
Flow-based Deep Generative Models

Jiarui Xu and Hao-Wen Dong

1

Outlines

Deep generative models

Different generative models
GAN vs VAE vs Flow-based models

Linear algebra basics

Jacobian matrix and determinant
Change of variable theorem

Normalizing Flows

NICE, RealNVP and Glow

Autoregressive Flows

MAF and IAF

2

Deep Generative Models

3

Different generative models

Ian Goodfellow, "Generative Adversarial Networks," NeurIPS tutorial, 2016.
4

Generative Adversarial Networks (GANs)

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio,
"Generative Adversarial Nets," NeurIPS, 2014. 5

Generative Adversarial Networks (GANs)

A discriminator estimates the probability of a given sample coming from the real
dataset.
A generator outputs synthetic samples given a noise variable input.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio,
"Generative Adversarial Nets," NeurIPS, 2014.

D

G

5

Generative Adversarial Networks (GANs)

Define:

Generator with parameter , Discriminator with parameter .

Data distribution over noise input : (usually uniform distribution)

Data distribution over real sample:

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio,
"Generative Adversarial Nets," NeurIPS, 2014.

G θg D θd

z (z)pz

(x)pdata

6

Generative Adversarial Networks (GANs)

Define:

Generator with parameter , Discriminator with parameter .

Data distribution over noise input : (usually uniform distribution)

Data distribution over real sample:

 should distinguish between real and fake data:

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio,
"Generative Adversarial Nets," NeurIPS, 2014.

G θg D θd

z (z)pz

(x)pdata

D

[logD(x) + log(1 − D (G(z)))]max
θd

Ex∼pdata
Ez∼p(z)

6

Generative Adversarial Networks (GANs)

Define:

Generator with parameter , Discriminator with parameter .

Data distribution over noise input : (usually uniform distribution)

Data distribution over real sample:

 should distinguish between real and fake data:

 should be able to fool discriminator:

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio,
"Generative Adversarial Nets," NeurIPS, 2014.

G θg D θd

z (z)pz

(x)pdata

D

[logD(x) + log(1 − D (G(z)))]max
θd

Ex∼pdata
Ez∼p(z)

G

log(1 − D (G(z)))min
θg

Ez∼p(z)

6

Generative Adversarial Networks (GANs)

Define:

Generator with parameter , Discriminator with parameter .

Data distribution over noise input : (usually uniform distribution)

Data distribution over real sample:

When combining two targets together, and are playing a minimax game:

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio,
"Generative Adversarial Nets," NeurIPS, 2014.

G θg D θd

z (z)pz

(x)pdata

G D

[logD(x) + log(1 − D (G(z)))]min
θg

max
θd

Ex∼pdata
Ez∼p(z)

7

Generative Adversarial Networks (GANs)

AI Gharakhanian, "Generative Adversarial Networks," blog post, 2017.
8

https://www.kdnuggets.com/2017/01/generative-adversarial-networks-hot-topic-machine-learning.html

Variational Autoencoders (VAEs)

Some background: Autoencoders

Fei-Fei Li, Ranjay Krishna, and Danfei Xu, "Lecture 11: Generative Models," lecture note, Stanford CS231n, 2020.
9

http://cs231n.stanford.edu/slides/2020/lecture_11.pdf

Variational Autoencoders (VAEs)

Some background: Autoencoders
Features capture factors of variation in
training data.

Fei-Fei Li, Ranjay Krishna, and Danfei Xu, "Lecture 11: Generative Models," lecture note, Stanford CS231n, 2020.
9

http://cs231n.stanford.edu/slides/2020/lecture_11.pdf

Variational Autoencoders (VAEs)

Some background: Autoencoders
Features capture factors of variation in
training data.

But we can’t generate new images from
an autoencoder because we don’t know
the space of .

Fei-Fei Li, Ranjay Krishna, and Danfei Xu, "Lecture 11: Generative Models," lecture note, Stanford CS231n, 2020.

z

9

http://cs231n.stanford.edu/slides/2020/lecture_11.pdf

Variational Autoencoders (VAEs)

Some background: Autoencoders
Features capture factors of variation in
training data.

But we can’t generate new images from
an autoencoder because we don’t know
the space of .

How do we make autoencoder a
generative model?

Fei-Fei Li, Ranjay Krishna, and Danfei Xu, "Lecture 11: Generative Models," lecture note, Stanford CS231n, 2020.

z

9

http://cs231n.stanford.edu/slides/2020/lecture_11.pdf

Variational Autoencoders (VAEs)

We sample a from a prior distribution . Then is generated from a conditional
distribution . The process is

Diederik P. Kingma and Max Welling, "Auto-Encoding Variational Bayes," ICLR, 2014.

z (z)pθ x

(x ∣ z)pθ

(x) = ∫ (x ∣ z) (z)dzpθ pθ pθ

10

Variational Autoencoders (VAEs)

We sample a from a prior distribution . Then is generated from a conditional
distribution . The process is

However, it is very expensive to check all for integral (intractable). To narrow down the
value space, consider the posterior and approximate it by .

Diederik P. Kingma and Max Welling, "Auto-Encoding Variational Bayes," ICLR, 2014.

z (z)pθ x

(x ∣ z)pθ

(x) = ∫ (x ∣ z) (z)dzpθ pθ pθ

z
(z ∣ x)pθ (z ∣ x)qϕ

10

Variational Autoencoders (VAEs)

Diederik P. Kingma and Max Welling, "Auto-Encoding Variational Bayes," ICLR, 2014.

log (x)pθ

= [log (x)]Ez∼ (z∣x)qϕ
pθ

= [log]Ez∼ (z∣x)qϕ

(x ∣ z) (z)pθ pθ

(z ∣ x)pθ

= [log]Ez∼ (z∣x)qϕ

(x ∣ z) (z)pθ pθ

(z ∣ x)pθ

(z ∣ x)qϕ

(z ∣ x)qϕ

= [log (x ∣ z)] − [log]+ [log]Ez∼ (z∣x)qϕ
pθ Ez∼ (z∣x)qϕ

(z ∣ x)qϕ

(z)pθ
Ez∼ (z∣x)qϕ

(z ∣ x)qϕ

(z ∣ x)pθ

= [log (x ∣ z)] − ((z ∣ x) ∥ (z)) + ((z ∣ x) ∥ (z ∣ x))Ez∼ (z∣x)qϕ
pθ DKL qϕ pθ DKL qϕ pθ

≥ [log (x ∣ z)] − ((z ∣ x) ∥ (z))Ez∼ (z∣x)qϕ
pθ DKL qϕ pθ

= ELBO(x;θ,ϕ)
11

Variational Autoencoders (VAEs)

We sample a from a prior distribution . Then is generated from a conditional
distribution . The process is

However, it is very expensive to check all for integral (intractable). To narrow down the
value space, consider the posterior and approximate it by .

Diederik P. Kingma and Max Welling, "Auto-Encoding Variational Bayes," ICLR, 2014.

z (z)pθ x

(x ∣ z)pθ

(x) = ∫ (x ∣ z) (z)dzpθ pθ pθ

z
(z ∣ x)pθ (z ∣ x)qϕ

12

Variational Autoencoders (VAEs)

We sample a from a prior distribution . Then is generated from a conditional
distribution . The process is

However, it is very expensive to check all for integral (intractable). To narrow down the
value space, consider the posterior and approximate it by .

The data likelihood

Diederik P. Kingma and Max Welling, "Auto-Encoding Variational Bayes," ICLR, 2014.

z (z)pθ x

(x ∣ z)pθ

(x) = ∫ (x ∣ z) (z)dzpθ pθ pθ

z
(z ∣ x)pθ (z ∣ x)qϕ

log (x) = [log (x ∣ z)] − ((z ∣ x)∥ (z)) + ((z ∣ x)∥ (z ∣ x))pθ Ez∼ (z∣x)qϕ
pθ DKL qϕ pθ DKL qϕ pθ

≥ [log (x ∣ z)] − ((z ∣ x) ∥ (z)) = ELBO(x;θ,ϕ)Ez∼ (z∣x)qϕ
pθ DKL qϕ pθ

12

Variational Autoencoders (VAEs)

We sample a from a prior distribution . Then is generated from a conditional
distribution . The process is

However, it is very expensive to check all for integral (intractable). To narrow down the
value space, consider the posterior and approximate it by .

The data likelihood

 is tractable, .

Diederik P. Kingma and Max Welling, "Auto-Encoding Variational Bayes," ICLR, 2014.

z (z)pθ x

(x ∣ z)pθ

(x) = ∫ (x ∣ z) (z)dzpθ pθ pθ

z
(z ∣ x)pθ (z ∣ x)qϕ

log (x) = [log (x ∣ z)] − ((z ∣ x)∥ (z)) + ((z ∣ x)∥ (z ∣ x))pθ Ez∼ (z∣x)qϕ
pθ DKL qϕ pθ DKL qϕ pθ

≥ [log (x ∣ z)] − ((z ∣ x) ∥ (z)) = ELBO(x;θ,ϕ)Ez∼ (z∣x)qϕ
pθ DKL qϕ pθ

ELBO(x;θ,ϕ) log (x) → ELBO(x;θ,ϕ)max
θ

pθ max
θ,ϕ

12

Variational Autoencoders (VAEs)

Lilian Weng, "From Autoencoder to Beta-VAE," blog post, 2018.
13

https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html

GANs vs VAEs vs Flow-based models

Optimization target

14

GANs vs VAEs vs Flow-based models

Optimization target
GAN:

[log (x) + log(1 − ((z)))]min
θg

max
θd

Ex∼pdata
Dθd Ez∼p(z) Dθd Gθg

14

GANs vs VAEs vs Flow-based models

Optimization target
GAN:

VAE:

[log (x) + log(1 − ((z)))]min
θg

max
θd

Ex∼pdata
Dθd Ez∼p(z) Dθd Gθg

[log (x ∣ z)] − ((z ∣ x) ∥ (z))max
θ,ϕ

Ez∼ (z∣x)qϕ
pθ DKL qϕ pθ

= ELBO(x;θ,ϕ)

14

GANs vs VAEs vs Flow-based models

Optimization target
GAN:

VAE:

Flow-based generative models:

[log (x) + log(1 − ((z)))]min
θg

max
θd

Ex∼pdata
Dθd Ez∼p(z) Dθd Gθg

[log (x ∣ z)] − ((z ∣ x) ∥ (z))max
θ,ϕ

Ez∼ (z∣x)qϕ
pθ DKL qϕ pθ

= ELBO(x;θ,ϕ)

log (x)max
θ

Ex∼pdata
pθ

14

GANs vs VAEs vs Flow-based models

Lilian Weng, "Flow-based Deep Generative Models," blog post, 2018.
15

https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

How to estimate data likelihood directly?

16

Linear Algebra Basics

17

Jacobian matrix

Given a function that takes as input a -dimensional input vector and
output a -dimensional vector, the Jacobian matrix of is defined as

which is the matrix of all first-order partial derivatives. The entry on the -th row and -th
column is

f : →R
n

R
m n x

m f

J =

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢

∂f1

∂x1

∂f2

∂x1

⋮
∂fm
∂x1

∂f1

∂x2

∂f2

∂x2

⋮
∂fm
∂x2

…

…

⋮

…

∂f1

∂xn
∂f2

∂xn

⋮
∂fm
∂xn

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥

i j

=Jij
∂fi
∂xj

18

Change of variable theorem

Given some random variable and a invertible mapping (i.e.,
). Then, the distribution of is

z ∼ π(z) x = f(z)
z = (x) = g(x)f−1 x

p(x) = π(z) = π(g(x))
∣
∣
∣
dz

dx

∣
∣
∣

∣
∣
∣
dg

dx

∣
∣
∣

19

Change of variable theorem

Given some random variable and a invertible mapping (i.e.,
). Then, the distribution of is

The multivariate version takes the following form:

where is the Jacobian determinant of .

z ∼ π(z) x = f(z)
z = (x) = g(x)f−1 x

p(x) = π(z) = π(g(x))
∣
∣
∣
dz

dx

∣
∣
∣

∣
∣
∣
dg

dx

∣
∣
∣

p(x) = π(z) det = π(g(x)) det
∣
∣
∣

dz

dx

∣
∣
∣

∣
∣
∣

dg

dx

∣
∣
∣

det dg

dx
g

19

Normalizing Flows

20

Normalizing flows

Key: Transform a simple distribution into a complex one by applying a sequence of invertible
transformations.

Lilian Weng, "Flow-based Deep Generative Models," blog post, 2018.
21

https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

Normalizing flows

Key: Transform a simple distribution into a complex one by applying a sequence of invertible
transformations.

In each step, substitute the variable with the new one by change of variables theorem.
Eventually, obtain a distribution close enough to the target distribution.

Lilian Weng, "Flow-based Deep Generative Models," blog post, 2018.
21

https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

Normalizing flows

For each step, we have , and . Now,

Thus, we have .
Danilo Jimenez Rezende and Shakir Mohamed, "Variational Inference with Normalizing Flows," ICML, 2015.

∼ ()zi pi zi = ()zi fi zi−1 = ()zi−1 gi zi

()pi zi = (()) detpi−1 gi zi
∣
∣
∣

d ()gi zi

dzi

∣
∣
∣

= () detpi−1 zi−1
∣
∣
∣

dzi−1

d ()fi zi−1

∣
∣
∣

= () detpi−1 zi−1

∣

∣
∣ ()

d ()fi zi−1

dzi−1

−1∣

∣
∣

= ()pi−1 zi−1 det
∣
∣
∣

dfi

dzi−1

∣
∣
∣
−1

(by change of variables theorem)

(by definition)

(by inverse function theorem)

(by detM det() = det I = 1)M−1

log () = log () − log detpi zi pi−1 zi−1
∣
∣

dfi

dzi−1

∣
∣

22

Normalizing flows

Now, we obtain

Recall that .

Thus, we have

Danilo Jimenez Rezende and Shakir Mohamed, "Variational Inference with Normalizing Flows," ICML, 2015.

log () = log () − log detpi zi pi−1 zi−1
∣
∣

dfi

dzi−1

∣
∣

x = = ∘ ∘ ⋯ ∘ ()zK fK fK−1 f1 z0

logp(x) = log ()pK zK

= log () − log detpK−1 zK−1
∣
∣
∣

dfK

dzK−1

∣
∣
∣

= …

= log () − log detp0 z0 ∑
i=1

K ∣
∣
∣

dfi

dzi−1

∣
∣
∣

23

Normalizing flows

In normalizing flows, the exact log-likelihood of input data is

Danilo Jimenez Rezende and Shakir Mohamed, "Variational Inference with Normalizing Flows," ICML, 2015.

logp(x) x

logp(x) = log () − log detp0 z0 ∑
i=1

K ∣
∣
∣

dfi

dzi−1

∣
∣
∣

24

Normalizing flows

In normalizing flows, the exact log-likelihood of input data is

To make the computation tractable, it requires

 is easily invertible
The Jacobian determinant of is easy to compute

Danilo Jimenez Rezende and Shakir Mohamed, "Variational Inference with Normalizing Flows," ICML, 2015.

logp(x) x

logp(x) = log () − log detp0 z0 ∑
i=1

K ∣
∣
∣

dfi

dzi−1

∣
∣
∣

fi
fi

24

Normalizing flows

In normalizing flows, the exact log-likelihood of input data is

To make the computation tractable, it requires

 is easily invertible
The Jacobian determinant of is easy to compute

Then, we can train the model by maximizing the log-likelihood over some training dataset

Danilo Jimenez Rezende and Shakir Mohamed, "Variational Inference with Normalizing Flows," ICML, 2015.

logp(x) x

logp(x) = log () − log detp0 z0 ∑
i=1

K ∣
∣
∣

dfi

dzi−1

∣
∣
∣

fi
fi

D

LL(D) = logp(x)∑
x∈D

24

NICE

The core idea behind NICE (Non-linear Independent Components Estimation) is to

1. split into two blocks and

Laurent Dinh, David Krueger, and Yoshua Bengio, "NICE: Non-linear Independent Components Estimation," ICLR, 2015.

x ∈ R
D ∈x1 R

d ∈x2 R
D−d

25

NICE

The core idea behind NICE (Non-linear Independent Components Estimation) is to

1. split into two blocks and

2. apply the following transformation from to

where is an arbitrarily function (e.g., a deep neural network).

Laurent Dinh, David Krueger, and Yoshua Bengio, "NICE: Non-linear Independent Components Estimation," ICLR, 2015.

x ∈ R
D ∈x1 R

d ∈x2 R
D−d

(,)x1 x2 (,)y1 y2

{y1
y2

= x1

= + m()x2 x1

m(⋅)

25

NICE - Additive coupling layers

The transformation

is trivially invertible.

Laurent Dinh, David Krueger, and Yoshua Bengio, "NICE: Non-linear Independent Components Estimation," ICLR, 2015.

{y1
y2

= x1

= + m()x2 x1

{x1

x2

= y1
= − m()y2 y1

26

NICE - Additive coupling layers

The transformation

has a unit Jacobian determinant.

Note that NICE is a type of volume-preserving flows as it has a unit Jacobian determinant.

Laurent Dinh, David Krueger, and Yoshua Bengio, "NICE: Non-linear Independent Components Estimation," ICLR, 2015.

{y1
y2

= x1

= + m()x2 x1

J = []
Id

∂m()x1

∂x1

0d×(D−d)

ID−d

det(J) = I

27

NICE - Alternating pattern

Some dimensions remain unchanged after the transform

alternate the dimensions being modified
3 coupling layers are necessary to allow all dimensions to influence one another

Laurent Dinh, David Krueger, and Yoshua Bengio, "NICE: Non-linear Independent Components Estimation," ICLR, 2015.
Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio, "Density Estimation using Real NVP," ICLR, 2017. 28

NICE - Experiments on MNIST

Settings: 784 dimensions (28 28), 6 additive coupling layers×

29

RealNVP

The core idea behind RealNVP (Real-valued Non-Volume Preserving) is to

1. split into two blocks and

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio, "Density Estimation using Real NVP," ICLR, 2017.

x ∈ R
D ∈x1 R

d ∈x2 R
D−d

30

RealNVP

The core idea behind RealNVP (Real-valued Non-Volume Preserving) is to

1. split into two blocks and

2. apply the following transformation from to

where and are scale and translation functions that map to , and
denotes the element-wise product.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio, "Density Estimation using Real NVP," ICLR, 2017.

x ∈ R
D ∈x1 R

d ∈x2 R
D−d

(,)x1 x2 (,)y1 y2

{y1:d

yd+1:D

= x1:d

= ⊙ + t()xd+1:D es()x1:d x1:d

s(⋅) t(⋅) R
d

R
D−d ⊙

30

RealNVP

The core idea behind RealNVP (Real-valued Non-Volume Preserving) is to

1. split into two blocks and

2. apply the following transformation from to

where and are scale and translation functions that map to , and
denotes the element-wise product.

(Note that NICE does not have the scaling term.)

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio, "Density Estimation using Real NVP," ICLR, 2017.

x ∈ R
D ∈x1 R

d ∈x2 R
D−d

(,)x1 x2 (,)y1 y2

{y1:d

yd+1:D

= x1:d

= ⊙ + t()xd+1:D es()x1:d x1:d

s(⋅) t(⋅) R
d

R
D−d ⊙

30

RealNVP - Affine coupling layers

The transformation

is easily invertible.

(Note that it does not involve computing and .)

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio, "Density Estimation using Real NVP," ICLR, 2017.

{y1:d

yd+1:D

= x1:d

= ⊙ + t()xd+1:D es()x1:d x1:d

{x1:d

xd+1:D

= y1:d

= (− t()) ⊙yd+1:D x1:d e−s()x1:d

s−1 t−1

31

RealNVP - Affine coupling layers

The transformation

has a Jacobian determinant that is easy to compute.

(Note that it does not involve computing the Jacobian of and .)
Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio, "Density Estimation using Real NVP," ICLR, 2017.

{y1:d

yd+1:D

= x1:d

= ⊙ + t()xd+1:D es()x1:d x1:d

J = []
Id

∂yd+1:D

∂x1:d

0d×(D−d)

diag()es()x1:d

det(J) = = exp(s()∏
j=1

D−d

es(x1:d)j ∑
j=1

D−d

x1:d)j

s t

32

RealNVP - Experiments on toy data

Settings: 2D data, 5 affine coupling layers

33

RealNVP - Experiments on toy data

Settings: 2D data, 5 affine coupling layers

34

RealNVP - Experiments on MNIST

Settings: 784 dimensions (28 28), 5 affine coupling layers×

35

Glow

Actnorm:

Forward:
Backward:
Log-determinant:

Diederik P. Kingma and Prafulla Dhariwal, "Glow: Generative Flow with Invertible 1 1 Convolutions," NeurIPS, 2018×

y = s ⊙ x + b
x = s ⊙ (y − b)

h ⋅ w ⋅ log | |∑i si

36

Glow

Actnorm:

Forward:
Backward:
Log-determinant:

Invertible 1 1 convolution:

Forward:
Backward:
Log-determinant:

Diederik P. Kingma and Prafulla Dhariwal, "Glow: Generative Flow with Invertible 1 1 Convolutions," NeurIPS, 2018×

y = s ⊙ x + b
x = s ⊙ (y − b)

h ⋅ w ⋅ log | |∑i si

×

y = Wx
x = yW−1

h ⋅ w ⋅ log | det W|

36

Glow

Actnorm:

Forward:
Backward:
Log-determinant:

Invertible 1 1 convolution:

Forward:
Backward:
Log-determinant:

Affine coupling Layer: same as RealNVP

Diederik P. Kingma and Prafulla Dhariwal, "Glow: Generative Flow with Invertible 1 1 Convolutions," NeurIPS, 2018×

y = s ⊙ x + b
x = s ⊙ (y − b)

h ⋅ w ⋅ log | |∑i si

×

y = Wx
x = yW−1

h ⋅ w ⋅ log | det W|

36

Glow - Samples

Diederik P. Kingma and Prafulla Dhariwal, "Glow: Generative Flow with Invertible 1 1 Convolutions," NeurIPS, 2018×
37

Autoregressive Flows

38

Autoregressive flows

Key: Model the transformation in a normalizing flow as an autoregressive model.

In an autoregressive model, we assume that the current output depends only on the data
observed in the past and factorize the joint probability into the product of
the probability of observing conditioned on the past observations .

Lilian Weng, "Flow-based Deep Generative Models," blog post, 2018.

p(, , … ,)x1 x2 xD
xi , , … ,x1 x2 xi−1

p(x) = p(, , … ,)x1 x2 xD

= p() p(|) p(| ,) … p(| , , … ,)x1 x2 x1 x3 x1 x2 xD x1 x2 xD−1

= p(| , , … ,)∏
i=1

D

xi x1 x2 xi−1

= p(|)∏
i=1

D

xi x1:i−1

39

https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

Masked autoregressive flow (MAF)

Given two random variables and where is known but is
unknown. Masked autoregressive flow (MAF) aims to learn .

Sampling:

Note that this computation is slow as it is sequential and autoregressive.

George Papamakarios, Theo Pavlakou, and Iain Murray, "Masked Autoregressive Flow for Density Estimation," NeurIPS, 2017.
Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle, "MADE: Masked Autoencoder for Distribution Estimation," ICML, 2015.

z ∼ π(z) x ∼ p(x) π(z) p(x)
p(x)

∼ p(|) = ⊙ () + ()xi xi x1:i−1 zi σi x1:i−1 μi x1:i−1

40

Masked autoregressive flow (MAF)

Given two random variables and where is known but is
unknown. Masked autoregressive flow (MAF) aims to learn .

Sampling:

Note that this computation is slow as it is sequential and autoregressive.

Density estimation:

Note that this computation can be fast if we use the masking approach introduced in
MADE as it only requires one single pass to the network.

George Papamakarios, Theo Pavlakou, and Iain Murray, "Masked Autoregressive Flow for Density Estimation," NeurIPS, 2017.
Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle, "MADE: Masked Autoencoder for Distribution Estimation," ICML, 2015.

z ∼ π(z) x ∼ p(x) π(z) p(x)
p(x)

∼ p(|) = ⊙ () + ()xi xi x1:i−1 zi σi x1:i−1 μi x1:i−1

p(x) = p(|)∏
i=1

D

xi x1:i−1

40

Inverse autoregressive flow (IAF)

In MAF, we have . We can reverse it into

Now, if we swap and (let and), we get the inverse autoregressive flow (IAF)

where

Diederik P. Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling, "Improved Variational Inference with Inverse
Autoregressive Flow," NeurIPS, 2016.

= ⊙ () + ()xi zi σi x1:i−1 μi x1:i−1

= ⊙ −zi xi
1

()σi x1:i−1

()μi x1:i−1

()σi x1:i−1

x z = xz~ = zx~

x~i = ⊙ −z~i
1

()σi z~1:i−1

()μi z~1:i−1

()σi z~1:i−1

= ⊙ () + ()z~i σ~i z~1:i−1 μ~i z~1:i−1

() = , () = −σ~i z~1:i−1
1

()σi z~1:i−1
μ~i z~1:i−1

()μi z~1:i−1

()σi z~1:i−1

41

MAF vs IAF

(Note that , , and .)
Lilian Weng, "Flow-based Deep Generative Models," blog post, 2018.

= xz~ = zx~ = pπ~ = πp~

42

https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

MAF vs IAF

MAF IAF

Base distribution

Target distribution

Model

Sampling slow (sequential) fast (single pass)

Density estimation fast (single pass) slow (sequential)

Lilian Weng, "Flow-based Deep Generative Models," blog post, 2018.

z ∼ π(z) x ∼ p(x)

∼ ()z~ π~ z~ ∼ ()x~ p~ x~

= ⊙ () + ()xi zi σi x1:i−1 μi x1:i−1 = ⊙ () + ()x~i z~i σ~i z~1:i−1 μ~i z~1:i−1

43

https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

Summary

44

Summary

Compare different generative models

GANs, VAEs and flow-based models

Survey different normalizing flow models

NICE, RealNVP, Glow, MAF and IAF

Conduct experiments on generating MNIST handwritten digits

NICE and RealNVP

45

Thank you!

[Code] https://github.com/salu133445/flows

[Slides] https://salu133445.github.io/flows

46

https://github.com/salu133445/flows
https://salu133445.github.io/flows

