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>> Introduction

# MuseGAN [1] shows the promise of using GANSs [2]
with CNINs to generate multitrack pianorolls. But it
requires further postprocessing at test time fo binarize
the generator’s (G)output ____

# BinaryMuseGAN G'soutput  data

(proposed) adopts binary ~MuseGAN[1]  real  bnary
neurons [3]to binarize  BinayMuseGAN L
G's output during training lpropesed)

>> System

Generator (G) Refiner (R)

Discriminator (D)

>> Data

# Lakh Pianoroll Dataset (LPD) — LPD-cleansed subset

# Consider only songs with an alternative tag to make
the training data cleaner

# 13,746 4-bar phrases from 2,291 songs

# 96 time steps in a bar, 84 possible pitches (C1 to BT)

# 8 tracks — Drums, Piane, Guitar, Bass, Ensemble,
Reed, Synth Lead and Synth Pad

# Target output tensor shape — (4, 96, 84, 8)

Training Strategies
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>> Conclusions

# While the generated results appear preliminary and
lack musicality, we showed the potential of adopting
binary neurons in a music generation system

# Using DBNs leads to better objective scores than
hard thresholding, Bernoulli sampling and SBNs

# It might also be interesting to use binary neurons in
music transcription (binary-valued outputs as well)
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