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ABSTRACT

A cappella music presents unique challenges for source
separation due to its diverse vocal styles and the presence
of vocal percussion. Current a cappella datasets are lim-
ited in size and diversity, hindering the development of ro-
bust source separation models. To address this, we curated
a dataset of 55 studio-quality a cappella songs performed
by 3 professional groups. Then, we introduce a two-step
a cappella source separation pipeline and present prelim-
inary results on vocal percussion separation. Finally, we
discuss future work on Al-driven dataset augmentation and
supporting tools for asynchronous a cappella rehearsals.

1. INTRODUCTION

A cappella is a music genre performed solely by the human
voice and body [1]. Unlike large choral ensembles, a cap-
pella groups typically feature one singer per part and per-
form diverse vocal styles [2]. A distinctive feature is vocal
percussion (VP), or beatboxing, which provides a rhythmic
backbone by “imitating existing drum sounds” but is rarely
notated [2], limiting the effectiveness of score-informed
separation methods. These characteristics position a cap-
pella between traditional choirs and pop bands, demanding
source separation techniques capable of handling both in-
tricate harmonies and percussive vocal effects.

A significant challenge in developing source separa-
tion models for a cappella music is the scarcity of large,
high-quality datasets with isolated vocal stems. Existing a
cappella datasets [3—5] contain only 20—40 songs totaling
100-200 minutes of audio, which is insufficient for train-
ing robust models. To address this limitation, we compiled
a "golden dataset": a repository of 55 a cappella songs per-
formed by 3 professional groups.

Based on the dataset, we introduce a two-step source
separation pipeline for a cappella music and present pre-
liminary results on VP separation, which demonstrate fine-
tuning on our curated dataset yields a &~ 10% relative
gain in VP separation SDR over pretrained models(see sec-
tion 4). Next, inspired by Sarkar et al.’s work with syn-
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thetic data for chamber ensemble separation [6], we pro-
pose an Al-driven approach to expand the "golden dataset”
through voice cloning and synthesis, supplemented with
symbolic a cappella data in MIDI and MusicXML for-
mats. We believe that generative Al can play a role in cu-
rating audio datasets, particularly in resource-limited do-
mains such as the underexplored area of a cappella. Fi-
nally, we discuss potential applications of the dataset and
source separation model for a cappella.

2. INITIAL "GOLDEN DATASET"

At the core of our dataset is the “Golden Dataset,” a collec-
tion of 55 studio-quality a cappella songs performed by 3
distinct a cappella groups. These recordings offer a diverse
representation of styles, such as pop music, jazz, R&B, and
medley. Each track was professionally recorded in studios,
with isolated stems for individual parts (e.g., soprano, alto,
tenor, bass (SATB) and VP). The recordings cover lan-
guages including English, Mandarin, Korean, and Hakka
Chinese. This dataset serves as the foundation for building
an a cappella source separation model.

3. A TWO-STEP SOURCE SEPARATION
PIPELINE FOR A CAPPELLA

Modern a cappella blends percussive and pitched voices,
so we first evaluated a state-of-the-art choral model [7] on
high-quality covers (e.g., Pentatonix [8]). Informal listen-
ing tests showed that VP was not isolated but remained
across the SATB outputs. To address this, we propose:

Step 1: Vocal Percussion Extraction (Ongoing) We
configure Demucs [9] to output four stems and treat its
“drums” channel as VP. Human listening and preliminary
SDR gains (see §4) confirm this reliably captures VP.

Step 2: Vocal Harmony Separation (Future Work) Sub-
tracting the extracted VP yields a “VP-less” mix like a tra-
ditional choral track. We will apply UMSS [7] (or a similar
model) to decompose this residual into SATB parts.

This sequence leverages Demucs’s strength on rhythmic
sources and a choral model’s strength on pitched voices,
ensuring each stage uses the most suitable tool.

4. PRELIMINARY RESULTS

Our experiments evaluate a two-step source separation
pipeline, focusing on the first step—VP extraction. All
models are Demucs variants. We benchmark pretrained
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models to establish a baseline and then fine-tune the best
performer on our data to gauge benefit of specialization.

4.1 Experimental Setup

While our full “golden” dataset comprises 55 a cappella
tracks, only 17 have completed preprocessing. For these
preliminary experiments, we split them as follows:

Training (10 tracks): Studio recordings from Group A
for fine-tuning.

Validation (2 tracks): Additional Group A recordings.

Test Dataset 1 (In-Distribution, 2 tracks): Held-out
Group A studio recordings.

Test Dataset 2 (Out-of-Distribution): This dataset
contains three studio tracks from Groups B and C.

4.2 Analysis of Results

We first tested two pretrained Demucs models: Model 1,
the official ht demucs model, and Model 2, a version fine-
tuned on a drum dataset !. Table 1 shows that Model 1
outperforms Model 2 on both test sets, confirming that VP
behaves differently from conventional drum sources. We
then fine-tuned htdemucs to output two stems (VP vs.
Other) with the configurations in Table 3. As shown in Ta-
ble 2, VP SDR on Test 1 rises from 3.09 dB to 3.3-3.4 dB
after fine-tuning (~ 10% relative gain), demonstrating that
even limited, targeted training yields a notable improve-
ment in VP separation, while the minimal differences be-
tween configurations likely reflect our small dataset size.

Model Test Dataset 1 Test Dataset 2
VP  Other All VP  Other All
Pretrained Model 1 | 3.09 928 6.18 | 3.03 2043 11.73
Pretrained Model 2 | 1.07 7.88 447 | 271 17.00 9.86

Table 1: SDR (dB) of pretrained models.

Model Test Dataset 1 Test Dataset 2
VP Other Al VP  Other All
Pretrained Model 1 | 3.09 928 6.18 | 3.03 2043 11.73
Finetuned Model A | 3.43 925 6.34 | 3.07 2048 11.78
Finetuned Model B | 3.37 929 633 | 3.04 20.73 11.89
Finetuned Model C | 3.40 9.24 6.32 | 3.07 2038 11.72
Finetuned Model D | 338 9.25 6.31 | 3.04 2032 11.68

Table 2: SDR (dB) before and after fine-tuning.

Parameter Finetuned Models

A B C D
Epoch 10 20 10 20
Weights* 1.0,1.0,1.0,1.0 | 1.0,1.0,1.0,1.0 | 1.0,0.0,0.0,1.0 | 1.0,0.0,0.0, 1.0

* Weights correspond to the stems [VP, dummy1, dummy2, other]

Table 3: Configuration of Finetuned Models

5. DATASET AUGMENTATION

To expand the dataset of 55 songs, we plan to augment the
recordings in the following ways.

Pitch shifting: To enhance model robustness against
minor tuning variations, we will generate versions of each

"https://github.com/facebookresearch/demucs

track in the “golden dataset” shifted by —1 and +1 semi-
tone. This augmentation triples the number of available
audio tracks for each song.

Voice cloning: Using voice cloning techniques?, we
will convert each audio track (including the pitch-shifted
variants) into a different timbre. This process doubles the
number of tracks and enables the creation of both all-Al
mixes (where all parts are cloned) and hybrid mixes (where
Al-cloned and original human voices are combined).

Voice synthesis: We experimented with Al singing
voice synthesizers (e.g., VOCALOID6? and Synthesizer
V Studio 2 Pro*). These tools can transform a MIDI file
with annotated syllables into an Al singing voice that re-
produces both melody and lyrics. We input MIDI files of
each voice part to generate a cappella recordings. The re-
sulting quality was satisfactory, with Synthesizer V Studio
2 Pro producing more lifelike results for English a cappella
songs. Al voice synthesis potentially allows us to augment
our dataset by adding additional songs.

Symbolic Data: To further enrich our dataset, we will
include a symbolic dataset comprising a cappella arrange-
ments in MIDI and MusicXML formats. These arrange-
ments are sourced from MuseScore and include the songs
present in both the “golden dataset” and the Al voice syn-
thesis dataset.

6. DISCUSSION & FUTURE WORK

Our project is based on the belief that generative Al can
play a role in augmenting audio datasets [6] for resource-
limited domains such as a cappella. By leveraging voice
cloning and synthesis technologies, we can generate new
audio samples from a small set of data in a cost-effective
manner.

A key contribution of our dataset is its potential to sup-
port model training and evaluation for various tasks, such
as a cappella source separation. Because our dataset in-
cludes recordings that differ in timbre, pitch, and origin
(Al-generated vs. human-performed), it can also be used
for voice style conversion and singer identification [10].
Furthermore, the symbolic dataset paired with singing au-
dio can be utilized as a baseline for evaluating the perfor-
mance of generative audio models.

Our preliminary experiments indicate a promising di-
rection for source separation of a cappella music. Fine-
tuning on our initial dataset yielded a ~ 10% relative gain
in VP separation SDR over pretrained models.

In the future work, we will augment the dataset by lever-
aging Al and explore practical applications of the source
separation model, such as the development of an asyn-
chronous a cappella rehearsal system. A future design
could allow singers to rehearse asynchronously by listen-
ing to or mixing subsets of separated voice parts. This
could support a more flexible and collaborative rehearsal
when group members are geographically dispersed.

2https://studio.moises.ai/voice-studio/
3https://www.vocaloid.com/
4https://dreamtonics.com/synthesizerv/
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