Convolutional Generative Adversarial Networks with Binary Neurons for Polyphonic Music Generation

Hao-Wen Dong and Yi-Hsuan Yang

Research Center for IT Innovation, Academia Sinica, Taipei, Taiwan [Demo Website] https://salu133445.github.io/bmusegan/

>> Introduction >> Data

Lakh Pianoroll Dataset (LPD) — LPD-cleansed subset # MuseGAN [1] shows the promise of using GANs [2]

data

binary

binary

real

binary

Deterministic Binary Neurons (DBNs) $DBN(x) = u(\sigma(x) - 0.5)$

Stochastic Binary Neurons (SBNs) $SBN(x) = u(\sigma(x) - v), v \sim U[0, 1]$

- with CNNs to generate *multitrack pianorolls*. But it requires further postprocessing at test time to binarize the generator's (G) output
- G's output **BinaryMuseGAN** # MuseGAN [1] (proposed) adopts *binary neurons* [3] to binarize **BinaryMuseGAN** (proposed) G's output during training
- Consider only songs with an *alternative* tag to make the training data cleaner
- **#** 13,746 **4**-bar phrases from 2,291 songs **96** time steps in a bar, **84** possible pitches (C1 to B7) **8** tracks — Drums, Piano, Guitar, Bass, Ensemble, Reed, Synth Lead and Synth Pad
- Target output tensor shape -(4, 96, 84, 8)

onset/offset stream	\checkmark	
chroma stream	\checkmark	

- qualified (no shorter than a 32th note) note rate QN
- PP polyphonicity (more than 3 pitches are played) rate

tonal distance [4] between the piano and guitar TD

	Evaluation Results (value closer to the training data is better)												
	training pretrained		proposed		joint		end-to-end		ablated-I		ablated-II		
	data	BS	HT	SBNs	DBNs	SBNs	DBNs	SBN s	DBNs	BS	HT	BS	HT
QN	0.88	0.67	0.72	0.42	0.78	0.18	0.55	0.67	0.28	0.61	0.64	0.35	0.37
PP TD	0.48 0.96	0.20 0.98	0.22 1.00	0.26 0.99	<u>0.45</u> 0.87	0.19 <u>0.95</u>	0.19 1.00	0.16 1.40	0.29 1.10	0.19 1.00	0.20 1.00	0.14 1.30	0.14 1.40

(Underlined and bold font indicate respectively the top and top-three entries with values closest to those shown in the 'training data' column.)

>> Results

>> Conclusions

>> References

- While the generated results appear preliminary and lack musicality, we showed the potential of adopting binary neurons in a music generation system Using DBNs leads to better objective scores than hard thresholding, Bernoulli sampling and SBNs # It might also be interesting to use binary neurons in music transcription (binary-valued outputs as well)
- [1] Hao-Wen Dong, Wen-Yi Hsiao, Li-Chia Yang, and Yi-Hsuan Yang. MuseGAN: Symbolic-domain music generation and accompaniment with multi-track sequential generative adversarial networks. In Proc. AAAI, 2018. [2] Ian J. Goodfellow et al. Generative adversarial nets. In *Proc. NIPS*, 2014. [3] Yoshua Bengio, Nicholas Leonard, and Aaron C. Courville. Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013. [4] Christopher Harte, Mark Sandler, and Martin Gasser. Detecting harmonic change in musical audio. In Proc. ACM Workshop on Audio
 - and Music Computing Multimedia, 2006.