

Curating an A Cappella Dataset for Source Separation

Ting-Yu Pan*, Kexin Phyllis Ju*, Hao-Wen Dong

BACKGROUND

- A cappella music presents unique challenges for source separation due to its diverse vocal styles and the presence of vocal percussion.
- Current a cappella datasets are limited in size and diversity (20 40 songs), hindering the development of robust source separation models.

A CAPPELLA DATASET

55 Studio-Quality A cappella Songs

Mandarin, English, Korean, and Hakka Chinese

Golden Dataset

AI Augmentation

Pitch Shifting, Voice Cloning, **Voice Synthesis**

Augmented Dataset

MIDI and MusicXML

Symbolic Dataset

TWO-STEP SOURCE SEPARATION PIPELINE

Vocal Percussion (VP) Extraction

We configured Demucs to output four stems and treat its "drums" channel as VP.

Vocal Harmony Separation

We will apply UMSS to decompose the "VPless" residual into SATB parts.

PRELIMINARY EXPERIMENT

Fine-tune Source Separation baseline model -"Demucs" for VP extraction

Our fine-tuned model improved VP SDR from 5.22 dB to 7.62 dB (a 2.4 dB gain), outperforming both the drum-finetuned and official baselines without harming harmonic separation.

Model	VP	Other	All
Pretrained (official)	5.22	10.66	7.94
Pretrained (drum)	3.66	9.24	6.45
Fine-tuned (ours)	7.62	11.63	9.62

WHY A CAPPELLA SOURCE SEPARATION?

A Cappella Training System

