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Deep Generative Models
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Generative Adversarial Networks (GANSs)



Generative Adversarial Networks (GANSs)

e Adiscriminator D estimates the probability of a given sample coming from the real
dataset.
e A generator (¢ outputs synthetic samples given a noise variable input.
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Data distribution over noise input z: p,(z) (usually uniform distribution)

Data distribution over real sample: Pgata ()
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Generative Adversarial Networks (GANSs)

Define:

Generator G with parameter ¢, Discriminator D with parameter 6.
Data distribution over noise input z: p,(z) (usually uniform distribution)
Data distribution over real sample: Pgata ()

D should distinguish between real and fake data:

max Eopy, 108 D(z) + E, ) log(1 — D (G(2)))]

(G should be able to fool discriminator:
min [E log(1 — D(G(2)))

6, z~p(2)



Generative Adversarial Networks (GANSs)

Define:

Generator G with parameter ¢, Discriminator D with parameter 6.
Data distribution over noise input z: p,(z) (usually uniform distribution)
Data distribution over real sample: Pgata ()

When combining two targets together, G and D are playing a minimax game:

ngin mea,x [Emdiata log D(CE) + IEizwgp(z) 10g(1 — D (G(Z)))]



Generative Adversarial Networks (GANSs)
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https://www.kdnuggets.com/2017/01/generative-adversarial-networks-hot-topic-machine-learning.html

Variational Autoencoders (VAEs)

Some background: Autoencoders
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http://cs231n.stanford.edu/slides/2020/lecture_11.pdf
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Variational Autoencoders (VAEs)

Some background: Autoencoders

e Features capture factors of variation in

training data. Reponstructed fi’
, | input data
e But we can’t generate new images from
an autoencoder because we don't know T Decoder
the space of z.
Features z
e How do we make autoencoder a
generative model? T Encoder
Input data )



http://cs231n.stanford.edu/slides/2020/lecture_11.pdf

Variational Autoencoders (VAEs)

We sample a z from a prior distribution pg(z). Then « is generated from a conditional
distribution pg(x | 2). The process is

po (x) = / po (x | ) po(2)dz
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We sample a z from a prior distribution pg(z). Then « is generated from a conditional
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value space, consider the posterior pg(z | ) and approximate it by g4(z | ).

10



Variational Autoencoders (VAEs)
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Variational Autoencoders (VAEs)

We sample a z from a prior distribution pg(z). Then « is generated from a conditional
distribution pg(x | 2). The process is

po(x) = [ b0 (x| D) p(a)dz
However, it is very expensive to check all z for integral (intractable). To narrow down the
value space, consider the posterior pg(z | ) and approximate it by g4(z | ).
The data likelihood

log pg(2) = Eong, (o) l0g P (x| 2)] — Dicr (94 (2 | @) [Pg(2)) + Drr (a4 (2| @) [Ipp (2 | 7))
> B, q,(z|z) 10gPo (2 | 2)| — Dkr (99 (2 | 2) |lPe(2)) = ELBO(z;6,9)
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Variational Autoencoders (VAEs)

We sample a z from a prior distribution pg(z). Then « is generated from a conditional
distribution pg(x | 2). The process is

po(x) = [ b0 (x| D) p(a)dz
However, it is very expensive to check all z for integral (intractable). To narrow down the
value space, consider the posterior pg(z | ) and approximate it by g4(z | ).
The data likelihood
log py(x) = Eznq,(o)z) [logpy (z | 2)] — Dkr (g4 (2] 2) lpy(2)) + Dxr (a4 (2| @) |Ipp (2] )
> B, q,(z|z) 10gPo (2 | 2)| — Dkr (99 (2 | 2) |lPe(2)) = ELBO(z;6,9)

ELBO(z; 0, ¢) is tractable, mg,xlogpg(a;) — 1101%XELBO(:13;9, b).

12



Variational Autoencoders (VAEs)

Reconstructed
Input <o Ideally they are identical. ~ ~-----------------ooo- - .
) input
X~ X
Probabilistic Encoder
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Mean Sampled
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o

Std. dev

_ An compressed low dimensional
z=p+o0e representation of the input.

e ~N(0,1)



https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html

GANSs vs VAEs vs Flow-based models

Optimization target
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GANSs vs VAEs vs Flow-based models

Optimization target
GAN:

min max Eipine 108 Dy, () +E, () log(1 — Dy, (Gy,(2))) ]
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GANSs vs VAEs vs Flow-based models

Optimization target

GAN:

min max Eipine 108 Dy, () +E, () log(1 — Dy, (Gy,(2))) ]

VAE:
maXEz~q¢(z|a3) [lngg (33 ‘ Z)] — Dgr, (Q(b (Z ‘ 513) Hpe(z))

0.6
= ELBO(z;6, ¢)
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GANSs vs VAEs vs Flow-based models

Optimization target

GAN:

n%in meax [Exwpdata log Dy, (z) + Enp(z) log(l — D, (G%(z))ﬂ
g d

VAE:
I%%XEquqs(zh:) [lngg (33 ‘ Z)] — Dgr, (Q(b (Z ‘ 513) Hpe(z))
— ELBO(x: 6, ¢)

Flow-based generative models:

max E;p,.. logpg(z)

14



GANSs vs VAEs vs Flow-based models

GAN: minimax the
classification error loss.

VAE: maximize ELBO.

Flow-based
generative models:
minimize the negative

log-likelihood

\ 4

Discriminator

D(x)

Encoder

9¢(2[x)

Y

Flow

f(x)

Generator

G(z)

Decoder

Po(x|2)

\ 4

Y

Inverse

fl(2)

\ 4

15


https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

How to estimate data likelihood directly?

16



Linear Algebra Basics

17



Jacobian matrix

Given a function f : R® — R™ that takes as input a n-dimensional input vector x and
output a m-dimensional vector, the Jacobian matrix of f is defined as

[ O O Ofi
8.’131 8.’132 e 8wn
of,  of Of>
J — 0x1 Ox T Ox,,
Ofm  Ofm Ofm
| 8331 8332 e (’9:1:n _

which is the matrix of all first-order partial derivatives. The entry on the 2-th row and j-th
column is

Ofi
Jij =
J 833j




Change of variable theorem

Given some random variable z ~ 7(z) and a invertible mapping z = f(z) (i.e.,

z = f~1(z) = g(x)). Then, the distribution of z is

%1 — n(g(z)

dx

19



Change of variable theorem

Given some random variable z ~ 7(z) and a invertible mapping z = f(z) (i.e.,

z = f~1(z) = g(x)). Then, the distribution of z is

dz dg
p(a) = () | 52| = n(9(a)) | 5
x dx
The multivariate version takes the following form:
p(x) = (z) |det Y| = r(g(x))|det 22
dx dx

dg . . :
where det d—}gc is the Jacobian determinant of g.

19



Normalizing Flows

20



Normalizing flows

Key: Transform a simple distribution into a complex one by applying a sequence of invertible
transformations.

fl ZO fz Zz 1 fz+1 zz

Y - N \

/ \

’ \
\ ! \
I 1 | 1
\ 1 \ 1
\ A, ) % \ i ~3
/

Zg ~ po(Zo) z; sz( 7,) Zg ~ pK(zK)

21
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Normalizing flows

Key: Transform a simple distribution into a complex one by applying a sequence of invertible
transformations.

fl ZO fz Zz 1 fz+1 zz
/ \
’ \
\ ! \
I 1 | 1
\ 1 \ 1
X A, , % \ | ~3
/

- ~

Zg ~ po(Zo) z; sz'( z) Zg ~ pK(ZK)

e In each step, substitute the variable with the new one by change of variables theorem.
e Eventually, obtain a distribution close enough to the target distribution.

21
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Normalizing flows

For each step, we have z; ~ p;(2;), z; = fi(2z;_1) and z;_1 = g;(2;). Now,

pi(2z;) = pi—1(9i(2z;)) |det gd(z ) (by change of variables theorem)
Z;
dz; 1 "
= pi-1(zi-1) |det —— by definit
pi-1(z-1)|de a7z 1) (by definition)
d 1\ 41— -
= p;_1(2;_1) |det ( ];(Z 1) ) (by inverse function theorem)
Z; 1
dfi |7
= p;—1(2;-1)|det 7 (by dethet(M_l) =detl = 1)
Zi—1
Thus, we have log p;(z;) = logp;_1(z;_1) — log‘det dcziz

22



Normalizing flows

Now, we obtain log p;(z;) = logp;—1(z;—1) — log‘det

Recall that x = ZKg — fK ) fK—l O-++-0 fl(ZO)-
Thus, we have

logp(x) = logpk (zx)

= logprx_1(2x—1) — log

K
= logpo(zg) — » _log
i—1

df;
dz; 1

det

det

dz;_1

dfx

ZK-1

df;

23



Normalizing flows

In normalizing flows, the exact log-likelihood log p(x) of input data x is

af;

dz;_1

K
logp(x) = logpo(2zo) log
=1

1

det

24



Normalizing flows

In normalizing flows, the exact log-likelihood log p(x) of input data x is

afi

Zz—l

det

K
logp(x) = logpo(zo) — Y log
1=1

To make the computation tractable, it requires

e f;is easily invertible
e The Jacobian determinant of f; is easy to compute

24



Normalizing flows

In normalizing flows, the exact log-likelihood log p(x) of input data x is

afi

Zz—l

det

K
logp(x) = logpo(zo) — Y log
1=1

To make the computation tractable, it requires

e f;is easily invertible
e The Jacobian determinant of f; is easy to compute

Then, we can train the model by maximizing the log-likelihood over some training dataset D

=) logp(x)

24



NICE

The core idea behind NICE (Non-linear Independent Components Estimation) is to

1.splitx &€ R? into two blocks x; € R? and Xo € RD—d
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NICE

The core idea behind NICE (Non-linear Independent Components Estimation) is to

1.splitx &€ R? into two blocks x; € R? and Xo € RD—d

2. apply the following transformation from (x1,x2) to (y1,¥5)

{;Yl — X1
y, = X3+ m(xg)

where m(-) is an arbitrarily function (e.g., a deep neural network).

25



NICE - Additive coupling layers

The transformation

{}’1 — X1
y, = Xs+m(xy)

e is trivially invertible.

{Xl - Y,
X2 =Y _m(Y1)

26



NICE - Additive coupling layers

The transformation

{}’1 — X1
y, = Xs+m(xy)

¢ has a unit Jacobian determinant.

Is  O4x(p-q
J = | omx)

v Ip—q

det(J) =1

Note that NICE is a type of volume-preserving flows as it has a unit Jacobian determinant.

27



NICE - Alternating pattern

Some dimensions remain unchanged after the transform

e alternate the dimensions being modified
e 3 coupling layers are necessary to allow all dimensions to influence one another

o=
oo

28



NICE - Experiments on MNIST

Settings: 784 dimensions (28 x28), 6 additive coupling layers

29



RealNVP

The core idea behind RealNVP (Real-valued Non-Volume Preserving) is to

1.splitx &€ R? into two blocks x; € R? and Xo € RD—d

30



RealNVP

The core idea behind RealNVP (Real-valued Non-Volume Preserving) is to

1. splitx € R? into two blocks x; € R? and x, € RP~¢
2. apply the following transformation from (x1,x2) to (y1,¥5)
{ Y1d = X1:d
Yait:p = Xdr1:p © €51 4 §(xq,)

where s(+) and ¢(+) are scale and translation functions that map R% to R”~%, and ®
denotes the element-wise product.
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RealNVP

The core idea behind RealNVP (Real-valued Non-Volume Preserving) is to

1.splitx &€ R? into two blocks x; € R? and Xo € RD—d

2. apply the following transformation from (x1,x2) to (y1,¥5)

{ Y1d — Xl:d
Yait:p = Xdr1:p © €51 4 §(xq,)

where s(+) and ¢(+) are scale and translation functions that map R% to R”~%, and ®

denotes the element-wise product.

(Note that NICE does not have the scaling term.)

30



RealNVP - Affine coupling layers

The transformation
Yortp = Xai1p © €31 +¢(x1.4)
e is easily invertible.
{ X1:d = Yi.4
X310 = (Ygi1.p — tH(X14)) © e 51

(Note that it does not involve computing s 1 and ¢ 1)

31



RealNVP - Affine coupling layers

The transformation

Yigr1.0 — Xd+1:D © esX1d) 4 ¢(x1.4)

e has a Jacobian determinant that is easy to compute.

J [ I 04 (D—-0q) }
— a‘Yd—i—lzD . S(X1.
x diag (e ( ~d))

D—d D—d
det(J H et (¥ud); — exp(z (X1.q)

J=1

(Note that it does not involve computing the Jacobian of s and t.)

)

32



RealNVP - Experiments on toy data

Settings: 2D data, 5 affine coupling layers

Z~N(0,1) Transformed distribution
4 0.3
:g .
3 . o””"".....
0.2 1
2_
0.1 -
1_
N ’ < 0.0
0_ .
1l -0.11
-2 —-0.2 1 .
EX
u.-.." - . \'*'*“. -
—-3- -t -0.31 e
-4 -2 0 2 0.0 0.2 0.4 0.6 0.8 1.0
Z1 X1
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RealNVP - Experiments on toy data

Settings: 2D data, 5 affine coupling layers

Z~N(0,1)

X2

0.3 1

0.2 1

0.1

0.0 1

—-0.11

-=0.2 1

-0.3-

X-Space

0.0 0.2 0.4 0.6
X1

0.8

1.0
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RealNVP - Experiments on MNIST

Settings: 784 dimensions (28 < 28), 5 affine coupling layers
Digit 2 All digits
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Glow

o Actnorm;

o Forward:y =s®x+b

o Backward:x = s ® (y — b)
o Log-determinant: h-w - ) . log|s;|

affine coupling layer

?

invertible 1x1 conv

?

actnorm

T

Diederik P. Kingma and Prafulla Dhariwal, "Glow: Generative Flow with Invertible 1 X1 Convolutions,"

NeurIPS, 2018
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Glow

o Actnorm;

o Forward:y =s®x+b

o Backward:x = s ® (y — b)
o Log-determinant: h-w - Y. log|s;]|

e Invertible 1x1 convolution:

o Forward:y = Wx

affine coupling layer

?

invertible 1x1 conv

?

o Backward:x = W1y

actnorm

o Log-determinant: h - w - log | det W|

T

Diederik P. Kingma and Prafulla Dhariwal, "Glow: Generative Flow with Invertible 1 X1 Convolutions,"

NeurIPS, 2018
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Glow

o Actnorm;

o Forward:y =s®x+b

o Backward:x = s ® (y — b)

affine coupling layer

o Log-determinant: h-w - Y. log|s;]|

?

e Invertible 1x1 convolution:

invertible 1x1 conv

o Forward:y = Wx

?

o Backward:x = W1y

actnorm

o Log-determinant: h - w - log | det W|

T

e Affine coupling Layer: same as RealNVP

Diederik P. Kingma and Prafulla Dhariwal, "Glow: Generative Flow with Invertible 1 X1 Convolutions,"

NeurIPS, 2018
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Glow - Samples

£
2at

Diederik P. Kingma and Prafulla Dhariwal, "Glow: Generative Flow with Invertible 1x1 Convolutions," NeurIPS, 2018
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Autoregressive Flows
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Autoregressive flows

Key: Model the transformation in a normalizing flow as an autoregressive model.

In an autoregressive model, we assume that the current output depends only on the data
observed in the past and factorize the joint probability p(x1,xs,...,Zp) into the product of
the probability of observing x; conditioned on the past observations x1,xo,...,x;_1.

p(x) = p(z1,%2,.-.,ZD)
p(z1) p(z2|z1) p(z3|®1,%2) - .. p(TD|Z1,%2,...,ZD-1)

/N

p(xi‘$17w27' "7xi—1)

P(«’Ez' (Xlzz‘—l)

= I

~
I
p—t

39
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Masked autoregressive flow (MAF)

Given two random variables z ~ 7(z) and x ~ p(x) where 7(z) is known but p(x) is
unknown. Masked autoregressive flow (MAF) aims to learn p(z).

e Sampling:
z; ~ p(x;|X15-1) = 2; © 03 (X1:5-1) + s (X1:5-1)

Note that this computation is slow as it is sequential and autoregressive.
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Masked autoregressive flow (MAF)

Given two random variables z ~ 7(z) and x ~ p(x) where 7(z) is known but p(x) is
unknown. Masked autoregressive flow (MAF) aims to learn p(z).

e Sampling:
T; ~ p(Ti|X1:-1) = 28 © 03 (Xp:-1) + o (X1:6-1)
Note that this computation is slow as it is sequential and autoregressive.

e Density estimation:
D

p(x) = HP(% | %X1:-1)

1=1

Note that this computation can be fast if we use the masking approach introduced in
MADE as it only requires one single pass to the network.

40



Inverse autoregressive flow (IAF)

In MAF, we have x; = z; ® 0;(X1.5_1) + ;(X1.5_1). We can reverse it into
1 o ,U'i(xlzi—l)
o) (xl:i—l) o) (Xlzi—l)
Now, if we swap x and z (let z = x and X = z), we get the inverse autoregressive flow (IAF)
3 3 1 (Z1:i-1
B 5o _/J“z(~z )
g; (lez’—l) g; (lez’—l)

= 2; © 0i(2Z1:-1) + ;(Z1:i-1)

zZi = ; ©

where

Gi(Z215-1) =

41



MAF vs IAF

21 L1
) scale &

Zi—1 shift terms | Li—1
2i f— z; x;
Zi+1 Lit+1
2; © 03(X1:i-1) + pi(X1:i-1)

ZD Irp
z ~ 7(z) ? - x ~ p(x)
(known) (unknown)

Masked Autoregressive Flow (MAF)

(Notethatz = X, x =
Lilian Weng, "Flow-based Deep Generative Models," blog post, 2018.

21 -'El
- scale & ~
Zi—1 | shiftterms Ti—1
zZi ——» z; T;
Zitl | 5 = ~ Tit1
Tz ©6i(X1-1) + Bi(X1-1) T
ED C%D
7 ~ () ? - X ~ (%)
(known) (unknown)

Inverse Autoregressive Flow (IAF)

z, T=pandp = m.)

42
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MAF vs IAF

Base distribution
Target distribution
Model

Sampling

Density estimation

~

7 ~ 7(Z)
T; = 2; © 0y (Xy4-1) + py (X1:5-1)
slow (sequential)

fast (single pass)

IAF

x ~ p(x)
% ~ 5(X)
T, =2;©0(Z1:-1) + i (Z1:5-1)
fast (single pass)

slow (sequential)
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Summary
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Summary

e Compare different generative models
o GANSs, VAEs and flow-based models
e Survey different normalizing flow models
o NICE, RealNVP, Glow, MAF and IAF
e Conduct experiments on generating MNIST handwritten digits

o NICE and RealNVP
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Thank youl!

[Code] https://github.com/salu133445/flows

[Slides] https://salu133445.github.io/flows
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