muspy.datasets
Dataset classes.
This module provides an easy-to-use dataset management system. Each supported dataset in MusPy comes with a class inherited from the base MusPy Dataset class. It also provides interfaces to PyTorch and TensorFlow for creating input pipelines for machine learning.
Base Classes
ABCFolderDataset
Dataset
DatasetInfo
FolderDataset
RemoteABCFolderDataset
RemoteDataset
RemoteFolderDataset
RemoteMusicDataset
MusicDataset
Dataset Classes
EssenFolkSongDatabase
EMOPIADataset
HaydnOp20Dataset
HymnalDataset
HymnalTuneDataset
JSBChoralesDataset
LakhMIDIAlignedDataset
LakhMIDIDataset
LakhMIDIMatchedDataset
MAESTRODatasetV1
MAESTRODatasetV2
Music21Dataset
MusicNetDataset
NESMusicDatabase
NottinghamDatabase
WikifoniaDataset
- class muspy.datasets.ABCFolderDataset(root, convert=False, kind='json', n_jobs=1, ignore_exceptions=True, use_converted=None)[source]
Class for datasets storing ABC files in a folder.
See also
muspy.FolderDataset
Class for datasets storing files in a folder.
- class muspy.datasets.Dataset[source]
Base class for MusPy datasets.
To build a custom dataset, it should inherit this class and overide the methods
__getitem__
and__len__
as well as the class attribute_info
.__getitem__
should return thei
-th data sample as amuspy.Music
object.__len__
should return the size of the dataset._info
should be amuspy.DatasetInfo
instance storing the dataset information.- save(root, kind='json', n_jobs=1, ignore_exceptions=True, verbose=True, **kwargs)[source]
Save all the music objects to a directory.
- Parameters
root (str or Path) – Root directory to save the data.
kind ({'json', 'yaml'}, default: 'json') – File format to save the data.
n_jobs (int, default: 1) – Maximum number of concurrently running jobs. If equal to 1, disable multiprocessing.
ignore_exceptions (bool, default: True) – Whether to ignore errors and skip failed conversions. This can be helpful if some source files are known to be corrupted.
verbose (bool, default: True) – Whether to be verbose.
**kwargs – Keyword arguments to pass to
muspy.save()
.
- split(filename=None, splits=None, random_state=None)[source]
Return the dataset as a PyTorch dataset.
- Parameters
filename (str or Path, optional) – If given and exists, path to the file to read the split from. If None or not exists, path to save the split.
splits (float or list of float, optional) – Ratios for train-test-validation splits. If None, return the full dataset as a whole. If float, return train and test splits. If list of two floats, return train and test splits. If list of three floats, return train, test and validation splits.
random_state (int, array_like or RandomState, optional) – Random state used to create the splits. If int or array_like, the value is passed to
numpy.random.RandomState
, and the created RandomState object is used to create the splits. If RandomState, it will be used to create the splits.
- to_pytorch_dataset(factory=None, representation=None, split_filename=None, splits=None, random_state=None, **kwargs)[source]
Return the dataset as a PyTorch dataset.
- Parameters
factory (Callable, optional) – Function to be applied to the Music objects. The input is a Music object, and the output is an array or a tensor.
representation (str, optional) – Target representation. See
muspy.to_representation()
for available representation.split_filename (str or Path, optional) – If given and exists, path to the file to read the split from. If None or not exists, path to save the split.
splits (float or list of float, optional) – Ratios for train-test-validation splits. If None, return the full dataset as a whole. If float, return train and test splits. If list of two floats, return train and test splits. If list of three floats, return train, test and validation splits.
random_state (int, array_like or RandomState, optional) – Random state used to create the splits. If int or array_like, the value is passed to
numpy.random.RandomState
, and the created RandomState object is used to create the splits. If RandomState, it will be used to create the splits.
- Returns
Converted PyTorch dataset(s).
- Return type
class:torch.utils.data.Dataset` or Dict of :class:torch.utils.data.Dataset`
- to_tensorflow_dataset(factory=None, representation=None, split_filename=None, splits=None, random_state=None, **kwargs)[source]
Return the dataset as a TensorFlow dataset.
- Parameters
factory (Callable, optional) – Function to be applied to the Music objects. The input is a Music object, and the output is an array or a tensor.
representation (str, optional) – Target representation. See
muspy.to_representation()
for available representation.split_filename (str or Path, optional) – If given and exists, path to the file to read the split from. If None or not exists, path to save the split.
splits (float or list of float, optional) – Ratios for train-test-validation splits. If None, return the full dataset as a whole. If float, return train and test splits. If list of two floats, return train and test splits. If list of three floats, return train, test and validation splits.
random_state (int, array_like or RandomState, optional) – Random state used to create the splits. If int or array_like, the value is passed to
numpy.random.RandomState
, and the created RandomState object is used to create the splits. If RandomState, it will be used to create the splits.
- Returns
class:tensorflow.data.Dataset` or Dict of
class:tensorflow.data.dataset` – Converted TensorFlow dataset(s).
- class muspy.datasets.DatasetInfo(name=None, description=None, homepage=None, license=None)[source]
A container for dataset information.
- class muspy.datasets.EMOPIADataset(root, download_and_extract=False, overwrite=False, cleanup=False, convert=False, kind='json', n_jobs=1, ignore_exceptions=True, use_converted=None, verbose=True)[source]
EMOPIA Dataset.
- class muspy.datasets.EssenFolkSongDatabase(root, download_and_extract=False, overwrite=False, cleanup=False, convert=False, kind='json', n_jobs=1, ignore_exceptions=True, use_converted=None, verbose=True)[source]
Essen Folk Song Database.
- class muspy.datasets.FolderDataset(root, convert=False, kind='json', n_jobs=1, ignore_exceptions=True, use_converted=None)[source]
Class for datasets storing files in a folder.
This class extends
muspy.Dataset
to support folder datasets. To build a custom folder dataset, please refer to the documentation ofmuspy.Dataset
for details. In addition, set class attribute_extension
to the extension to look for when building the dataset and setread
to a callable that takes as inputs a filename of a source file and return the converted Music object.- Parameters
convert (bool, default: False) – Whether to convert the dataset to MusPy JSON/YAML files. If False, will check if converted data exists. If so, disable on-the-fly mode. If not, enable on-the-fly mode and warns.
kind ({'json', 'yaml'}, default: 'json') – File format to save the data.
n_jobs (int, default: 1) – Maximum number of concurrently running jobs. If equal to 1, disable multiprocessing.
ignore_exceptions (bool, default: True) – Whether to ignore errors and skip failed conversions. This can be helpful if some source files are known to be corrupted.
use_converted (bool, optional) – Force to disable on-the-fly mode and use converted data. Defaults to True if converted data exist, otherwise False.
Important
muspy.FolderDataset.converted_exists()
depends solely on a special file named.muspy.success
in the folder{root}/_converted/
, which serves as an indicator for the existence and integrity of the converted dataset. If the converted dataset is built bymuspy.FolderDataset.convert()
, the.muspy.success
file will be created as well. If the converted dataset is created manually, make sure to create the.muspy.success
file in the folder{root}/_converted/
to prevent errors.Notes
Two modes are available for this dataset. When the on-the-fly mode is enabled, a data sample is converted to a music object on the fly when being indexed. When the on-the-fly mode is disabled, a data sample is loaded from the precomputed converted data.
See also
muspy.Dataset
Base class for MusPy datasets.
- property converted_dir
Path to the root directory of the converted dataset.
- use_converted()[source]
Disable on-the-fly mode and use converted data.
- Returns
- Return type
Object itself.
- on_the_fly()[source]
Enable on-the-fly mode and convert the data on the fly.
- Returns
- Return type
Object itself.
- convert(kind='json', n_jobs=1, ignore_exceptions=True, verbose=True, **kwargs)[source]
Convert and save the Music objects.
The converted files will be named by its index and saved to
root/_converted
. The original filenames can be found in thefilenames
attribute. For example, the file atfilenames[i]
will be converted and saved to{i}.json
.- Parameters
kind ({'json', 'yaml'}, default: 'json') – File format to save the data.
n_jobs (int, default: 1) – Maximum number of concurrently running jobs. If equal to 1, disable multiprocessing.
ignore_exceptions (bool, default: True) – Whether to ignore errors and skip failed conversions. This can be helpful if some source files are known to be corrupted.
verbose (bool, default: True) – Whether to be verbose.
**kwargs – Keyword arguments to pass to
muspy.save()
.
- Returns
- Return type
Object itself.
- class muspy.datasets.HaydnOp20Dataset(root, download_and_extract=False, overwrite=False, cleanup=False, convert=False, kind='json', n_jobs=1, ignore_exceptions=True, use_converted=None, verbose=True)[source]
Haydn Op.20 Dataset.
- class muspy.datasets.HymnalDataset(root, download=False, convert=False, kind='json', n_jobs=1, ignore_exceptions=True, use_converted=None)[source]
Hymnal Dataset.
- class muspy.datasets.HymnalTuneDataset(root, download=False, convert=False, kind='json', n_jobs=1, ignore_exceptions=True, use_converted=None)[source]
Hymnal Dataset (tune only).
- class muspy.datasets.JSBChoralesDataset(root, download_and_extract=False, overwrite=False, cleanup=False, convert=False, kind='json', n_jobs=1, ignore_exceptions=True, use_converted=None, verbose=True)[source]
Johann Sebastian Bach Chorales Dataset.
- class muspy.datasets.LakhMIDIAlignedDataset(root, download_and_extract=False, overwrite=False, cleanup=False, convert=False, kind='json', n_jobs=1, ignore_exceptions=True, use_converted=None, verbose=True)[source]
Lakh MIDI Dataset - aligned subset.
- class muspy.datasets.LakhMIDIDataset(root, download_and_extract=False, overwrite=False, cleanup=False, convert=False, kind='json', n_jobs=1, ignore_exceptions=True, use_converted=None, verbose=True)[source]
Lakh MIDI Dataset.
- class muspy.datasets.LakhMIDIMatchedDataset(root, download_and_extract=False, overwrite=False, cleanup=False, convert=False, kind='json', n_jobs=1, ignore_exceptions=True, use_converted=None, verbose=True)[source]
Lakh MIDI Dataset - matched subset.
- class muspy.datasets.MAESTRODatasetV1(root, download_and_extract=False, overwrite=False, cleanup=False, convert=False, kind='json', n_jobs=1, ignore_exceptions=True, use_converted=None, verbose=True)[source]
MAESTRO Dataset V1 (MIDI only).
- class muspy.datasets.MAESTRODatasetV2(root, download_and_extract=False, overwrite=False, cleanup=False, convert=False, kind='json', n_jobs=1, ignore_exceptions=True, use_converted=None, verbose=True)[source]
MAESTRO Dataset V2 (MIDI only).
- class muspy.datasets.MAESTRODatasetV3(root, download_and_extract=False, overwrite=False, cleanup=False, convert=False, kind='json', n_jobs=1, ignore_exceptions=True, use_converted=None, verbose=True)[source]
MAESTRO Dataset V3 (MIDI only).
- class muspy.datasets.Music21Dataset(composer=None)[source]
A class of datasets containing files in music21 corpus.
- Parameters
composer (str) – Name of a composer or a collection. Please refer to the music21 corpus reference page for a full list [1].
extensions (list of str) – File extensions of desired files.
References
[1] https://web.mit.edu/music21/doc/about/referenceCorpus.html
- convert(root, kind='json', n_jobs=1, ignore_exceptions=True)[source]
Convert and save the Music objects.
- Parameters
root (str or Path) – Root directory to save the data.
kind ({'json', 'yaml'}, default: 'json') – File format to save the data.
n_jobs (int, default: 1) – Maximum number of concurrently running jobs. If equal to 1, disable multiprocessing.
ignore_exceptions (bool, default: True) – Whether to ignore errors and skip failed conversions. This can be helpful if some source files are known to be corrupted.
- class muspy.datasets.MusicDataset(root, kind=None)[source]
Class for datasets of MusPy JSON/YAML files.
- Parameters
root (str or Path) – Root directory of the dataset.
kind ({'json', 'yaml'}, optional) – File formats to include in the dataset. Defaults to include both JSON and YAML files.
- root
Root directory of the dataset.
- Type
Path
- filenames
Path to the files, relative to root.
- Type
list of Path
See also
muspy.Dataset
Base class for MusPy datasets.
- class muspy.datasets.MusicNetDataset(root, download_and_extract=False, overwrite=False, cleanup=False, convert=False, kind='json', n_jobs=1, ignore_exceptions=True, use_converted=None, verbose=True)[source]
MusicNet Dataset (MIDI only).
- class muspy.datasets.NESMusicDatabase(root, download_and_extract=False, overwrite=False, cleanup=False, convert=False, kind='json', n_jobs=1, ignore_exceptions=True, use_converted=None, verbose=True)[source]
NES Music Database.
- class muspy.datasets.NottinghamDatabase(root, download_and_extract=False, overwrite=False, cleanup=False, convert=False, kind='json', n_jobs=1, ignore_exceptions=True, use_converted=None, verbose=True)[source]
Nottingham Database.
- class muspy.datasets.RemoteABCFolderDataset(root, download_and_extract=False, overwrite=False, cleanup=False, convert=False, kind='json', n_jobs=1, ignore_exceptions=True, use_converted=None, verbose=True)[source]
Base class for remote datasets storing ABC files in a folder.
See also
muspy.ABCFolderDataset
Class for datasets storing ABC files in a folder.
muspy.RemoteDataset
Base class for remote MusPy datasets.
- class muspy.datasets.RemoteDataset(root, download_and_extract=False, overwrite=False, cleanup=False, verbose=True)[source]
Base class for remote MusPy datasets.
This class extends
muspy.Dataset
to support remote datasets. To build a custom remote dataset, please refer to the documentation ofmuspy.Dataset
for details. In addition, set the class attribute_sources
to the URLs to the source files (see Notes).- Parameters
- Raises
RuntimeError: – If
download_and_extract
is False but file{root}/.muspy.success
does not exist (see below).
Important
muspy.Dataset.exists()
depends solely on a special file named.muspy.success
in directory{root}/_converted/
. This file serves as an indicator for the existence and integrity of the dataset. It will automatically be created if the dataset is successfully downloaded and extracted bymuspy.Dataset.download_and_extract()
. If the dataset is downloaded manually, make sure to create the.muspy.success
file in directory{root}/_converted/
to prevent errors.Notes
The class attribute
_sources
is a dictionary storing the following information of each source file.filename (str): Name to save the file.
url (str): URL to the file.
archive (bool): Whether the file is an archive.
md5 (str, optional): Expected MD5 checksum of the file.
sha256 (str, optional): Expected SHA256 checksum of the file.
Here is an example.:
_sources = { "example": { "filename": "example.tar.gz", "url": "https://www.example.com/example.tar.gz", "archive": True, "md5": None, "sha256": None, } }
See also
muspy.Dataset
Base class for MusPy datasets.
- class muspy.datasets.RemoteFolderDataset(root, download_and_extract=False, overwrite=False, cleanup=False, convert=False, kind='json', n_jobs=1, ignore_exceptions=True, use_converted=None, verbose=True)[source]
Base class for remote datasets storing files in a folder.
- Parameters
download_and_extract (bool, default: False) – Whether to download and extract the dataset.
cleanup (bool, default: False) – Whether to remove the source archive(s).
convert (bool, default: False) – Whether to convert the dataset to MusPy JSON/YAML files. If False, will check if converted data exists. If so, disable on-the-fly mode. If not, enable on-the-fly mode and warns.
kind ({'json', 'yaml'}, default: 'json') – File format to save the data.
n_jobs (int, default: 1) – Maximum number of concurrently running jobs. If equal to 1, disable multiprocessing.
ignore_exceptions (bool, default: True) – Whether to ignore errors and skip failed conversions. This can be helpful if some source files are known to be corrupted.
use_converted (bool, optional) – Force to disable on-the-fly mode and use converted data. Defaults to True if converted data exist, otherwise False.
See also
muspy.FolderDataset
Class for datasets storing files in a folder.
muspy.RemoteDataset
Base class for remote MusPy datasets.
- class muspy.datasets.RemoteMusicDataset(root, download_and_extract=False, overwrite=False, cleanup=False, kind=None, verbose=True)[source]
Base class for remote datasets of MusPy JSON/YAML files.
- Parameters
root (str or Path) – Root directory of the dataset.
download_and_extract (bool, default: False) – Whether to download and extract the dataset.
overwrite (bool, default: False) – Whether to overwrite existing file(s).
cleanup (bool, default: False) – Whether to remove the source archive(s).
kind ({'json', 'yaml'}, optional) – File formats to include in the dataset. Defaults to include both JSON and YAML files.
verbose (bool. default: True) – Whether to be verbose.
- root
Root directory of the dataset.
- Type
Path
- filenames
Path to the files, relative to root.
- Type
list of Path
See also
muspy.MusicDataset
Class for datasets of MusPy JSON/YAML files.
muspy.RemoteDataset
Base class for remote MusPy datasets.
- class muspy.datasets.WikifoniaDataset(root, download_and_extract=False, overwrite=False, cleanup=False, convert=False, kind='json', n_jobs=1, ignore_exceptions=True, use_converted=None, verbose=True)[source]
Wikifonia dataset.