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>> Introduction

# MuseGAN [1] shows the promise of using GANs [2]
with CNNSs to generate multitrack pianorolls. But it
requires further postprocessing at test time to binarize
the generator’s (G) output

>> Data

## Lakh Pianoroll Dataset (LPD) — LPD-cleansed subset
# Consider only songs with an alternative tag to make

the training data cleaner
# 13,746 4-bar phrases from 2,291 songs

# BinaryMuseGAN Gsouput data ¢ 96 time steps in a bar, 84 possible pitches (C1 to B7)
(proposed) adopts binary  MuseGAN [1] real  binary 4 8 tracks — Drums, Plano, Guitar, Bass, Ensemble,
neurons [3] to binarize  BinaryMuseGAN . inary Reed, Synth Lead and Synth Pad
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Evaluation Results  (ajue closer to the training data is better)
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>> Conclusions

# While the generated results appear preliminary and
lack musicality, we showed the potential of adopting
binary neurons in a music generation system

# Using DBNs leads to better objective scores than
hard thresholding, Bernoulli sampling and SBNs

# It might also be interesting to use binary neurons in
music transcription (binary-valued outputs as well)
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