision embedding space learned by CLIP to achieve text-to-audio synthesis.

CLIPSonic-ZS explores swapping the CLIP image embeddings for the CLIP text embeddings,

as a way to use text queries in a zero-shot modality transfer setting. As illustrated in Fig-

ure 7.2(b), we use the CLIP text encoder to encode the input text query into a query vector

qtext, which is fed as a condition to the diffusionmodel. We refer to thismodel as CLIPSonic-ZS,

where “ZS” stands for zero-shot modality transfer.

CLIPSonic-PD (pretrained diffusion prior). As to be shown in Section 7.4, we

observe a modality gap between CLIP’s text and image embedding spaces. Following DALL-

E 2 (Ramesh et al., 2022), we explore relying on a diffusion prior model to bridge this

gap. As illustrated in Figure 7.2(c), we first encode the input text query into a CLIP text

2We use the formulation: ∇x log >E (x | q) = (1 − E)∇x log >(x) + E∇x log >(x | q). A larger E leads to a stronger
conditioning signal, and E = 1 corresponds to a conditional model without classifier-free guidance.
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Figure 7.2. Proposed CLIPSonic model. During training, CLIPSonic learns to synthesize the audio
track of a video given the image in a video frame. At inference time, we feed a text query in the form
of “a photo of [label]” to approach text-to-audio synthesis or use a pretrained diffusion prior model to
close the gap between the text queries (used for inference) and the image queries (used for training).
xB represents a noisy spectrogram at diffusion step B. The generated mel spectrogram x̂0 is inverted
back to waveform by a pretrained BigVGAN model (Lee et al., 2023).
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embedding vector qtext and then generate a CLIP image embedding vector q̂img from qtext

using the pretrained diffusion prior model. The generated query vector q̂img is then passed

as the conditioning signal to the diffusion model. We refer to this model as CLIPSonic-PD

(pretrained diffusion prior). Note that both CLIPSonic-ZS and CLIPSonic-PD require no text-

audio pairs for training. Further, both the CLIP and diffusion prior models can be pretrained

using only text-image pairs, hence suppressing the need for paired audio-text data.

CLIPSonic-IQ and CLIPSonic-SD. While here we focus on text-to-audio, CLIPSonic

can also be used as an image-to-audio synthesis model by using qimg queries. We will refer to

this variant as CLIPSonic-IQ (image-queried). Moreover, we find that it is possible to train the

diffusion prior model from scratch on domain-specific datasets, and hence we also consider

a variant called CLIPSonic-SD (supervised diffusion prior), where we train the diffusion prior

model from scratch using text-image pairs in our datasets. As will be specified in Section 7.3,

since the text data used to train the diffusion prior in CLIPSonic-SD comes from audio labels

in this work, CLIPSonic-SD serves as an oracle model against CLIPSonic-PD. By comparing

CLIPSonic-PD to CLIPSonic-SD, we intend to study the effectiveness of using a diffusion prior

model pretrained on a massive amount of data against one trained on the target dataset.

7.3 Experimental setup

Data. We consider two datasets: VGGSound (Chen et al., 2020a) and MUSIC (Zhao

et al., 2018). The VGGSound dataset consists of 171,899 10-sec YouTube videos, covering 310

classes of sounds in the wild, and we follow the train-test split provided with the dataset.

The MUSIC dataset consists of 1,055 full-length YouTube videos of people playing a musi-

cal instrument, with 21 instrument types in total. We randomly split the dataset into a

9:1 train-test split. VGGSound represents a large, diverse dataset captured from unstruc-

tured sources in the wild, whereas MUSIC represents a small, curated dataset of a specific

domain of interest. As both datasets come with only class labels, we convert such labels

into pseudo text in the form of “a photo of [label]”.

Baselinemodels. We compare CLIPSonicmodels against the following text-to-audio

(TTA) and reconstruction models.
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• CLIP-TTA is the supervised version of CLIPSonic where we use text-audio pairs for

training. The pretrained CLIP-text embedding is used as conditioning.

• CLAP-TTA is the same as CLIP-TTA but uses pretrained CLAP-text embeddings (Wu

et al., 2023), where we use a prompt in the form of “the sound of [label]”. Unlike

CLIP-text embeddings, CLAP-text embeddings are expected to encode audio-grounded

features rather than visually-grounded features.

• BigVGANmel spectrogram reconstruction are waveforms reconstructed from the

ground-truth mel spectrograms by the BigVGAN model. This serves as an upper bound

of spectrogram-based synthesis systems that use BigVGAN as the inversion model.

Implementation details. For mel spectrogram computation, we use a sampling

rate of 16 kHz, a hop size of 512, an FFT filter size of 2048, and 64 mel bands. During training,

we use mel spectrograms of size 64×64, which corresponds to two seconds of audio. For

the diffusion model, we follow the network architecture proposed in (Nichol and Dhariwal,

2019) and use the open-source code in (Improved Diffusion n.d.). We use a cosine noise

schedule with 4000 diffusion steps during training and 1000 steps at inference time. We

use AdamW with a learning rate of 0.0001, a batch size of 32, and a dropout rate of 0.1

in classifier-free guidance. All diffusion models are trained for 200k steps on MUSIC and

500k steps on VGGSound using two NVIDIA RTX 2080 Ti GPUs, which takes a day on MUSIC

and two days on VGGSound. For the pretrained CLIP model, we use the “ViT-L/14” version

trained on 400 million image-text pairs (CLIP n.d.). We use a pretrained transformer-based

diffusion prior model trained on 2 billion image-text pairs using the same backbone CLIP

model (DALLE2 PyTorch n.d.[a]). For training the diffusion prior model CLIPSonic-SD from

scratch, we follow the same architecture as in CLIPSonic-PD and use the code in (DALLE2

PyTorch n.d.[b]). We use AdamWwith a learning rate of 0.0001 and a batch size of 32. The

diffusion prior models are trained on MUSIC and VGGSound, respectively, until convergence

at around 200k steps, which takes a day on a NVIDIA RTX 2080 Ti GPU. For the CLAP model,

we use the “630k-audioset-fusion” version released in (CLAP n.d.). For the BigVGAN model,

we pretrain it on VGGSound for 500k steps using the code in (BigVGAN n.d.) and use this

pretrained version in all of our experiments.
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Evaluation metrics. To compare the performance of our method against the base-

lines, we sample 512 audio samples from eachmodel and compute the Fréchet audio distance

(FAD) (Kilgour et al., 2019) and the CLAP score (Huang et al., 2023b; Wu et al., 2023). The

FAD measures how close the generated audio samples are to the reference audio in terms

of quality and diversity.3 We adopt the open-source implementation provided in (Frechet

Audio Distance n.d.) and use the VGGish (Hershey et al., 2017) as the backbone model for

FAD. The CLAP score measures the relevance between the generated audio and the input

query text, and it is formally defined as the cosine similarity between the CLAP embedding

of the audio and that of the input text query.

Subjective test. We conduct a listening test to study the fidelity of the generated

audio and their relevance to textual (text-to-audio) and visual (image-to-audio) prompts.

We ask 21 expert listeners to rate the generated audio samples on a 1–5 scale in terms

of fidelity and relevance. Fidelity experiments study the quality of the generated audio

(without evaluating its semantic grounding) while relevance experiments study the semantic

correspondence with respect to the prompt (without evaluating its audio quality). The audio

samples used for this test are available on our demo website.1

7.4 Results

7.4.1 Objective Evaluation Results

Guidance. Figure 7.3 shows the results of the studied models as a function of the

classifier-free guidance scale E. As noted in (Jonathan Ho, 2021) using conceptually-similar

measures, the different curves between FAD and CLAP scores imply a trade-off between

quality/diversity (represented by FAD) and query-sample relevance (represented by CLAP

score). Noticeably, in terms of CLAP score, all models (except CLIPSonic-PD on MUSIC)

outperform the BigVGAN reconstruction on both datasets (see Figure 7.3(b) and (d)). We

attribute the higher CLAP scores to the classifier-free guidance as it is shown to improve

adherence to the conditioning (Jonathan Ho, 2021) but at the cost of diversity—note the

3Following (Yang et al., 2022; Liu et al., 2023a) we also computed the Fréchet inception distance (FID) of the
generated spectrograms, and found that the trend of FID aligned well with that of FAD. For brevity, we only
report and discuss the FAD results.
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Figure 7.3. Objective evaluation results on VGGSound and MUSIC.

increasing FAD in Figure 7.3(a) and (c) as E increases. As such, practitioners can choose E

based on their specific requirements. We use E = 1.5 as it offers a good balance between

quality/diversity and relevance, and we report the results in Table 7.1.

Models without text-audio pairs. First, we discuss CLIPSonic models in Table 7.1

that do not use text-audio pairs during training. CLIPSonic-IQ (image-queried) achieves

a strong performance on both datasets. Yet, when we switch to using text queries in a

zero-shot setting with CLIPSonic-ZS, we observe a performance drop in terms of FAD on

both datasets. This performance drop suggests a modality gap between CLIP’s image (used

during training) and text (used during inference) embedding spaces. In contrast, with the

pretrained diffusion prior model, CLIPSonic-PD achieves a lower FAD than CLIPSonic-ZS

across different E values (see also Figure 7.3). To further investigate this, we report in

Table 7.2 the average cosine similarity between the query embedding (qtext or q̂img) and the

ground truth CLIP-image embedding qimg. We note that CLIPSonic-ZS leads to a low cosine

similarity, which supports our hypothesis that there is a modality gap in CLIP’s embedding
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Table 7.1. Evaluation results on VGGSound and MUSIC datasets, evaluated at E = 1.5.

Model Without
text-audio

pairs

Query modality VGGSound MUSIC

Training Inference FAD↓ CLAP
score↑ FAD↓ CLAP

score↑

CLIPSonic-IQ (image-queried) - Image Image 2.97 - 4.71 -
CLIPSonic-ZS (zero-shot modality transfer) 3 Image Text 3.43 0.258 19.30 0.284
CLIPSonic-PD (pretrained diffusion prior) 3 Image Text 3.04 0.265 13.51 0.254

CLIPSonic-SD (supervised diffusion prior) 7 Image Text 2.37 0.234 12.13 0.299
CLIP-TTA 7 Text Text 2.26 0.292 9.39 0.298
CLAP-TTA 7 Text Text 2.58 0.296 10.92 0.303

BigVGAN mel spectrogram reconstruction - - - 0.60 0.204 6.21 0.272

Table 7.2. Cosine similarities between various query embeddings.

Model Similarity computed VGGSound MUSIC

CLIPSonic-ZS sim(qtext, qimg) 0.205 0.245
CLIPSonic-PD sim(q̂img , qimg) 0.647 0.720
CLIPSonic-SD sim(q̂img , qimg) 0.711 0.824

space. In contrast, CLIPSonic-PD achieves a significantly higher cosine similarity, showing

that the pretrained diffusion prior model can effectively bridge the modality gap. Moreover,

while we observe a lower CLAP score for CLIPSonic-PD onMUSIC, we observe little difference

in the relevance criterion in the listening test to be discussed in Section 7.4.2 (see Table 7.3),

suggesting that all these models have passed a reasonable level of audio-text relevance.

Models using text-audio pairs. We now compare the baseline models that do use

text-audio pairs for training against the previous CLIPSonic variants. First, we see that

CLIPSonic-SD, with a diffusion prior trained directly on the target dataset, achieves a lower

FAD than CLIPSonic-PD, which uses the pretrained diffusion prior. This is possibly due to the

distribution mismatch between the target datasets and the LAION-2B dataset used to train

the pretrained prior.4 From Table 7.2, we can also see that CLIPSonic-SD can generate a CLIP-

image embedding closer to the ground truth embedding on the target datasets than CLIPSonic-

PD. Yet, in our subjective evaluation below we will see that CLIPSonic-PD still exhibits a

favorable degree of generalization to downstream datasets since it consistently outperforms

CLIPSonic-ZS. Moreover, we observe a gap between the performance of CLIPSonic-PD and

4Wenote that there is also amismatch in the semantics of the textual queries, where the target datasets contain
audio-specific labels while LAION-2B contains visually-grounded labels. However, the similar performance of
CLIP-TTA and CLAP-TTA suggests that this is a minor effect.
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Table 7.3. Listening test results for text-to-audio synthesis (MOS).

Model
VGGSound MUSIC

Fidelity Relevance Fidelity Relevance

CLIPSonic-ZS 2.55 ± 0.22 2.01 ± 0.27 2.98 ± 0.23 3.87 ± 0.24
CLIPSonic-PD 3.04 ± 0.20 2.86 ± 0.25 3.67 ± 0.18 3.91 ± 0.24
CLIPSonic-SD 2.96 ± 0.21 3.49 ± 0.28 3.36 ± 0.20 4.07 ± 0.22

Ground truth 3.78 ± 0.19 3.54 ± 0.29 3.90 ± 0.17 4.34 ± 0.18

Table 7.4. Listening test results for image-to-audio synthesis (MOS).

Model Fidelity Relevance

CLIPSonic-IQ (image-queried) 3.29 ± 0.16 3.80 ± 0.19
SpecVQGAN (Iashin and Rahtu, 2021) 2.15 ± 0.17 2.54 ± 0.23
Im2Wav (Sheffer and Adi, 2023) 2.19 ± 0.15 3.90 ± 0.22

that of CLIP-TTA and CLAP-TTA. However, we note that this is an unfair comparison as

CLIP-TTA and CLAP-TTA are trained on audio-text pairs, while CLIPSonic-PD does not use

audio-text pairs in training.

7.4.2 Subjective Listening Test Results

Text-to-audio synthesis. We conduct an ablation study to compare CLIPSonic-

ZS, -PD and -SD variants on MUSIC and VGGSound. As shown in Table 7.3, CLIPSonic-ZS

consistently underperforms, arguably because of the aforementioned mismatch between

text and image embeddings. The two contributed variants, i.e., CLIPSonic-PD and -SD,

consistently achieve higher MOS than CLIPSonic-ZS, both in terms of relevance and fidelity.

Notably, the ground truth scores are relatively low (an MOS between 3 to 4), especially

noticeable for VGGSound as it is noisier than the MUSIC dataset.

Image-to-audio synthesis. While our focus is to study text-to-audio synthesis,

CLIPSonic-IQ can also generate audio from image queries. We compare it against SpecVQ-

GAN (Iashin and Rahtu, 2021), a representative image-to-audio model, and Im2Wav (Sheffer

and Adi, 2023), a state-of-the-art model for image-to-audio synthesis. All three models are

trained on VGGSound and tested on out-of-distribution samples from ImageHear (Sheffer

and Adi, 2023). The selected samples conform a challenging benchmark for us because they

are 1) selected from Im2Wav’s demowebsite and 2) out-of-distribution. As shown in Table 7.4,
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CLIPSonic-IQ outperforms the state-of-the-art in fidelity, while remaining competitive in

terms of relevance. The improved fidelity can possibly be attributed to the fact that we

use a continuous representation (mel spectrogram) with a state-of-the-art inversion model

(BigVGAN), as compared to the discrete VQ-VAE representation used in Im2Wav.

7.5 Conclusion

We explored approaching text-to-audio synthesis without text-audio pairs by using

unlabeled videos and pretrained language-vision models. Through both objective and

subjective evaluations, we showed that the proposed models can effectively learn text-to-

audio synthesis without text-audio pairs, and the pretrained diffusion prior can reduce the

modality transfer gap caused by the mismatch between CLIP’s image (used for training) and

text (used for inference) embedding spaces. Moreover, in a subjective listening test, the image-

to-audio synthesis model that we base our modality transfer upon achieves competitive

performance against a state-of-the-art image-to-audio synthesis model. Finally, we argue

that images provide rich conditioning signals for audio synthesis, and leveraging such rich

signals to improve text-to-audio synthesis is a promising research direction. Along this

direction, CLIPSonic represents an example using videos and pretrained language-vision

models. For future work, we intend to scale up the proposed method to a larger amount of

videos, and explore using tri-modal audio-vision-language models (Guzhov et al., 2022; Wu

et al., 2022a; Rouditchenko et al., 2021).

∗ ∗ ∗

This chapter, in full, is a reprint of thematerial as it appears in “CLIPSonic:

Text-to-Audio Synthesis with Unlabeled Videos and Pretrained Language-Vision

Models” by Hao-Wen Dong, Xiaoyu Liu, Jordi Pons, Gautam Bhattacharya, Santi-

ago Pascual, Joan Serrà, Taylor Berg-Kirkpatrick and Julian McAuley, which was

published in the Proceedings of the IEEE Workshop on Applications of Signal

Processing to Audio and Acoustics (WASPAA) in 2023. The dissertation author

was the primary investigator and author of this paper.
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Appendices

7.A Implementation Details of the Diffusion Prior Models

The diffusion prior models used in this paper are based on the open-source imple-

mentation of DALL-E 2 in (DALLE2 PyTorch n.d.[b]). Specifically, the input to the models is a

sequence formed in the order of the encoded CLIP text tokens, the CLIP text embedding, the

diffusion step embedding, the noised CLIP image embedding, and a learnable final input

embedding. This sequence is fed to a 12-layer transformer consisting of causal multi-head

self-attention and feed-forward networks. The last layer’s final output vector corresponding

to the final input embedding serves as the prediction of the target CLIP image embedding.

For the diffusion prior model used in CLIPSonic-SD, we use a cosine noise schedule

with 1000 diffusion steps during training, and 64 steps at inference time. At each diffusion

step during training, we minimize the mean squared error between the predicted and the

target CLIP image embeddings. Based on DALL-E 2 (Ramesh et al., 2022), we also explore

the classifier-free guidance for training the diffusion prior models by randomly replacing

the encoded text tokens and the CLIP text embedding with learnable placeholders 10% of

the time. However, at inference time, we empirically find that using no guidance yields

the best results. At inference time, for each CLIP text embedding, we generate two CLIP

image embeddings from the diffusion prior model, and select the one with a higher cosine

similarity to the CLIP text embedding. To train the model, we use the AdamW optimizer

with a learning rate of 0.0001, a batch size of 32, a weight decay of 0.06, and we apply an

exponential moving average on the model parameters with a decay factor of 0.9999. The

diffusion prior models in CLIPSonic-SD are trained on MUSIC and VGGSound independently

until convergence at around 200k steps.

7.B CLAP Scores for BigVGAN Reconstructions

In Figure 7.3, we observe that the CLAP scores of the BigVGAN reconstruction using

the ground truth mel spectrogram, in many cases, are lower than those of the proposed

systems, which indicates lower relevance between the ground truth audio and the text query.
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Table 7.5. CLAP scores computed on BigVGAN reconstructions using a sliding window.

Window size Mode VGGSound MUSIC

4 sec Max 0.273 0.280
4 sec Mean 0.195 0.234
4 sec Min 0.111 0.185

10 sec - 0.204 0.272

In order to adhere to the length of the test data, the BigVGAN CLAP scores are obtained based

on the entire 10-sec audio samples. However, empirical listening finds that some segments

within the 10-sec samples correspond poorly to the text queries. To further investigate the

correspondence, We also compute the BigVGAN CLAP scores using a 4-sec sliding window

(consistent with the synthesized sample length) with a hop size of 0.5 sec, and report the

maximum, mean, and the minimum scores over all 4-sec segments within a 10-sec sample

as the overall score of that sample.

As shown in Table 7.5, the maximum scores on both datasets are higher than the

rest, which supports our observation by listening. On VGGSound, the maximum CLAP

score also exceeds those of CLIPSonic-ZS, CLIPSonic-PD, and CLIPSonic-SD (see Table 7.1).

On MUSIC, there is a smaller gap between the maximum CLAP score and that obtained

using the entire 10-sec audio, indicating a more uniform relevance level within a sample.

However, the studied models trained on MUSIC still outperform the BigVGAN reconstruction

in terms of the maximum CLAP score (except for CLIPSonic-PD, and CLIPSonic-ZS without

using the classifier free guidance, see Figure 7.3). In addition to the contribution of the

classifier free guidance (Section 7.4.1), the remaining reason requires further investigation.

Possible directions include manually inspecting and removing samples with poor audio-text

correspondence, and also finetuning CLAP on MUSIC.

7.C Limitations

We observe some limitations of the proposed method. First, as CLIPSonic is condi-

tioned on the CLIP embedding of a single video frame, it is not readily applicable to handle

more complex text queries that involve sequences of events or dynamic interactions between

objects. A more powerful language-vision model that can understand videos is required to
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apply our proposed method to leverage the rich temporal information in videos. Second,

since the conditioning signals are extracted from videos, CLIPSonic cannot learn audio

concepts that have little meaning in the visual domain, such as pitch, prosody, genre, and

tempo. This represents one of the fundamental limitations of approaches that use the vi-

sual domain as a bridge to learn the text-audio correspondence. Finally, CLIPSonic offers

limited controllability in generating semantically complex audio, such as speech or music

given specific words or scores, respectively. However, the proposed method may serve as

a pretraining approach for training language-audio models, where we can first pretrain a

language-audio model on a large dataset with only unlabeled videos and later finetune the

model on a small dataset with audio-text pairs.
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Chapter 8

Conclusion

Works of art make rules;

rules do not make works of art.

—Claude Debussy

In this dissertation, I have presented my research in three directions: multitrack

music generation (Chapters 2 and 3), assistive music creation tools (Chapters 4 and 5) and

multimodal learning for audio and music (Chapters 6 and 7).

Multitrack music generation. In Chapter 2, I presented MusPy, a new Python

library for symbolic music generation (Dong et al., 2020). With MusPy, I conducted the first

large-scale experiment that measures the cross-dataset generalizability of music generation

models, a process which ismade easier byMusPy’s datasetmanagement system. In Chapter 3,

I proposed a new deep learning model for generating multi-instrument music that achieves

comparable performance against state-of-the-art systems (Dong et al., 2023a). Moreover, I

also presented the first systematic analysis of musical self-attention and showed that our

proposed model learns relative self-attention in certain aspects of music such as beats,

positions and pitches.

Assistive music creation tools. In Chapter 4, I developed the first deep learning

model for automatic instrumentation that can find applications in assistive composing

tools and intelligent keyboards (Dong et al., 2021). I also demonstrated the potential for

our proposed models to produce alternative convincing instrumentations for an existing

arrangement. In Chapter 5, I presented the first deep neural network-based polyphonic
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synthesizer that can synthesize a score into a natural, expressive performance, achieving

competitive quality against the baseline model, a conditional generative audio model, in

terms of pitch accuracy, timbre and noise level (Dong et al., 2022).

Multimodal learning for audio and music. In Chapter 6, I developed the first text-

queried sound separation model that can be trained without any text-audio pairs, achieving

competitive performance against a supervised model in some settings (Dong et al., 2023d).

In Chapter 7, I presented the first text-to-audio synthesis model that requires no text-audio

pairs during training (Dong et al., 2023b). Further, while we focus on text-to-audio synthesis,

the proposed model can also generate audio from image queries, and it achieves competitive

performance against a state-of-the-art image-to-audio synthesis model in the subjective

listening test.

8.1 Future Directions

Multimodal generative AI with music and audio. Multimodal content genera-

tion has quickly become the next frontier of generative AI. Many recently-released large

pretrained multimodal contrastive models lay the foundations for exciting creative appli-

cations to film, video and audiobook generation. I am particularly interested in working

on multimodal generative models for background music and sound effect generation for

videos, audiobooks and games. I would also like to explore fusing multiple controlling

signals from different modalities (e.g., text, image, video, audio, emotion measurements,

etc.) for controllable music and audio generation. My long-term goal along this direction

is to develop next-generation interfaces for music and audio editing equipped with intuitive

multimodal controls. I will seek collaborations with other faculty members in comp uter

vision and natural language processing to pursue research along this direction.

Interactive AI tools for music and audio production. While recent deep learning-

based music and audio generation systems can create short, plausible music excerpts, they

offer limited usability and controllability for humans to step in. Instead of building a fully-

automated generation system, I want to develop interactable music and audio production tools

equipped with intermediate controls that humans can interact with. For example, recently we
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Figure 8.1. An overview of my future research directions.

have seen preliminary results on leveraging large language models (LLMs) for building a

compositional, human-usable audio generation system (Liu et al., 2023b). Moreover, subject-

driven personalization (Ruiz et al., 2023) and instruction-based editing (Brooks et al., 2023)

has lately been attracting attentions in the image generation community, and I would like to

explore opportunities in these directionswith an eye to integrate these tools into professional

creative workflows in music and audio production software. I will seek collaborations with

other faculty members in human-computer interaction to explore new creative interfaces

for music and audio production.

Human-like machine leaning algorithms for music. Richard Feynman once said:

“What I cannot create, I do not understand.” This echos my motivations of pursuing music

generation research—generation represents the highest-level of understanding. A long-term

direction of my research is to develop human-like machine learning algorithms that can

learn to create music in a way similar to how humans learn music. For example, existing

data-driven approaches for music generation usually rely on reading a large collection of

musical scores. Unlike machines, however, humans learn music mostly through listening

and practicing music rather than reading scores over and over again. I am thus interested
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in exploring novel machine learning models that can learn symbolic music composition

through listening to a large collection of musical audio data. Some recent work (Castellon et

al., 2021) has shown preliminary results towards this direction. In my view, music possesses

a unique complexity that might lead to new breakthroughs in AI and contribute towards the

long-lasting pursuit of artificial general intelligence.

8.2 Broader Impacts

I envision my research to be integrated into the audio content creation workflow

for professional artists and amateurs. Through providing new tools and interfaces to make

music, my research could lower the barrier for music composition and empower novices

to create their own music. Moreover, it could provide content creators (e.g., TikTokers,

YouTubers and Twitch streamers) with royalty-free materials to avoid unintended copyright

infringement. My research could also find applications in music education and therapy,

where creating personalized courses can be costly. Finally, we could gain insights into

the future of human-AI music co-creation though the interactions between human and

automatic music composition systems. I envision this to foster the discussions in human-AI

relationships in other fields.

Without deviation from the norm,

progress is not possible.

—Frank Zappa
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